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Abstract
In this paper, we present a token-by-token
whole-spectrum approach using deep learning
to investigate sound change, focusing on the un-
derstudied phenomenon of Khmer velar coda
palatalization. By applying deep learning clas-
sification models to Mel spectrograms, our ap-
proach confirms that Khmer is undergoing velar
palatalization. The model also reveals signif-
icant inter-speaker variation within the same
linguistic community, with different speakers
at different stages of the sound change. Addi-
tionally, our method, using Grad-CAM, identi-
fies specific acoustic features associated with
this phonological shift. Our findings highlight
the potential of deep learning techniques to en-
hance our understanding of sound change.

1 Introduction

A fundamental area in the study of phonology and
phonetics deals with the study of how the sound
inventories of a language evolve over time. This
continuous process of sound change represents one
of the most pervasive and characterizing properties
shared by all human languages and it has been
investigated since the 18th century (cf. Garrett and
Johnson 2013 and references therein).

Sound changes are traditionally considered the
endpoint of low-level phonetic changes that gradu-
ally diffuse through lexical items and a population
of speakers until they affect the total number of
phonological contrasts by changing their phonetic
realization or by increasing (via splits) or decreas-
ing their number (via mergers). An outstanding
issue in linguistic theory remains developing viable
models that can render justice to the complexity of
this process (cf. Harrington et al. 2018 and refer-
ences therein).

Two important prerequisites stand in the way of
developing appropriate models of sound change.

First, sound changes often involve a variety of
acoustic (and articulatory) dimensions that are rel-
evant to the production and perception of speech.

In other words, to appropriately characterize sound
change, we must be able to probe, describe, and
quantify variation beyond a small number of low-
dimensional phonetic parameters that are often ex-
amined in experimental phonetic and phonological
studies, e.g., duration, vowel formants, fundamen-
tal frequency etc. (for examples of this approach cf.
Gubian et al. 2015, Puggaard-Rode 2022).

Second, given the increased attention paid in
linguistic theory to exemplar and episodic models
of lexical access and speech production/perception
and their relationship to sound variation and change
(Pierrehumbert et al. 2002, Johnson 2007, Goldrick
and Cole 2023, Blevins and Wedel 2009), we need
to develop models that enable us to quantify vari-
ation of interest on an episodic or token-by-token
basis.

In this paper, we present an approach that of-
fers promising solutions to tackle the two issues
outlined above and, thus, can help in developing
comprehensive descriptions and models of sound
change. Specifically, we present a deep-learning
approach that (i) enables us to quantify multidimen-
sional phonetic and phonological variation relevant
to sound change by applying deep-learning classi-
fication to (Mel)-spectrograms and (ii) allows us
to quantify the degrees of change associated with
individual exemplars of a phonological category.

We apply this method to the phenomenon of
palatalization in Khmer (ISO-693-3; khm), an Aus-
troasiatic language and the official language of
Cambodia.

1.1 The case study: Khmer velar
palatalization

Khmer has a phonological contrast between velar
and palatal nasal and stop consonants in the on-
set position. However, the status of this contrast
in coda position remains debatable. According to
descriptions in Khmer grammar books and dictio-
naries (e.g., Huffman, 1970; Filippi and Vicheth,



2016), velar codas /k/ and /N/ undergo palatalization
following front vowels, such as /i:/, /e:/, /ei/, /E:/,
and /ae/, and are subsequently realized as palatal
consonants [c] and [ñ]. Furthermore, Khmer or-
thography only attests non-palatal coda following
long front vowels. This suggests that palatal co-
das were not originally present, but developed over
time through diachronic palatalization of velar co-
das in this environment.

Khmer palatalization is of great interest for three
reasons.

First, no experimental investigations of the phe-
nomenon exist. This constitutes a noteworthy em-
pirical gap, given that palatalization phenomena
following front vowels are relatively rare (being
mostly known from Germanic, cf. Hall 2022) com-
pared to palatalization of consonants preceding
front vowels.

Secondly, although this palatalization is often
described in the literature as a completed sound
change, anecdotal evidence suggests that Khmer
speakers may not fully perceive a merger between
palatal and velar sounds in this context. This raises
the possibility that the change may, in fact, not be
fully complete. Some speakers may produce fully
velar consonants, while others produce fully palatal
consonants. Additionally, speakers might produce
fronted velar consonants due to co-articulation with
preceding front vowels. Consequently, the status
of this phenomenon—as either an ongoing or com-
pleted sound change—remains uncertain and re-
quires further investigation.

Third, the distinction between velar and palatal-
ized velars, is well-defined articulatory in terms of
tongue body contact with the different points of
the palate, yet, the acoustic manifestations of this
articulatory underpinnings are notoriously elusive
(Keating and Lahiri, 1993; Ladefoged and Mad-
dieson, 1996; Ladefoged and Johnson, 2014).

1.2 Research questions

With the issues outlined above in mind, we inves-
tigate Khmer palatalization with a token-by-token
whole-spectrum approach that leverages deep learn-
ing.

First, we trained convolutional neural network
models to classify Mel spectrograms of phonolog-
ically contrastive velar and palatal nasals in non-
front vowels environment.

Subsequently, the trained models were then used
to investigate Khmer palatalization of velar conso-

nants. Specifically, they were used to predict the
probability that a certain velar token is realized as
palatal in front-vowel environments. This approach
allows us to situate individual tokens from individ-
ual speakers on a velar to palatal continuum based
on the whole Mel spectrogram.

Equipped with these models, we investigated the
following three research questions.

(i) Do we observe a degree of palatalization of
velar stop after front vowels in Khmer as re-
ported in grammar and dictionaries?

(ii) Do we observe complete neutralization of ve-
lars to palatals after front vowels in Khmer or
do we observe a cline of realizations; possibly,
differing across individuals within a commu-
nity?

(iii) Finally, can an investigation of the inner work-
ings of said models help to shed light on the
spectral features that are likely to underlie the
(eroding) distinction between velar and palatal
stops in Khmer?

2 Methodology

2.1 Participants and data collection
The recordings were collected from five native
speakers of Khmer: two from Phnom Penh and
three from Takhmao, a city near Phnom Penh.
There are two male and three female participants.
Their ages are in the range of 20-30 years old
(µ = 23.8, σ = 3.83). Speakers from both cities
speak the Phnom Penh variety reported to have fi-
nal velar palatalization (Filippi and Vicheth, 2016).
All participants were literate in Standard Khmer.

The target words consisted of monosyllabic or
minor disyllabic words with final palatal and velar
nasals, preceded by both front and non-front vow-
els. We divided the target words into two groups:
one containing true velar and palatal nasals, and
the other containing palatalized velar nasals.

For the true velar and palatal dataset, the tar-
get words included those with velar /N/ and palatal
/ñ/ nasals following non-front vowels /a/, /i@/, /u@/,
and /ou/. In this environment, velar consonants
are not expected to undergo palatalization. We pri-
oritized minimal pairs between velar and palatal
codas. There were 16 unique target words (2 codas
× 4 vowels × 2 unique words per template). Partic-
ipants were asked to produce each target word 20
times, resulting in a total of 320 tokens per speaker.



For the palatalized velar dataset, the target words
included those with a velar nasal following front
vowels /i:/, /e:/, /ei/, /E:/, and /ae/, which are envi-
ronments for velar palatalization. There were 10
unique target words (5 vowels × 2 unique words
per template), with each word repeated 10 times,
resulting in 100 tokens per speaker. An example of
the different types of words used in the wordlist is
shown in Table 1. All target words were embedded
in a carrier sentence: [niP.j1j tha: t6: ti@t]
“Speak the word . Next.”.

Palatal Velar Palatalized
bañ ‘to shoot’ baN ‘to cover’ wE:N ‘to be long’

Table 1: An example of the wordlist

For the true velar and palatal dataset, the tar-
get words were presented to participants embed-
ded in a carrier sentence in Khmer orthography.
Participants were instructed to read the entire sen-
tence aloud. For the palatalized velar dataset, to
avoid the influence of the orthography on the final
consonant, we included trials where participants
were presented with pictures representing the target
words, in addition to the trials with orthographic
presentation. It is worth noting that we did not
observe any difference between picture and orthog-
raphy stimuli. Thus, we analyzed the tokens from
both picture and orthography stimuli together in
this paper.

The recordings were conducted using the
SpeechRecorder software (Draxler and Jänsch,
2004). The audio signal was captured directly
to a laptop computer at a sampling rate of 44.1
kHz through a head-mounted unidirectional micro-
phone. The recordings were done in a closed space
with minimal noise.

2.2 Data preparation

The recordings were force-aligned using the MAUS
language-independent model (Schiel, 1999). Sub-
sequently, the TextGrids generated by MAUS were
manually corrected using Praat (Boersma and
Weenink, 2020) by a phonetically trained native
speaker of Khmer. The manual correction focused
on the segmentation of the nasal finals to ensure
that no trace of the vowel was included in the nasal
coda segment, as the acoustic signals during the
nasal closures were used as input for the classifi-
cation model. An example of the segmentation is
illustrated in Figure 1.

Figure 1: A segmentation example from Praat of word
with velar nasal coda

Figure 2: Mel-spectrogram example of one nasal token
input. The dark shade part exhibits the zero-padded
region.

To capture the multidimensionality of the acous-
tic signal, we extracted spectral information from
the audio signal during the nasal closure using the
Mel spectrogram method. The window size was
set to 50 ms with a 1 ms time step, and the Mel
filter bank was set to 200 Mel bands, ranging from
a minimum frequency of 1 Hz to a maximum fre-
quency of 22.05 kHz. To create a consistent input
size required by the model, all tokens shorter than
the maximum duration were symmetrically padded
with zeros preceding and following the audio signal.
Figure 2 illustrates an example of the resulting Mel
spectrograms, showcasing the intensity of spectral
components over time and frequency. The result-
ing Mel spectrograms were used as the input to the
classification models.

2.3 Baseline model training and testings

To account for inter-speaker variation, separate
deep learning models were trained using each in-
dividual participant’s data, following the method-



ology of Liu and Xu (2023). As a result, we de-
veloped five baseline models, corresponding to the
number of participants recorded for this study.

Each model is a deep learning classification
model to classify the place of articulation of the
coda based on spectral information. A convolu-
tional neural network (CNN)-based model was im-
plemented, with the best-performing model used
as the baseline model. The model architecture is
adapted from Doshi (2021) and its schematization
is illustrated in Figure 3. The architecture consisted
of four convolutional layers.

The input for the baseline model was the Mel
spectrograms from the true velar and palatal
datasets. The dataset was split into training, valida-
tion, and test sets in a 40:30:30 proportion, result-
ing in 128:96:96 tokens per model.

The model was trained using PyTorch in Python,
with the Adam optimizer and a learning rate of
0.001. Binary cross-entropy loss was used to cal-
culate the loss based on the probability values for
both classes. The training process lasted for 150
epochs, and the best model was selected based on
the lowest loss value on the validation set. The
best-performing model was then used to classify
the testing data to confirm its ability to accurately
classify true velar and palatal codas.

In addition to the classification results, we also
extracted a prediction probability representing the
degree of palatalization on a scale from 0 (velar) to
1 (palatal). To achieve this, the sigmoid function
was employed as the activation function applied
to the output layer. The sigmoid function can be
calculated using the following formula:

σ(x) =
1

1 + e−x
(1)

The baseline model, trained on true velar and
palatal codas, was then used to classify the palatal-
ized velars based on their Mel spectrograms. The
degree of palatalization was quantified by the sig-
moid function as described above. We interpreted
values closer to 0 as indicating that the palatalized
velars are more velar-like, while values closer to 1
suggest that they are more palatal-like.

3 Results

3.1 Classification of true velar and palatal

The model trained on true velar and palatal codas
successfully classified these true velar and palatal
codas with 100% accuracy across all models for all

participants. To further evaluate the performance
of our model, we also extracted the probability
outputs. The histograms of the probabilities from
the model of all participants are illustrated in Figure
4.

The distributions for all speakers are clearly di-
vided between the two classes. All tokens of each
class were classified with extreme probabilities, ei-
ther 0 or 1, with no tokens showing intermediate
probability values. Specifically, all velar nasal to-
kens had values closer to zero, while palatal nasals
had values closer to one. This provided strong evi-
dence that the model effectively categorizes tokens
based on their place of articulation and further con-
firmed that velar and palatal codas are contrastive
in a non-front vowel environment.

3.2 Classification of palatalized velars

When the classification models were applied to
palatalized velar tokens, two distinct patterns of
classification emerged, as summarized in Table 2.
Notably, there were no effects of gender or place
of origin, Phnom Penh or Takhmao, on the pattern
displayed by the speakers.

Participants Palatalization pattern
SP3, SP4 Categorical

SP1, SP2, SP5 Gradient

Table 2: Summary speaker groups of the two types of
sound change patterns.

For one group of speakers, SP3 and SP4, the
models classified the majority of the palatalized
velar tokens as palatal nasals /ñ/ (> 90%), as shown
in Table 3. This suggests that, for these speakers,
velar nasals following front vowels undergo a cate-
gorical shift to palatal nasals. The histograms of the
probability distribution for SP3 and SP4, shown in
Figure 5, also reflect this categorical shift, with the
majority of tokens clustering around the probability
value of 1, indicating ubiquitous classification as
palatals.

For the other group of speakers, SP1, SP2, and
SP5, the models classified approximately half (50%
- 70%) of the palatalized velars as palatals, with
a slightly higher number of tokens categorized as
palatals than velars. Notably, SP5 exhibited a larger
proportion of palatal classifications compared to
the other participants, with 67% of all tokens classi-
fied as palatal. In the histograms for SP1, SP2, and
SP5, although two small peaks are observed at both



Figure 3: Audio classification model architecture.

Figure 4: Histogram for true velar and palatal probabil-
ity distribution of each participant.

ends of the distribution, the probability distribution
is not as categorical. Mid-range probability values
between 0 and 1 are sparsely distributed.

We may interpret these findings as suggesting
that velar palatalization for this group of speakers
is not a completely categorical process, but a gradi-
ent process. In other words, the contrast between
velar and palatal nasals is not entirely neutralized
in the front vowel environment: although some to-
kens may merge with true palatals, the majority of
palatalized velars are not fully realized as palatals.
These tokens might be realized as sounds interme-
diate between velars and palatals, likely due to the
co-articulation effects of front vowels and velar co-
das where the tongue body position is intermediate
between velar and palatal positions in the vocal
tract.

Participant /N/ /ñ/
SP1 47% 53%
SP2 47% 53%
SP3 7% 93%
SP4 2% 98%
SP5 33% 67%

Table 3: Palatalized velar class distribution of each par-
ticipant.

3.3 Gradient-weighted Class Activation
Mapping (GradCAM)

Given the model’s strong performance in classify-
ing true palatal and true velar nasals, this section in-
vestigates the acoustic features used by the models
to distinguish between these two places of articula-
tion. Previous acoustic studies have shown that this
contrast is primarily signaled by differences in the
transition of adjacent vowel formants, which are
highly dependent on the vowel quality. For exam-
ple, the formant transition from high front vowels
to velar codas differs from that of low back vow-
els to velar codas (Ladefoged and Johnson, 2014).
However, our findings in Section 3.1 demonstrate
that the models accurately recognized the true place
of articulation for the two nasal consonants using
only the acoustic information from the nasal clo-
sure itself, without relying on vowel transitions.
This suggests that the contrast between velars and
palatals is also present within the acoustic signal
of the consonants themselves.

To explore the spectral features that the mod-
els used to differentiate between the two places of
articulation, we applied Gradient-weighted Class
Activation Mapping (Grad-CAM) (Selvaraju et al.,
2017) to the model classifications of true velars
and true palatals as discussed in Section 3.1. Grad-



Figure 5: Histogram for palatalized velar probability
distribution of each speaker.

CAM enables us to pinpoint specific regions within
the input that the model focused on during its clas-
sification, thereby revealing the spectral features
that distinguish velar and palatal nasals. In this
section, we present results from two participants
who exemplify the distinct realization patterns of
palatalized velar outlined in Section 3.2.

The results of the Grad-CAM analysis are shown
in Figure 6. The heat maps depict the average ac-
tivation weights in the Mel spectrograms that the
models used to classify true velars (top) and true
palatals (bottom). Lighter colors indicate regions
where the model assigned greater importance dur-
ing classification. Notably, we observed several
straight lines spanning the entire duration of the
Mel spectrograms across all heat maps. This pat-
tern suggests that the spectral features distinguish-
ing velar and palatal nasals are consistent through-
out the nasal closure interval, rather than being tied
to specific temporal moments.

The distinguishing features appear to be on the
spectral dimension. Specifically, it is likely that
these straight lines on the heat maps represent anti-
formants, with the distinguishing feature for velar
and palatal nasals being the frequency ranges where
the anti-formants are located.

For the velar tokens (top of Figure 6), the models
focused on the lower frequency range. Although
this pattern is consistent across both speakers, the
specific frequency ranges where the model con-
centrated differ. For the speaker with the gradient
distribution (SP2; top left of Figure 6), the model

Figure 6: Grad-CAM class activation heat maps show-
ing average weights for velar tokens (top) and palatal
tokens (bottom) from SP2 exhibiting a gradient pattern
(left) and SP4 exhibiting a categorical pattern (right).

concentrated most heavily in the lower frequency
range, particularly the 0-250 Hz range, with some
areas of lower weights distributed in the 250-1024
Hz range, around 3000 Hz, and 6000 Hz. In com-
parison, for the speaker with the categorical distri-
bution (SP4; top right of Figure 6), the model’s fo-
cus was heaviest around 512 Hz, with additional ar-
eas of lower weights in regions comparable to those
seen in the velar tokens produced by the speaker
with the gradient distribution.

For the palatal tokens (bottom), the model’s fo-
cus shifted to the higher frequency range. For the
speaker with the gradient distribution (SP2; bottom
left), the model concentrated the heaviest weight
on two regions: around the 1024 Hz and 4096 Hz
frequencies, with lower weights distributed across
all frequency ranges. On the other hand, for the
speaker with the categorical distribution (SP4; bot-
tom right), the model’s focus clustered in the higher
frequency range, above 4000 Hz, with the heaviest
weight lying between 8192 Hz and 16384 Hz.

There seems to be a tendency that if the main
feature found for a velar is higher, as in the case
of the speaker with categorical distribution, the
corresponding feature for the palatal would also be
higher.

In sum, based on the Grad-CAM results, we
hypothesize that the distinction between velar and
palatal nasals is present in the spectral domain,
specifically in the location of anti-formants across
different frequency ranges. However, there is still
no clear evidence explaining why the two types of
speakers, based on their production of palatalized



velars, differ in their production of true velars and
true palatals as well. Further work is needed to
fully elucidate this matter.

4 Discussion and Conclusion

Returning to our research questions, we first asked
whether velar consonants in Khmer exhibit a cer-
tain degree of palatalization when they appear after
front vowels, a process that has been reported as
categorical in grammars and dictionaries. Our deep
learning analyses confirm that a model trained on
phonologically contrastive velar and palatal con-
sonants classifies a large number of velar tokens
as palatal in the environment following front vow-
els. This finding confirms an ongoing palatalization
sound change in Khmer.

Additionally, we asked whether this sound
change is completed and categorical or whether
we observed a cline of velar to palatal realizations.
To address this question, we have applied a method
that allows us to quantify the degree of palataliza-
tion on token-by-token and subject-by-subject basis
relying on the entire Mel spectrogram in view of
known difficulties in characterizing place of articu-
lation differences, especially for velar vs. palatal
nasals. Our findings suggest that the process is an
ongoing sound change as the realization of palatal-
ized velars is not always identical to that of palatals.
Interestingly, within the same speaker community,
we observe that, for some speakers, the sound
change is completed and palatalized velars are basi-
cally indistinguishable from phonological palatals.
These findings resonate with the notion that sound
change gradually diffuses through a community of
speakers that propagate change via their interac-
tions, in line with recent episodic approaches to
sound change that rely on agent-based simulation
(e.g., Harrington et al., 2018).

Finally, we also asked whether we can probe the
inner workings of our model to relate our whole-
spectrum analysis to low-dimensional phonetic fea-
tures. Using Grad-CAM, we were able to hypothe-
size that the models are able to identify the place of
articulation of Khmer consonants on the basis of a
subset of frequency ranges in the spectrum that are
broadly compatible with so-called anti-formants,
as is known from the phonetics literature.

Beyond the empirical contribution of elucidating
important details of a previously unstudied sound
change, Khmer coda palatalization, we believe that
this work also offers a first step towards an im-

portant methodological contribution. As noted in
the introduction, recent works on sound change
have emphasized the importance of the multidi-
mensional richness of the acoustic signal and the
role of episodic instantiations of these signals in
influencing changes that affect the phonological
categories of a language. In this paper, we have
proposed a method that leverages deep learning
and the entire Mel-spectrogram as a way to tackle
these issues and quantify ongoing sound-change.
The approach we have developed is able to probe,
describe, and quantify the nature of a sound change
and observe its distribution within a small sample
of a linguistic community of interest. Addition-
ally, we have offered preliminary ideas to bridge
the gap between high-dimensional whole-spectrum
analyses and more-traditional phonetic analyses.

The approach we have developed – we believe –
is widely applicable to a variety of sound changes
and is of interest to scholars working on the topic.
This is because our approach offers a way to quan-
tify where each episodic instantiation of a phono-
logical category resides in a phonetic continuum
between two phonological categories that may be
drifting toward each other. This is of course a
problem that is familiar from many types of sound
changes, e.g., palatalization, lenition, changes in
vowel quality etc. Our method, thus, constitutes an
addition that can supplement the toolkit of experi-
mental phonologists and phoneticians working on
sound change.

To conclude, in this paper we have developed
a token-by-token whole-spectrum approach that
leverages deep learning. We have applied this
method to a previously understudied case of sound
change, Khmer coda palatalization. Our method
has confirmed that the language is undergoing
sound change, as hypothesized in previous work.
Strikingly, different speakers within the same lin-
guistic community seem to lie on different points
along the path toward the completion of this sound
change. Finally, we were able to relate the change
in question to specific acoustic characteristics that
are notoriously difficult to pinpoint. Thus, it is our
hope that the findings and methods presented in
this paper will offer a small further step towards a
better understanding of a core property of human
languages: the continuous evolution of their sound
inventories.
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