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Abstract

Detecting CheapFakes, a critical challenge in
the era of misinformation, necessitates robust
models capable of effectively combining multi-
modal information. We present a novel ap-
proach that enhances model generalization and
accuracy by curating a specialized dataset and
introducing an end-to-end framework tailored
for this task. Our contributions are as follows:
proposing a new dataset emphasizing the spe-
cific challenges of CheapFakes detection, de-
veloping a Textual Tokens Weighted (TTW)
Pooling method, which improves semantic ex-
traction from textual data and boosts classifi-
cation accuracy, optimizing the multi-head at-
tention mechanism by applying a shared Lay-
erNorm before feature integration, and finally,
constructing a Cross-modal Encoder incorpo-
rating a co-attention mechanism to effectively
fuse visual and textual representations, thereby
improving contextual understanding and classi-
fication accuracy.

Leveraging Transformer-based architectures,
our approach achieves promising results, with
an accuracy of 83.80%, F1 score of 84.54%,
and recall of 88.60% in classifying the authen-
ticity of image-caption pairs. These findings
highlight the potential of our method in advanc-
ing multi-modal analysis for misinformation
detection.

1 Introduction

The proliferation of CheapFakes, where authentic
images are paired with misleading captions, poses
a critical challenge in the battle against misinfor-
mation. While recent efforts have made strides in
fake news detection, such as feature-based machine
learning models (Castillo et al., 2011; Kwon et al.,
2013; Liu et al., 2015; Biyani et al., 2016) and
deep learning methods (Ma et al., 2016; Rashkin

†These authors contributed equally to this work. All au-
thors want to thank AISIA Research Lab for supporting us
during this paper.

et al., 2017; Chen et al., 2018), challenges remain
in effectively aligning and combining multi-modal
features to enhance classification accuracy.

The emergence of CheapFakes demands new
methodologies that extend beyond uni-modal anal-
ysis. The COSMOS model (Aneja et al., 2021)
marked a significant step forward in out-of-context
(OOC) detection by matching captions to image
regions and comparing semantic similarities be-
tween captions. Building on COSMOS, Tran et al.,
2022; La et al., 2022 proposed models that ex-
tend the COSMOS framework to tackle both the
OOC/NOOC detection (task 1) and the distinction
between genuine and fake image-caption pairs (task
2). However, these models rely on rule-based and
heuristic approaches and often fail to leverage the
full potential of multi-modal data due to a text-side
uni-modal bias.

In this work, we introduce a novel end-to-end
model that leverages a cross-encoder architecture
combined with a co-attention mechanism to en-
hance the fusion of image and text features. Our
model achieves an 83.8% accuracy, marking a 25%
improvement over baseline methods that use sim-
ple feature concatenation. Thus, it provides a more
nuanced understanding of context.

This paper makes several pivotal contributions
to the field of CheapFakes detection, highlighted
as follows:

1. A specialized dataset is constructed, derived
from a detailed analysis of the COSMOS
dataset (Aneja et al., 2021), targeting the de-
tection of CheapFakes. This dataset is tailored
to capture the intricacies of misleading image-
caption pairs, providing a robust foundation
for training and evaluation.

2. We introduce a TTW Pooling method that as-
signs weights to individual tokens, enhancing
the extraction of semantic features. Unlike
conventional methods, which either focus on
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a single token such as the [CLS] token or use
mean pooling that treats all tokens equally,
our approach captures both local and global
contexts, resulting in richer and more nuanced
sentence representations.

3. A shared LayerNorm is applied before inte-
grating multi-modal features, ensuring better
alignment and reducing feature dispersion, in-
spired by Brody et al., 2023. This step en-
hances the stability and effectiveness of the
co-attention mechanism that follows, improv-
ing overall model performance.

4. We designed a Cross-modal Encoder with a
co-attention mechanism (Lu et al., 2019) that
facilitates refined interactions between image
and text representations by exchanging key-
value pairs in multi-headed attention. This
bidirectional flow of information allows visual
features to inform language representations
and vice versa, effectively reducing uni-modal
biases and capturing complex relationships
between modalities.

2 Methodology

We propose an end-to-end model architecture com-
prising three main components as shown in Fig-
ure 1. We first conduct a uni-modal encoding pro-
cess, introducing the TTW Pooling technique in
the BERT output (Devlin et al., 2019) to transform
the raw input into embeddings and extract the es-
sential information from both inputs. Next, to fuse
and align the visual and textual features, we de-
sign a Cross-modal Encoder inspired by the co-
attention mechanism (Lu et al., 2019), which cap-
tures and understands the relationship between the
two modalities. Finally, we utilize a classification
head, specifically a Multi-Layer Perceptron (MLP)
(Popescu et al., 2009) architecture with multiple
dense layers. The details of our proposed model
are elaborated in the following sections.

2.1 Problems statements

In detecting CheapFakes, given a pair of caption
S = {s1, s2, . . . , sn} and an image I, the objec-
tive is to identify the given caption and image are
misleading information or not.

2.2 Vision-language Encoder

Our approach adopts Transformer-based architec-
tures (Vaswani et al., 2017), harnessing both textual

and visual features to detect fake captions in Cheap-
Fakes effectively.

For textual feature extraction, we use BERT
(Bidirectional Encoder Representations from Trans-
formers) (Devlin et al., 2019), a language model
that excels in generating accurate semantic repre-
sentations by considering both preceding and fol-
lowing words in a sentence. Each input sequence
S is tokenized using byte-level Byte Pair Encod-
ing (BPE) (Sennrich et al., 2016), and segmented
into different sentences by [CLS] and [SEP] tokens.
The textual input representation is computed as
follows:

T0 = [Ecls;E1;E2; ...;EM ;Esep]+Eseg+Epos (1)

where T0 ∈ R(M+m)×D, E is the token embedding,
M is the total number of tokens, m is the number
of special tokens with m ≥ 2, and D denotes the
dimension of the textual encoder. In addition, Eseg,
Epos ∈ R(M+m)×D are respectively the segment
embeddings and position embeddings. The output
generated by the pre-trained model in this process
is the last hidden state donated as T ∈ R(M+m,768),
which serves as a comprehensive and meaningful
representation of the text content:

T = Encodert(T0) (2)

We utilize the pre-trained ViT-B/16-224-21k
model (Dosovitskiy et al., 2021) as our visual en-
coder for image feature extraction. For a 2D image
input I with varying dimensions I ∈ RH×W×C ,
where H and W represent the height and width of
the image, and C is the number of image chan-
nels. Initially, we convert the input to an RGB
image and resize it to normalized pixel dimensions.
The image is then divided into smaller patches
Ip ∈ RN×(P 2·C), where (P, P ) is the resolution
of each image patch, and N = HW/P 2 is the re-
sulting number of patches, which are embedded
and fed into the transformer model for processing.
The visual input representation is computed as fol-
lows:

V0 = [Iclass; I
1
pE; I2pE; ...; INp E] + Epos, (3)

where V0 ∈ R(N+1)×D and E ∈ R(P 2·C)×D is
the linear projection. Similar to BERT, ViT in-
corporates a [class] token at the start of the patch
sequence and utilizes learnable 1D positional em-
beddings, Epos ∈ R(N+1)×D, where D denotes the
dimension of the visual encoder. The output of



Figure 1: Overview of our model

the visual encoder aggregates information from all
patches, producing a unique feature vector denoted
as V ∈ R(1,768) to represent the global characteris-
tics of the image:

V = Encoderv(V0) (4)

2.3 Textual Tokens Weighted Pooling
To synthesize a comprehensive representation of
the entire sentence from the original token repre-
sentations, we propose TTW Pooling as a pooling
operation that captures both local and global infor-
mation from the data. This approach addresses the
limitations of traditional pooling techniques, which
often struggle to synthesize semantic representa-
tions effectively. For instance, Pooler Output (De-
vlin et al., 2019) relies solely on the representation
of the [CLS] token, overlooking valuable informa-
tion from other tokens in the sentence. Meanwhile,
Mean Pooling averages all tokens without differ-
entiating their importance, which can result in the
loss of crucial details. By employing TTW Pooling,
we aim to enhance the model’s ability to generate
richer and more meaningful representations.

As shown in Figure 2, TTW Pooling consists
of two phases: (1) performing the interpolation
process to evaluate the importance of each token
in a sequence and (2) aggregating the important
information from the output sequence. Firstly, we
transform the embeddings of each token qi from a
sequence T through a fully connected layer, con-
verting the original feature space into a higher-
dimensional space. After this transformation, ap-
plying the tanh activation function helps normal-
ize the output values and smooth their distribution,
mitigating the vanishing and exploding gradient

Figure 2: Comparative Analysis of Pooler Output in
BERT and Textual Tokens Weighted Pooling.

problems during training. Subsequently, a linear
layer is applied to compute the attention scores ai
for each token qi. These scores ai measure the im-
portance of each token in the data sequence and
are normalized into attention weights αi using the
softmax function, concluding the first phase:

α = [α1, α2, ..., αn] with
n∑

i=1

αi = 1 (5)

In the second phase, the attention weights αi are
multiplied by the original features qi to obtain the
context vectors vi. These vectors vi are then aggre-
gated to create a composite representation for the
entire sentence as T+ ∈ R(1,768). This composite
representation not only integrates information from
individual tokens but also encapsulates the most
significant aspects of the sentence. As a result, it



enhances the model’s ability to capture semantic
meaning, thereby improving performance in vari-
ous natural language processing tasks.

T+ =
n∑

i=1

αi · qi (6)

2.4 Unimodalities Integration
2.4.1 Layer Normalization
Layer Normalization (LayerNorm) (Ba et al., 2016)
is crucial in Transformer architectures, optimizing
performance and ensuring stability. Recent work
by Brody et al., 2023 reveals a deeper role of Lay-
erNorm in enhancing the representational capacity
of the multi-head attention mechanism. Specifi-
cally, the projection of input vectors into a (d− 1)
dimensional space orthogonal to [1, 1, . . . , 1], and
the scaling of vectors to a norm of (

√
d), allows the

attention mechanism to evenly attend to all keys,
preventing any key from becoming "un-selectable".
This nuanced understanding expands beyond the
conventional view of LayerNorm as a mere nor-
malization step during forward propagation and
gradient flow.

Inspired by these insights, we implement a
shared LayerNorm for both text and image features
before the Cross-modal Encoder. By normalizing
across different domains, we align and integrate
the features into a unified representation space, op-
timizing the attention mechanism and enhancing
the model’s ability to learn important relationships.
This approach also reduces the number of parame-
ters, improving performance and accelerating con-
vergence.

2.4.2 Cross-modal Encoder
We observe that previous approaches often exhibit
a bias in attention, primarily focusing on text while
failing to fully exploit the potential of visual in-
formation. Therefore, we have designed a Cross-
modal Encoder consisting of two main components:
Image cross-encoder block and Text cross-encoder
block. The core idea is to implement a co-attention
mechanism (Lu et al., 2019), where these two cross-
encoder blocks interact through multi-head atten-
tion. Specifically, this interaction happens when
key-value pairs, possessed by multi-head attention
(Vaswani et al., 2017), are exchanged between the
blocks to strengthen the connection between text
and image.

This structure uses distinct parameters for each
modality (text and image), allowing the model to

focus on the critical parts of the data and calculate
attention weights for each source of information.
A notable feature is its ability to share parame-
ters between the two branches, including weights
and biases. This not only enables the model to
construct a shared representation space for both
modalities but also allows it to automatically iden-
tify and focus on the important aspects of both
text and image simultaneously, resulting in robust
and informative joint representations. The superior-
ity of the co-attention mechanism is demonstrated
through comparisons with other attention mecha-
nisms, highlighting its enhanced performance, par-
ticularly in transformer-based cross-modal encod-
ing (Hendricks et al., 2021).

Figure 3: Cross-encoder architecture

In terms of functionality, the Text cross-encoder
block queries textual features based on visual in-
formation, where the importance of features within
the text is determined. Image cross-encoder block
carries out an evaluation, utilizing language infor-
mation, on the visual features. These two modules
work in tandem to fully leverage the information
from both text and images, enhancing the model’s
understanding of multi-modal data through a multi-
head cross-attention mechanism. To further en-
hance our model’s performance and optimize the
operation of the multi-head cross-attention mech-
anism, we incorporate an additional forward pass
that integrates multi-head self-attention (Vaswani
et al., 2017; Luong et al., 2015). This technique al-
lows the model to automatically identify and focus
on the most critical features, thereby improving the
precision of information transmission through the
primary layer, which employs 24 attention heads
for both layers. Moreover, we integrated a resid-



ual connection following the self-attention layer to
achieve optimal convergence, as proposed by He
et al., 2015. However, the result of this addition
may exhibit different and inconsistent distributions.
To address this, we apply layer normalization (Ba
et al., 2016) to standardize the output distribution,
ensuring it remains within a consistent range and
uniformly distributed:

LayerNorm(x+ att(x)), (7)

where att() is the multi-head self-attention. This
approach mitigates the vanishing gradient problem
and enhances gradient flow through the network,
resulting in a more stable and efficient training
process.

2.5 Classification Network

Figure 4: Architecture of the Classification Head.
The classification head consists of linear layers, ReLU
and Softmax activation functions, and dropout regu-
larization. Note: R and S denote ReLU and Softmax
activation functions, respectively

The classification head, illustrated in Figure 4, is
a crucial component of a classification network,
particularly for tasks such as CheapFake detec-
tion. Its primary purpose is to transform the high-
dimensional features extracted by the preceding
layers into actionable class probabilities. This
transformation is achieved through a series of fully
connected layers that process the learned represen-
tations, followed by activation functions such as
ReLU (Nair and Hinton, 2010) and Softmax, which
introduce non-linearity to the model. Additionally,
regularization techniques like Dropout (Srivastava

et al., 2014) are employed to mitigate overfitting
and enhance the model’s generalization capabili-
ties. By mapping the processed features to specific
class probabilities, the classification head facili-
tates accurate predictions, thereby playing a crucial
role in the model’s overall effectiveness in classi-
fying inputs, especially in the context of detecting
CheapFakes

3 Dataset

To address the novelty of this task, we have de-
veloped a specialized dataset comprising image-
caption pairs where the images are authentic, but
the captions are intentionally misleading. Data was
gathered from different sources, ensuring consis-
tent quality and format throughout all entries. The
dataset is exclusively in English.

3.1 Data Collections

The COSMOS dataset (Aneja et al., 2021) serves
as a foundational resource, consisting of 200K im-
ages and 450K textual captions obtained from vari-
ous news channels and the fact-checking website
Snopes. This dataset is designed to differentiate be-
tween out-of-context (OOC) and not-out-of-context
(NOOC) scenarios.

COSMOS presents a challenge for detecting mis-
information because the visual content itself is not
manipulated; rather, misleading or false informa-
tion arises from the combination of the image and
its caption. Building upon COSMOS, we have con-
structed a tailored dataset to assess the authenticity
of image-caption pairs. This dataset is further aug-
mented with data from Snopes.com†, a prominent
fact-checking website that combats misinforma-
tion by investigating various news stories. Our
dataset includes image-caption pairs from Snopes,
focusing on examples categorized as False, Mis-
captioned, Mixture, and True, with each sample
consisting of an image paired with its correspond-
ing Claim statement, which serves as the caption.

To enhance the diversity and robustness of our
dataset, we also generated captions using ChatGPT.
After exploring methods like random selection and
using the Faker package, which proved ineffective,
we utilized ChatGPT by providing it with an image
description and a real caption as prompts. This
approach allowed us to create a wide variety of
fake captions, significantly improving the overall
effectiveness of the dataset.

†https://www.snopes.com/

https://www.snopes.com/


3.2 Data Sources

Train Set: The training dataset was constructed
through several sampling methods to ensure a di-
verse and representative collection of image-text
pairs. We resampled from the COSMOS and
Ookpik (Pham et al., 2024) datasets and collected
data from Snopes.com. To enhance variability, we
generated synthetic fake captions using ChatGPT,
resulting in a final training set of approximately
6,348 image-text pairs.

Test Set: The test set, comprising 1,000 samples,
was derived from the COSMOS test set. For our
evaluation, we paired each image with Caption 1
and assigned a label of 0 (real) if the caption aligns
with a NOOC (Not Out-of-Context) scenario and 1
(fake) if it corresponds to an OOC (Out-of-Context)
scenario.

4 Experiments

4.1 Experimental settings

We split the data into training, validation, and test
sets, with the training data divided using an 80/20
ratio for training and validation. The model was
then evaluated on the test set. For preprocessing,
we set the maximum sequence length for text based
on the longest sequence in each batch, converted
images to RGB format, and used a batch size of 32.

Our Baseline (Figure 5) model includes a pre-
trained BERTBASE text encoder (110 million pa-
rameters) and a ViT-B/16 image encoder (86.6 mil-
lion parameters). We concatenated features from
both encoders and used a classifier to predict labels
(0 or 1).

The training was conducted using PyTorch and
GPU resources, with the Adam optimizer set at a
learning rate of 1e−5. The entire process took over
2 hours.

Figure 5: Baseline model

4.2 Model training

To train the model, we utilize the cross-entropy loss
function (de Boer et al., 2005), defined as follows:

L(y, ŷ) =
n∑

i=1

m∑
j=1

yji log ŷ
j
i , (8)

where n represents the number of training samples,
m is the number of labels (in our case, m = 2,
y is the ground truth captions, ŷ is the predicted
captions.

4.3 Evaluation metrics

Accuracy (acc): The proportion of correctly pre-
dicted pairs (both real and fake) out of the total
predictions.

accuracy =
TP + TN

TP + TN + FP + FN
(9)

Precision (pre): The ratio of correct predictions
among all predictions classified as fake indicates
the reliability of the model in predicting fake in-
stances.

precision =
TP

TP + FP
(10)

Recall (rec): The ratio of correct predictions
among all actual fake instances reflects the model’s
ability to detect fake instances.

recall =
TP

TP + FN
(11)

F1-Score (f1): The harmonic mean of precision
and recall. It measures the model’s ability to clas-
sify image-text pairs accurately while ensuring that
few fake pairs are missed.

f1 =
2× TP

2× TP + FN + FP
(12)

• TP (True Positive): The number of image-
text pairs predicted as fake and are fake.

• TN (True Negative): The number of image-
text pairs predicted as real and are real.

• FP (False Positive): The number of image-
text pairs predicted as fake but are real.

• FN (False Negative): The number of image-
text pairs predicted as real but are fake.



Model acc f1 pre re params
(M)

size
(MB)

Baseline 0.588 0.572 0.572 0.618 196 787.16
Our model 0.838 0.845 0.808 0.886 211 845.07

Table 1: Comparison with Baseline model

Model acc pre re f1 params
(M)

size
(MB)

num_head = 24
Our model + pooler output 0.795 0.808 0.772 0.791 208 835.61
Our model + mean pooling 0.806 0.789 0.836 0.812 208 835.61
Our model + TTW pooling 0.838 0.808 0.886 0.845 211 845.07

num_head = 12
Our model + mean pooling 0.797 0.870 0.698 0.775 208 835.61
Our model + TTW pooling 0.829 0.786 0.904 0.841 211 845.07

Table 2: Evaluation of different pooling methods

4.4 Evaluation of Proposed Techniques

The results in Table 1 provide compelling evidence
of the effectiveness of our proposed enhancements
- Textual Tokens Weighted Pooling shared Layer-
Norm, and the co-attention mechanism within the
Cross-modal Encoder. These components collec-
tively drive significant improvements over the base-
line, which simply concatenates image and text
features. Our approach achieves an accuracy of
83.8%, marking a substantial leap of 25% com-
pared to conventional methods that rely on rudi-
mentary feature fusion. This underscores the po-
tency of our model in synthesizing multi-modal
information with greater precision and depth.

TTW Pooling stands out by directing attention
to the most salient features in both local and global
contexts. Unlike traditional pooling methods, TTW
selectively amplifies important tokens, refining the
semantic representations and contributing to more
effective sequence modeling.

The shared LayerNorm further fortifies the align-
ment between text and image features by normal-
izing them into a unified feature space. This align-
ment is crucial for optimizing the attention mecha-
nism within the Cross-modal Encoder, facilitating
the seamless integration of multi-modal data. Con-
sequently, this leads to accelerated convergence
during training and yields enhanced model robust-
ness.

Lastly, the co-attention mechanism within the
Cross-modal Encoder represents a vital advance-
ment in bridging the gap between textual and visual

information. By enabling direct cross-modal atten-
tion, the model constructs a cohesive representation
that captures the critical aspects of both modalities,
driving improved accuracy and classification per-
formance.

These results highlight the impact of our pro-
posed methods in advancing the state-of-the-art in
multi-modal data processing, demonstrating their
effectiveness in achieving superior performance
over conventional approaches.

4.4.1 Impact of Textual Tokens Weighted
Pooling

Our experiments, as shown in Table 2, demonstrate
that TTW Pooling consistently outperforms Mean
Pooling and Pooler Output by effectively empha-
sizing key input features. By generating a weight
matrix that accentuates the importance of critical
tokens, TTW Pooling delivers a richer and more
precise representation of input sequences. This
leads to a tangible improvement in model perfor-
mance, underscoring the significance of pooling
strategies in capturing and amplifying essential in-
formation within the data.

Moreover, fine-tuning the number of attention
heads (num_head) emerges as a critical factor in
optimizing model performance. A judicious se-
lection of this parameter not only enhances model
efficiency but also mitigates overfitting and bolsters
generalization.



Model acc pre re f1
shared layer norm 0.838 0.808 0.886 0.845
non-shared layer norm 0.787 0.770 0.818 0.793

Table 3: Effect of LayerNorm on feature alignment and model performance

Feature Extraction Model acc pre re f1 params
(M)

size
(MB)

ResNet50 BERT 0.792 0.813 0.759 0.759 150 600.560
ResNet101 BERT 0.773 0.805 0.720 0.760 169 676.528
ResNet152 BERT 0.772 0.803 0.720 0.759 184 739.103
EfficientNet-b0 BERT 0.776 0.830 0.678 0.746 129 519.486
EfficientNet-b4 BERT 0.783 0.853 0.686 0.756 143 575.698
EfficientNet-b7 BERT 0.802 0.817 0.775 0.792 190 763.723
ViT BERT 0.838 0.808 0.886 0.845 211 845.07
ViT ROBERTa 0.789 0.794 0.780 0.787 226 905.73

Table 4: Comparison of Feature Extraction Models

4.4.2 Impact of LayerNorm
Table 3 highlights that the application of a shared
LayerNorm significantly enhances model perfor-
mance. By normalizing the different modali-
ties together, the shared LayerNorm fosters a
stronger alignment of features, thereby improving
the model’s ability to effectively capture and lever-
age the relationships between text and image data.
On the other hand, the non-shared LayerNorm may
impede this integration, as it treats each modality
independently, potentially leading to less optimal
performance.

4.4.3 Impact of feature extraction models
In the evaluation of feature extraction models (Ta-
ble 4), the combination of ViT-B/16 and BERT-
BASE demonstrated the best performance, achiev-
ing an accuracy of 83.80% and an F1 score of
84.54%. The Vision Transformer (ViT) excels
in processing entire images through self-attention
mechanisms and enables a more comprehensive
understanding of spatial relationships in images,
surpassing CNN-based models like ResNet and
EfficientNet, which are limited by localized convo-
lutional operations.

Additionally, while RoBERTa is a larger and
more powerful model compared to BERT, its com-
bination with ViT did not yield superior perfor-
mance. This suggests that moderate-sized models
like ViT and BERT may offer better performance
in many scenarios due to their optimized balance
of complexity, generalization capabilities, and re-
duced risk of overfitting.

5 Conclusion

In this paper, we address the challenge of Cheap-
Fakes detection by introducing an advanced end-
to-end model that effectively integrates image and
text features through a Cross-modal Encoder with
a co-attention mechanism. This allows for refined
interactions between visual and textual data. To
further enhance the extraction of fine-grained and
comprehensive information from text, we introduce
TTW Pooling within BERT’s output. We also clar-
ified the role of LayerNorm in the Transformer’s
attention mechanism. By applying LayerNorm be-
fore multi-modal feature fusion, we standardize the
uni-modal features into a coherent space, enhanc-
ing the model’s ability to discern critical relation-
ships between modalities. Ultimately, we have con-
structed a new dataset that encompasses a broader
range of fake caption cases. This dataset expansion
improves the model’s performance and provides a
richer resource for future research in this domain.

While the test set results remain limited, we be-
lieve our contributions offer valuable insights and
advancements in the field of CheapFakes detec-
tion. In the future, we intend to further refine our
approach, investigate cutting-edge techniques and
large language models (LLMs), and expand our
evaluation framework to enhance the effectiveness
and robustness of CheapFakes detection methods.
A significant aspect of our future work involves ex-
panding the dataset to include additional languages,
such as Vietnamese, to ensure the model’s applica-
bility across diverse linguistic contexts.
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