A Survey for LLM Tuning Methods:Classifying Approaches Based on Model Internal Accessibility

Kyotaro Nakajima, Hwichan Kim, Tosho Hirasawa, Taisei Enomoto, Zhousi Chen, Mamoru Komachi


Anthology ID:
2024.paclic-1.52
Volume:
Proceedings of the 38th Pacific Asia Conference on Language, Information and Computation
Month:
December
Year:
2024
Address:
Tokyo, Japan
Editors:
Nathaniel Oco, Shirley N. Dita, Ariane Macalinga Borlongan, Jong-Bok Kim
Venue:
PACLIC
SIG:
Publisher:
Tokyo University of Foreign Studies
Note:
Pages:
542–555
Language:
URL:
https://preview.aclanthology.org/fix-sig-urls/2024.paclic-1.52/
DOI:
Bibkey:
Cite (ACL):
Kyotaro Nakajima, Hwichan Kim, Tosho Hirasawa, Taisei Enomoto, Zhousi Chen, and Mamoru Komachi. 2024. A Survey for LLM Tuning Methods:Classifying Approaches Based on Model Internal Accessibility. In Proceedings of the 38th Pacific Asia Conference on Language, Information and Computation, pages 542–555, Tokyo, Japan. Tokyo University of Foreign Studies.
Cite (Informal):
A Survey for LLM Tuning Methods:Classifying Approaches Based on Model Internal Accessibility (Nakajima et al., PACLIC 2024)
Copy Citation:
PDF:
https://preview.aclanthology.org/fix-sig-urls/2024.paclic-1.52.pdf