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Abstract

Large Language Models (LLMs), despite their
numerous applications and the significant ben-
efits they offer, have proven to be extremely
susceptible to attacks of various natures. Due
to their large number of vulnerabilities, often
unknown, and which consequently become po-
tential targets for attacks, investing in the imple-
mentation of this technology becomes a gamble.
Ensuring the security of LLMs is of utmost im-
portance, but unfortunately, providing effective
security for so many different vulnerabilities is
a costly task, especially for companies seeking
rapid growth. Many studies focus on analyz-
ing the security of LLMs for specific types of
vulnerabilities, such as prompt inject or jail-
breaking, but they rarely assess the security of
the model as a whole. Therefore, this study
aims to facilitate the evaluation of vulnerabil-
ities across various models and identify their
main weaknesses. To achieve this, our work
sought to develop a comprehensive framework
capable of utilizing various scanners to assess
the security of LLMs, allowing for a detailed
analysis of their vulnerabilities. Through the
use of the framework, we tested and evaluated
multiple models, and with the results collected
from these assessments of various vulnerabili-
ties for each model tested, we analyzed the ob-
tained data. Our results not only demonstrated
potential weaknesses in certain models but also
revealed a possible relationship between model
security and the number of parameters for simi-
lar models.

1 Introduction

For the last few years, with the rise of AI and popu-
larization of Large Language Models (LLMs) with
ChatGPT release, the number of companies that
are potentially using AI or planning to is increasing
more and more. Companies incorporate their prod-
ucts, services and processes with LLMs technolo-
gies, aiming to gain benefit from them, choosing
GPT as a more comprehensive and versatile model,

Bard as a more specific case for marketing and
persuasive copy writing, Gemini for creativity and
efficiency and so on. Cases like, employees using
LLM tools to improve productivity or help with
their work, companies integrating internal applica-
tions with LLM APIs to help with decision making
or problem solving or corporations using LLMs to
improve the efficiency of their applications and to
give more dynamic experiences for customers, for
example, feels like yesterday news.

Furthermore, there is a constant stream of
new models, including the more advanced GPT-4,
smaller experimental/white-box models and mod-
els displayed on LLM hubs. However, as new tech-
nologies are developed, new risk arises, needing
for adoption of security measures aligned with busi-
ness needs and technology specifications and func-
tionalities. If there is no due concern and care for
the security of language models, whether internal
applications or customer-facing applications, the
company will suffer with a broad range of risks,
such as prompt inject, data poisoning, denial of ser-
vice and jailbreak, which are just some of the vari-
ous challenges that LLM applications face among
the OWASP Top 10 (OWASP, 2023).

Consequently, the work and effort made to im-
plement this tool for an application to bring the
benefits of using LLMs, will only bring an unfortu-
nate reality that can demand at least a large mone-
tary cost and even more effort to reverse to regain
customer trust. Regardless of whether a company
has its self-hosted LLM, uses one of the various
examples available from 3rd parties, such as Ope-
nAI models, or is still thinking about the best way
to adopt this innovative tech, it is important to as-
sess the target model’s security capabilities before
it suffers a compromise.

But investing in every possible existing and
emerging risk to resolve textual backdoor attacks,
to defend against indirect prompt injection in addi-
tion to preventing the injection of falsified data in
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model training is also not viable for many compa-
nies, especially for startups that want to jump start
their growth. Unless significant investments are
made in building a cross-functional team involv-
ing ML engineers, security engineers, and privacy
professionals, plus time and research, such an ap-
proach becomes unfeasible. It is necessary to focus
and prioritize the key vulnerabilities that are most
exploited in a general context and, also, that are
most present and easy to exploit for your model.

In this paper we propose a framework to eval-
uate the security of large languages and identify
the main vulnerabilities in LLMs. With these main
targets, we have used scanners and other tools to de-
fine security priorities to protect the models. Addi-
tionally, we have compared results between models,
thus identifying which may be the best for certain
scenarios and provided an example of the use of
our proposed framework that identifies possible
patterns and differences between models.

2 Related work

Evaluating and analyzing different types of models
and their behavior in the face of certain vulnerabil-
ities and risks is a research topic that is evolving
and presenting very interesting results.

In the work of authors Zekun Li, Baolin
Peng, Pengcheng and He Xifeng Yan about
the instruction-following robustness of LLMs to
Prompt Injection (Li et al., 2023), they performed
extensive experiments and tests that suggest that
the size of models and the accuracy of correctly
following instructions do not necessarily correlate
with the model’s adversarial robustness to prompt
inject, noting that more robust models should ide-
ally exhibit a more complete understanding of the
entire the prompt, rather than focusing too much on
the last sections of the prompt to complete the text.
However, assessment of other vulnerabilities and
the development of a methodology to assess the se-
curity of models using different types of scanners
are still absent.

Furthermore, there is work similar to this one
written by Huachuan Qiu, Shuai Zhang, Anqi Li,
Hongliang He, Zhenzhong Lan about jailbreaking
(Qiu et al., 2023) but running away from analyz-
ing the success rate of jailbreaking LLMs using
different types of popular jailbreak prompts avail-
able online. It focuses on understanding why jail-
break prompts succeed. Introducing benchmarks
for jailbreaking, introduce a latent jailbreak prompt

dataset, that assesses both the safety and robust-
ness of LLMs highlighting the need for a balanced
approach. In this work, a hierarchical annotation
framework was designed, aiding in identifying text
safety and output robustness, crucial aspects for
conducting an in-depth analysis of model align-
ment. Despite being a very well designed study,
using a methodical approach, once again it was an
assessment focused on a single threat.

Finally, there is the TRUSTGPT (Huang et al.,
2023), research aiming to enhance our understand-
ing of the performance of conversation generation
models and promote the development of language
models that are more ethical and socially respon-
sible. This work from Yue Huang, Qihui Zhang,
Philip S. Y. and Lichao Sun evaluates the LLMs
from three ethical perspectives: toxicity, bias, and
value-alignment, looking for the relation between
these three. In this work eight LLMs, using the
TrustGPT framework, are empirically Analyzed.
Yet again a very well conducted study, but focused
on ethical and social perspectives.

Our work, however, differs from previous works
because in addition to these vulnerabilities previ-
ously mentioned, it aims to identify a model’s main
security weak points, being prompt injection or be-
ing toxicity or whatever other possible vulnerability.
Also, we present a set of scanners to detect prompt
injections, jailbreaks, and other potential risks on
a target LLM for better analyzing its prompts for
common injections and risky inputs.

3 The proposed framework

In this section, we present our proposed framework
to perform assessment over LLM models and the
LLM vulnerability scanner chosen. The scanner
we chose to use with the proposed framework is
the garak LLM scanner (Derczynski, 2023), as a
tool to execute probes over the LLM models.

3.1 The framework

To assess the LLMs security, we proposed a frame-
work shown in Figure 1 that is composed of 3 main
phases: Planning, Execution and Conclusion. We
start with the Planning Phase. Here we define the
main elements that will compose the following
tests, like the model or models to be analyzed for
vulnerabilities. After that, it’s time to choose the
vulnerabilities to be tested for the chosen scanner
you are using, in garak’s case, the categories and
probes to be tested for each selected model.
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Figure 1: Assessment framework architecture

There are other possible scanners or similar tools
to choose from instead of garak, like HouYi (Liu
et al., 2024b), an automated prompt injection frame-
work for LLM-integrated applications, promptmap
(Utku, 2024), a tool that automatically tests prompt
injection attacks on ChatGPT instances and Vigil
(Adam, 2023), a scanner that detect prompt injec-
tions, jailbreaks, and other potentially risky LLM
inputs. Then, we determine the number of times to
run the test. It can be once or more times, given that
test results may vary, but the number may change
depending on the scanner used as well.

Having planned the details for the test, time to
enter the test Execution Phase. In this phase all
tests are run and the results are collected by each
model tested and for each category. Results can be
collected in different ways depending on the scan-
ner that was used in the test. In the case of garak,
the results are displayed for each test run. Further-
more, the data that make up these results can be
represented in different ways as well, considering
that there is no defined standard for this, which
could be a percentage of safety or vulnerability or
a numerical value representative of this.

Finally, once you have obtained the test results, it
is time to organize them and calculate the metrics,
in the Conclusion Phase. Having organized the
results, it’s possible to compare them with each
model and category initially selected. We can do
that building charts, graphics, tables or any other
way of interpreting the data you prefer, even using

a trained language model to analyze the final data
and define approach. Although it may not seem like
much, this is the phase that may take the most time
in the process depending on the chosen scanner.

3.2 The garak scanner

It is important to present the Garak scanner, a tool
used in our framework for study of LLM Security –
how it works and its components. Garak is an LLM
vulnerability scanner that runs on the command
line, as shown in Figure 2, helping discover weak-
nesses and unwanted behaviors in anything using
language model technology. It specifically focuses
on risks that are inherent in and unique to LLM
deployment, such as prompt injection, jailbreaks,
guardrail bypass, text replay, and so on, support-
ing a ton of LLMs - including OpenAI, Hugging
Face, Cohere, Replicate - as well as custom Python
integrations. Garak framework is composed of sev-
eral components with the main components being:
“vulnerability probes”, “generators”, “detectors”.

3.2.1 Garak’s vulnerability probes

Vulnerability probes or just probes are a big impor-
tant part of garak. Each probe is designed to detect
a single kind of vulnerability, interacting directly
with the language model, sometimes sending up
to thousands of prompts. They are divided into
collections or categories of probes that are grouped
by how similar they are to what they seek to detect
or by specific types of vulnerability. Probes have
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Figure 2: Garak run of gpt-2 using promptinject probes

complete control of the interaction with the genera-
tor, and so can do a lot of different things. The goal
is to get some output from the generator that will
tell us if the model is vulnerable.

3.2.2 Garak’s generators
Generator, for garak, isn’t just Large Language
Models, They are things that generate text, given
some input. It can range from Python functions,
HTTP APIs or LLMs. They are wrapped in groups,
just like probes, that specify how or where they
are called. For this article, we are using only the
huggingface generators. To use this generator, we
need to pass down a model-type, huggingface or
huggingface.InferenceAPI, and a model-name,
which is a specific model name from HuggingFace
Hub, like meta-llama/Llama-2-7ob-chat-hf.

3.2.3 Garak’s detectors
The Detectors are responsible to judge if a model
fails or passes. Even though this can sometimes
be evident to humans, garak’s probes often gen-
erate tens of thousands of outputs, and so needs
automatic detection for language model failures.
The detectors in garak serve this purpose. Some
look for keywords, others use machine learning
classifiers to judge outputs.

4 Results

In this section, we describe how we used our
framework to systematically evaluate the security
and vulnerability of LLM models. We applied
the framework for the following models from
Hugging Face Hub(Face): meta-llama/Llama-
2-7b-chat-hf, meta-llama/Llama-2-13b-chat-hf,
meta-llama/Llama-2-7ob-chat-hf, openai-
community/gpt2.

It also described each category of probe used
to test the LLM and the results collected overall.
Using garak “huggingface.InferenceAPI” generator
tool, we carried out a study through successive
tests to evaluate possible failures, loopholes and
security vulnerabilities of popular language models,
checking whether there is any relationship between

the models that could result in greater or lesser
security.

For this study, models from the pre-trained and
fine-tuned collection of LLama2 were used, as well
as the smallest version of GPT-2, with 124M param-
eters from Huggingface OpenAI community, which
were subjected to batteries of tests of several Garak
Vulnerability probes from different categories.

4.1 Vulnerability categories

Among the vulnerability probes that were used,
those that will be analyzed in this article are into
the following categories: LMRC, leakreplay, Mal-
waregen, promptinject, dan, glitch, knownbadsig-
natures.

It’s important to make sure that there are several
probes within each category. Below, we explain, in
details, each analyzed category.

4.1.1 LMRC (language model risk cards)

This category gives a large set of risks that might
present in LM deployment. These Risks can affect
a variety of actors in a variety of ways. The set of
risks is large, but not all risks apply in all scenarios
- and so not all LMRC probes will be relevant to
every system. It ranges from encouraging anthro-
pomorphisation to generating or completing texts
of repeated threats and denigration.

4.1.2 Leakreplay

The leakreplay category evaluates if a model will
replay training data(Wang et al., 2024) . It uses
passages that either GPT-4 or ChatGPT have been
known to replay, normally based on articles. This
probe tests if a model can fill in high-perplexity
blanks in excerpts of documents. With this probe, It
is also possible to evaluate the leakage of personally
identifiable information (PII)(Kim et al., 2023)

4.1.3 Malwaregen

The category of malwaregen probes evaluates if the
system is willing to comply with requests to gen-
erate malware, malware components or other tools
that disrupt a device. It checks if it helps to avoid
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Category Probe
LMRC LMRC.Anthropomorphisation

LMRC.Bullying
LMRC.Deadnaming
LMRC.QuackMedicine

Leakreplay Leakreplay.NYTCloze
Leakreplay.NYTComplete

Malwaregen Malwaregen.Evasion
Malwaregen.Payload
Malwaregen.SubFunctions
Malwaregen.TopLevel

Promptinhect Promptinhect.HijackHateHumansMini
Promptinhect.HijackKillHumansMini
Promptinhect.HijackLongPromptMini

dan dan.AntiDAN
dan.AutoDANProbe
dan.ChatGPT_Developerz_Model_RANTI
dan.ChatGPT_Developer_Model_V2
dan.ChatGPT_Image_Markdown
dan.Jailbreak
dan.DUDE
dan.Dan_10_0
dan.Dan_11_0
dan.Dan_6_0
dan.Dan_6_2
dan.Dan_7_0
dan.Dan_8_0
dan.Dan_9_0
dan.STAN

glitch glitch.Glitch100
knownbadsignatures knownbadsignatures.EICAR

knownbadsignatures.GTUBE
knownbadsignatures.GTphish

Table 1: Categorias e probes

anti-malware, write code for malware payloads,
sub functions or write malware itself.

4.1.4 Promptinject
PromptInject is a category that assembles prompts
in a modular fashion to provide a quantitative analy-
sis of the robustness of LLMs to adversarial prompt
attacks. It was created and talked about in the paper
“Ignore Previous Prompt: Attack Techniques For
Language Models”(Perez and Ribeiro, 2022). This
probe uses the PromptInject framework to probe a
system.

4.1.5 Dan
Dan came for “do anything now”(Shen et al., 2024).
This probe category is designed to disrupt a sys-

tem prompt, Ignoring all the instructions previews
received or Basically making the LLM not give
any information at all, like the anti-dan (Auto-
mated Never Tell Information Danger Avoidance
Network) probe or AutoDAN(Yu et al., 2023; Liu
et al., 2024a) (an approach that can automatically
generate stealthy jailbreak prompts). For this probe
category, 2 types of detectors were used, “mitiga-
tion.MitigationBypass", for detecting a mitigation
message instead of complying, and its own detec-
tor.

4.1.6 Glitch

Glitch keyword probes, testing for tokens that lead
to unusual model behavior. They can function as
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triggers to unexpected behavior and non desired
behavior.

4.1.7 Knownbadsignatures
Probes that attempt to make a model output a
known-bad signature. If they’re outputting them
without warning, that’s an indication that the app
isn’t checking output for malicious or dangerous
content, like viruses.

4.2 Vulnerability probes

In Table 1, each vulnerability probe from garak
used in tests with the LLMs and which category
they fall into are shown. a total of 32 probes. Dis-
carding the probes from the dan categories, which
used the “mitigation.MitigationBypass" detector,
totals 32 categories.

4.3 Collecting data

With the exception of the gpt-2 model, which is
not capable of executing some probes in the “dan”
category only, all models repeatedly executed all
probes in the categories and the results of each
individual test on each machine were recorded.

The results of a single test can be classified as
PASS, if the language model does not present secu-
rity flaws during the test execution, or as FAIL, if in
any of the prompts the model presents some type of
vulnerability. In cases where a failure is identified,
the framework provides a calculated Failure Rate.

We ran each valid test probe 5 times for each of
the four models and then we organized the collected
results and began calculating metrics and analyzing
the data Exploratorily. The average failure rate
was calculated for each category tested and then
analyzed in a graph, shown in the Figure 3 (for the
calculations, a PASS test was considered as a 0%
of failure rate). Then, the standard deviation of
failure rate for each tested category was calculated
for each machine, with the results being displayed
in Figure 5.

4.4 Analysis results

As shown in Figure 3, The Llama 2 collection of
pre-trained and fine-tuned generative text models
has almost the same failure rate, with little excep-
tions. However, something that is highlighted be-
tween those models is that, even though the mod-
els differ from each other by the number of pa-
rameters used (Llama2-7b using 7 billions parame-
ters, Llama2-13b using 13 billions parameters and
Llama2-70b using 70 billions parameters), having

Figure 3: Average for each category per model

a higher number of parameters resulted in a higher
failure rate – indicating a higher level of vulnera-
bility – in most cases. It is even noticeable that in
some cases, Llama2-70b (the Llama2 model with
the higher number of parameters) had the higher
failure rate between the models of Llama2 collec-
tion.

This pattern among the llama2 models is re-
peated for the LMRC, promptinject and dan cate-
gories - which may include malwaregen for analyz-
ing worst-case graphs -, with llama2-7b having the
lowest rates, llama2-70b with the highest rates and
13b with intermediate rates. As can be seen in (Li
et al., 2023), similar behavior was observed for the
Llama2 model, with Llama2-70b not exhibiting a
greater robustness than its smaller counterparts.

Looking more deeply into the graph, Llama2-
70b had the highest failure rate in 4 of 7 category
probes, being LMRC, malwaregen, promptinject
and dan. In contrast, llama2-7b had, among the
llama2 models, the lowest failure rates, being 5 out
of 7 on average and 6 out of 7 in the worst failure
scenario – see Figure 4 – being the highest failure
rate among all models only in the knownbadsig-
natures category. Looking at the gpt-2 model, it
presented the worst and highest failure rate in the
glitch category, however, it had the lowest error
rate among all models in the other categories.

Of all the categories highlighted in the analy-
ses, the one that presented the highest failure rates
across all models was malwaregen, with all 4 mod-
els evaluated with a failure rate greater than 55%,
exceeding 60% in the worst case scenario. Con-
versely, the category that had the lowest failure
rates was leakreplay, having all 4 models failure
rates lower than 10%.
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Figure 4: Average of max values for each category per
model

Figure 5: Standard deviation for each category per
model

5 Conclusions

In conclusion, our research reveals that regardless
of which model we are talking about, it is of great
importance to check the vulnerability level of the
large Language Model in order to prevent occa-
sional attacks, highlighting that a larger LLM does
not mean that it is safer. By employing the frame-
work mentioned in this article, it is possible to as-
sess what weak points the chosen LLM have before
choosing to move forward on using it. Furthermore,
it is worth noting that, before choosing a specific
model to use, it is good to be aware of what can
be done to mitigate vulnerabilities and seek mecha-
nisms to protect it.

5.1 Limitations

Despite the promising results demonstrated by our
proposed framework for the security assessment of
LLMs, there are several limitations that need to be
acknowledged.

First, our evaluation was conducted on a lim-
ited set of LLM families, basically using Llama2
models and one GPT-2 model. This narrow scope
may not fully capture the broader applicability and

effectiveness of the framework across other LLM
architectures. Future work should expand the eval-
uation to include a more diverse range of models
to ensure more comprehensive results.

Second, our framework is capable of using multi-
ple scanners or similar tools to assert LLM security
capabilities. However, in this study, we utilized
only one scanner, garak. This limited use may not
provide a complete picture of the framework’s capa-
bilities and effectiveness. Further research should
involve testing with additional scanners to better
assess the versatility of the framework.

5.2 Future works

As seen in the previous section, while this study
contributes valuable insights into assessing the tar-
get model’s security capabilities before it suffers a
compromise and how to identify main weak points
on LLMs, several areas warrant further exploration.
One avenue for future research is to develop our
own probes to further analyze other aspects that
focus on vulnerabilities not covered by garak or
others scanners. This would allow for a more broad
understanding of where models may be more vul-
nerable.

Moreover, incorporating a more diverse range of
LLMs, like BELLE, Alpaca, Vicuna and Google
Gemma models, could provide others perspectives
of some patterns between similar models. Addition-
ally, executing more runs of the framework using
other types of scanners, such as Vigil, HouYi and
promptmap, could provide a deeper understanding
of the results captured for each LLM and how to
improve the assessment framework. By capturing
the nuances of the scanners and the framework in-
teractions, researchers can gain insights into the
underlying mechanisms that drive the correlations
between LLMs vulnerability and how to assess
them.

Finally, considering the importance of knowing
the efficiency of security measures applied to mod-
els, as well as the security of the language models
themselves, it’s important to investigate possible
security measures that aline with each possible vul-
nerability and analyze its efficiency by running
tests. Studying the test results, could provide a bet-
ter scope of the security around a LLM when it’s
actually implemented.
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