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Abstract

Considering the growing flow of information
on the internet, and the increased incident-
related data from diverse sources, unstructured
text processing gains importance. We have
presented an automated approach to link sev-
eral CTI sources through the mapping of ex-
ternal references. Our method facilitates the
automatic construction of datasets, allowing
for updates and the inclusion of new samples
and labels. Following this method we built
a new dataset of unstructured CTI descrip-
tions called Weakness, Attack, Vulnerabilities,
and Events 27k (WAVE-27k). Our dataset in-
cludes information about 27 different MITRE
techniques, containing 22539 samples related
one technique and 5262 related to two or
more techniques simultaneously. We evaluated
five BERT-based models into the WAVE-27K
dataset concluding that SecRoBERTa reaches
the highest performance with a 77.52% F1
score. Additionally, we compare the perfor-
mance of the SecRoBERTa on the WAVE-27K
dataset and other public datasets. The results
show that the model using the WAVE-27K
dataset outperforms the others. These results
demonstrate that the data within WAVE-27K
contains relevant information and that the pro-
posed method effectively built a dataset with
a level of quality sufficient to train a machine-
learning model.

1 Introduction

The growing flow of information has led to in-
creased incident-related data from diverse sources,
such as open-source intelligence (OSINT) plat-
forms, cybersecurity analyst forums, and several
other sources on the internet. Therefore, it is crucial
to automatically process unstructured texts (Fujii
et al., 2022) to extract information such as tactics,
techniques, and procedures (TTPs) from different

free-text sources to help understand and detect rel-
evant incidents inside the local network.

In addition, algorithms designed to process un-
structured texts for TTPs offer an advantage in their
capacity to extract valuable insights from uncon-
ventional sources, such as Dark web forums and
other suspicious platforms where malicious activi-
ties are documented and discussed. This capacity
not only facilitates the detection and characteriza-
tion of cyber attacks but also enables the identifica-
tion of underground networks where new attacks
are disseminated.

However, regardless of the advantages offered by
algorithms designed to process unstructured CTI
texts and their significant impact on the security of
local networks, there is a need for a more extensive
dataset of unstructured Cyber Threat Intelligence
(CTI) texts. We hypothesize that enhancing the
quality and quantity of accessible data will sub-
stantially improve the efficacy of state-of-the-art
models.

To supply this lack, we acknowledge it is key to
propose a methodology that takes advantage of the
increasing flow of information mentioned above,
providing automatic methods to create datasets and
train algorithms focused on extracting and detect-
ing TTPs from unstructured texts. Our method uses
the information from Cyber Threat Intelligence
(CTI) sources to automate the data collection pro-
cess of information related to TTPs in unstructured
text, reducing costs and ad hoc studies with limited
data.

Our goal is to develop CTI tools that contribute
to the community and help standardize the datasets
in the state of the art allowing state of the art mod-
els comparison. Consequently, we address an ap-
proach that involves three steps: Constructing a
method for automatically creating CTI datasets,
collecting a dataset following the proposed method,
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and evaluating machine learning models to validate
the built dataset. As a result, we present a dataset
named WAVE-27K, including unstructured texts
with Tactical Techniques and Procedures (TTP)
information. WAVE-27K contains approximately
28,000 CTI descriptions associated with seven tac-
tics and 27 different MITRE techniques. To the
best of our knowledge, WAVE-27K is the largest
dataset available in the CTI state of the art.

This paper is organized as follows: Section 2
provides a related work review, offering context for
the research. Section 3 details our methodology,
including the dataset-building process. Section 4
describes the experiments, defining details regard-
ing the models and the metrics used for model eval-
uation. Finally, Section 5 presents the results, and
Section 6 contains our findings and future research.

2 Background

There is two groups from the TTP pattern extrac-
tion literature differentiated by their goals. The
first group extracts information from unstructured
sources and transforms it into structured data. This
process implies detecting different entities in a free
text sample, and then identifying their relationships
to generate knowledge graphs. The second group
focuses on classification techniques, addressing
CTI unstructured data as a classification problem.
The primary goal of this group is to detect patterns
within the unstructured text and categorize them ac-
cording to known cyberattack techniques, enabling
the identification and classification of relevant in-
formation. In this section, we detail significant
results presented in the state of the art related to
both groups.

2.1 Information extraction

Noor et al. (2019) implemented a three-step ap-
proach to extract information from unstructured
data. The first step focused on collecting data from
CTI sources. Then, they analyzed the data using a
semantic search method to identify techniques, pro-
cedures, and observables. Finally, they developed a
model to predict the cyber threat actor group based
on the extracted information. Their study involved
collecting 327 unstructured reports collected from
2012 to 2018, related to 36 threat groups. Finally,
they evaluated Naive Bayes, k-nearest neighbors,
Decision tree, Random Forest, and Deep Learning
Neural Network (DLNN) using this dataset, with
the DLNN model demonstrating the highest effec-

tiveness at 94% accuracy.
Jo et al. (2022) proposed a BERT-based model to

extract entities from unstructured CTI data. Their
approach integrated BERT (Devlin et al., 2018) and
BiLSTM layers, explicitly focusing on recognizing
ransomware information. Additionally, the authors
built a manually annotated dataset that includes
6791 entities and 4323 relations. The authors re-
ported that the BERT model achieved an F1-score
of 97.2% for the entity recognition task.

Later, Siracusano et al. (2023) presented a
method employing the GPT-3.5-Turbo prompt1 to
detect entities and relationships within CTI data.
They transform this information into a Structured
Threat Information Expression (STIX)2 bundle,
enabling easy comparison with existing research.
This study focused on identifying malware and
built a dataset including 204 publicly available re-
ports over 2022.

Recently, Wang et al. (2024) presented the con-
struction of a method called knowledge based Cy-
ber Threat Intelligence Entity and Relation Extrac-
tion (KnowCTI). The authors addressed the entity
extraction as a tagging task and relation extraction
task as a classification task. They collected a total
of 53713 samples as base knowledge. Then, they
collected a second dataset for the entity extraction
experiments. The second dataset contains 8872
instances and 28347 entities. Finally, the authors
reported F1-scores of 90.16% for the entity recog-
nition task and 81.83% for the relation extraction
task

2.2 Classification techniques
Introducing a new perspective, Legoy et al. (2020)
approached CTI information as a classification
task aiming to identify MITRE ATT&CK tactics
and techniques3. They compared TF-IDF weight-
ing factors proposed by Christopher et al. (2008)
against the Word2Vec model in the pre-processing
phase. In the classification process, the authors
evaluated both binary relevance presented by Lu-
aces et al. (2012) and multi-label approaches. Their
dataset comprised 1490 reports related to MITRE
attacks and tactics. Finally, they found that mod-
els using TF-IDF weighting factors outperformed
those using Word2Vec. Specifically, the AdaBoost
Decision Tree model achieved a 61.30% F0.5 score
for the multi-label approach, while Gradient T

1GPT-3-5-turbo Homepage
2Stix Homepage
3MITRE ATT&CK Homepage

https://platform.openai.com/docs/models/gpt-3-5-turbo
https://oasis-open.github.io/cti-documentation/stix/intro
https://attack.mitre.org/
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Boosting attained a 65.04% F0.5 score for the bi-
nary relevance approach. The authors released a
tool called Reports Classification by Adversarial
Tactics and Techniques (rcATT) using the method
proposed, and the data used to train and test the
method as well4.

Expanding on earlier work, Mendsaikhan et al.
(2021) evaluated the efficacy of identifying MITRE
attacks through a multi-label approach using var-
ious models, such as the fine-tuned BERT model,
Multi-label k-Nearest Neighbors (Zhang and Zhou,
2005) (MlkNN), and LabelPowerset (Tsoumakas
and Vlahavas, 2007). The authors performed their
analysis using three publicly available datasets for
training: the Threat Report ATT&CK Mapper5

(TRAM) dataset, it includes 1482 samples describ-
ing an event linked to 80 different MITRE tech-
niques; Katos et al. (2019) presented the second
dataset, which is built using the data release in an
ENISA report with data from 2018 to 2019. After
preprocessing the reports, the dataset incorporates
7642 samples associated with 50 techniques and
nine tactics; Finally, the authors used the dataset
presented by Legoy et al. (2020) previously de-
scribed in this Section. The results showed that
BERT achieved the highest performance, achieving
a 78.01% F1 score and following the LabelPower-
set method with Multilayer Perceptron (MLP) with
a 74.70% F1 score.

Later, Orbinato et al. (2022) used several ma-
chine learning techniques for the classification task
on a dataset created from information extracted
from MITRE ATT&CK and Attack Pattern Enu-
merations and Classifications (CAPEC) sources.
Their dataset 6 contains 12945 samples with de-
scriptions of threat actors and their malware cam-
paigns, the samples are related to 14 tactics and 188
distinct techniques. Additionally, they included the
TRAM dataset in their evaluation. The authors used
models such as Linear Regression (LR), Support
Vector Machine (SVM), and SecureBERT (Aghaei
et al., 2022) on both datasets. Finally, SecureBERT
achieved the highest F1-score value of 72.50% in
their dataset, while SVM achieved the highest F1-
Score of 60.90% in the TRAM dataset.

Alves et al. (2022) analyzed 11 different combi-
nations of hyperparameters on Transformer models,
including RoBERTa (Liu et al., 2019), BERT (De-

4rcATT GitHub Repository
5TRAM GitHub Repository
6cti-to-mitre-with-nlp GitHub Repository

vlin et al., 2018), SecRoBERTa (Liu et al., 2019),
and SecBERT (Aghaei et al., 2022). Their dataset
included 9909 sentences corresponding to 253 tech-
niques, gathered from procedure examples within
the MITRE ATT&CK source. The authors used
accuracy to assess the performance of the models,
showing RoBERTa as the model that achieved the
highest performance with an accuracy of 82.64%
on the testing dataset.

Recently, Branescu et al. (2024) presented a new
dataset called CVE2ATT, the authors used MITRE
ATT&CK tactic information as labels7. Follow-
ing an automated process, the dataset extracts data
from the ENISA register 2018 to 2019, including
9985 samples related to 14 tactics. The authors
evaluated the data using several models, including
CyBERT (Ranade et al., 2021), SecBERT, TARS
(Halder et al., 2020), and GPT-4, in a multilabel tac-
tic classification task. Their results revealed that Se-
cRoBERTa achieved the highest performance with
a 78.88% F1 score, closely followed by SecBERT
at 78.77%.

Regarding the two groups reviewed in this Sec-
tion, we have observed on the one hand, that the In-
formation Extraction group focused on generating
structured information from unstructured sources,
usually representing it as a knowledge graph con-
taining entities and relations of incident-related
data. However, the building process of this kind
of dataset compromises significant challenges. De-
spite the utility of this information extraction pro-
cess in daily CTI tasks, its construction requires
expertise and implies a complex process. On the
other hand, the classification technique group in-
tends to standardize the labels using the MITRE
matrix, allowing the comparison between different
implementations and enabling the integration of
the public datasets into the training process. This
standardization also allows us to work on automat-
ing the construction process of the dataset using the
flow of data supplied by the CTI sources. There-
fore, in this work, we have decided to focus on
developing an automated construction method ca-
pable of collecting data from multiple sources to
create a dataset and keep updating the dataset in
sample size and class diversity.

3 Methodology

In our data collection process, we employed four
primary sources that have been widely used in pre-

7CVE2ATT GitHub Repository

https://github.com/vlegoy/rcATT/tree/master/classification_tools/data
https://github.com/center-for-threat-informed-defense/tram
https://github.com/dessertlab/cti-to-mitre-with-nlp
https://github.com/readerbench/CVE2ATT-CK-tactics/blob/main/data/full_data.csv
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vious research to construct CTI datasets; we se-
lected these sources due to the facility to cross-
reference their samples as has been proposed previ-
ously in the state of the art (Hemberg et al., 2022,
2020; Rantos et al., 2020; Branescu et al., 2024).

The first source is the MITRE ATT&CK frame-
work, used as the foundation for standardizing
datasets within the classification group (Legoy
et al., 2020; Mendsaikhan et al., 2021; Orbinato
et al., 2022; Alves et al., 2022; Branescu et al.,
2024). This framework provides information on
the tactics and techniques employed by attackers
and information about campaigns, the associated
threat actor groups, the tools and software used in
the attacks, and potential mitigation strategies as
well.

Another source employed in our data collection
process is CAPEC, which assists in understanding
how adversaries exploit software vulnerabilities.
This list of attack patterns includes several columns
providing information such as the attack pattern
name, description, likelihood, related weaknesses,
execution flow, severity, and additional relevant
data.

Taking advantage of the information provided by
CAPEC regarding software weaknesses, our third
data source is the Common Weakness Enumeration
(CWE), containing a list developed by the commu-
nity of software and hardware vulnerabilities. This
list traces each weakness with background details,
affected technologies, consequences, impacted ar-
chitectures, and observable examples.

Finally, the fourth data source is the Common
Vulnerabilities and Exposures (CVE) repository,
which lists information on known vulnerabilities.
Each CVE entry includes a description of the vul-
nerability, its complexity, and its impact on confi-
dentiality, integrity, and software availability.

We performed a complete review of the fields
to identify potential references to external sources
for each source. Some sources, such as MITRE
and CAPEC, contain fields that directly present
external references. In these cases, the external ref-
erence field within an entry was analyzed to verify
if it included data from the selected sources. In
the case of the CWE source, we analyzed the "ob-
served example" field, which contains information
about reported vulnerabilities. Using the vulner-
ability ID, we linked the information to the CVE
source. Subsequently, all references were evaluated
to determine if the target ID in the origin source

was included in the data of the target source. The
next phase involved matching the extracted IDs
to establish new relationships and creating those
relationships in an STIX format.

This approach aims to enhance data complete-
ness by adding information from diverse views
offered by different sources. As previously
mentioned, data collection involves establishing
new connections by mapping external references.
Specifically, we used the following fields: MITRE
ATT&CK external references to associate with
CAPEC IDs, CAPEC external references to corre-
late with CWE IDs, and CVE weaknesses to align
with CWE IDs. CWE plays a central role in this
process, as depicted in Figure 1.

Figure 1: Sources integration process. Red highlighting
represents the fields that have provided external links to
relate information with other sources

The strength of this methodology lies in its auto-
matic construction which enables updates and the
addition of new samples for entry as well as the cre-
ation of new labels if new MITRE techniques are
reported, besides the possibility of standardizing
the dataset construction and normalizing the labels
in the state of the art datasets. However, a potential
limitation is the coverage of the dataset since there
is limited control over the class balance within the
dataset. Moreover, this approach suggests that the
samples collected represent the prevailing trends
and patterns observed in cyber attacks, providing
valuable insights into real-world threat scenarios.

As a result of this methodology, we have created
a comprehensive superset called Weakness, Attack,
Vulnerabilities, and Events (WAVE). This superset
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contains all the information downloaded from the
sources, as well as all the relationships established
through the external reference matching process.
With this superset, we can link information from
vulnerabilities (CVE) to MITRE ATT&CK tech-
niques and even MITRE ATT&CK mitigations.

3.1 WAVE-27K dataset building method

We created a subset using the descriptions of vul-
nerabilities from the CVE source to validate the
use and quality of the information contained in the
superset WAVE. We selected the CVE description
since it contains information about vulnerabilities
written as unstructured text and it has been used in
other research (Katos et al., 2019). This subset con-
tains the CVE description with their related tactics
and techniques; this subset is called WAVE-27K.
The data was retrieved in the last quarter of 2023,
collecting 27801 samples, where 22539 of them
are associated with a single technique and the re-
maining 5262 samples are linked to two or more
techniques. WAVE-27K contains 27 distinct labels
of MITRE techniques.

As a result, we present the largest dataset com-
pared to those in the state of the art, which also
contains the largest number of samples per class,
as shown in Table 1. Besides providing a larger
number of samples per technique, WAVE-27K con-
tains a more detailed description of the CTI event.

Dataset Samples Tactics Techniques AVG samples /
techniques

AVG words in
description

CTI_NLP 12945 14 188 68 15

TRAM 1482 14 80 18 28

ENISA 7642 9 50 1465 45

WAVE-27K 27801 7 27 1830 45

Table 1: Datasets description and distribution, compari-
son between public datasets and WAVE-27K

4 Experiments

We use different models to validate the data
and establish a baseline for our dataset. Tak-
ing into account the results of Mendsaikhan et al.
(2021); Orbinato et al. (2022); Alves et al. (2022);
Branescu et al. (2024), which highlighted the
efficacy of BERT models, we decided to use
BERT-based models for our experiments. Specifi-
cally, we implemented BERT (Devlin et al., 2018),
RoBERTa (Liu et al., 2019), SecBERT (Aghaei
et al., 2022), secRoberta (Liu et al., 2019), Cy-
BERT (Ranade et al., 2021). To assess the perfor-
mance of the models, we used the total of the data

available into WAVE-27K and split the data on 80-
20, assigning 80% of the data to the training set
and 20% to the test set.

In the second experiment, we evaluate the per-
formance of the best BERT-based model identified
in the first experiment across the publicly avail-
able dataset presented in Section 2. Specifically,
we used the CTI and TRAM datasets, each con-
taining single output samples relevant to cyberse-
curity threats, and the WAVE-27K single output
samples that comprise 22539 samples. The model
was trained separately on each dataset using the
configuration 80-20 to divide the samples, gener-
ating three different models. Finally, each model
was tested into the test set of their corresponding
dataset.

In addition to the above experiments, we con-
ducted a comparative analysis among the datasets.
This experiment presented a challenge as we ob-
served variations in the subsets of MITRE Tech-
niques used as labels across datasets despite the
MITRE matrix acting as a shared set of labels.
Thus, we focused on assessing the common el-
ements shared between our dataset and publicly
available datasets. Using the WAVE-27K dataset
as a reference point, we observed that the CTI,
TRAM, and ENISA datasets have limited overlap
in labels, as shown in Table 2. Specifically, the
CTI, TRAM, and ENISA datasets incorporate only
12, 9, and 8 labels that overlap with WAVE-27K,
respectively. This indicates a relatively small inter-
section of shared labels between WAVE-27K and
these datasets, suggesting differences in the types
of threats or techniques covered by each dataset.

These differences between the labels in the
datasets may emerge from variations in the method-
ologies employed in the dataset construction pro-
cess. While some datasets are built by extracting
information from the MITRE matrix using NLP al-
gorithms, others include manually annotated CVE
descriptions. These diverse construction processes
restrict the data to specific types of information and
introduce complexities in direct data comparison,
making an assessment more complicated. We con-
sider the overlapped classes between WAVE-27K
and the other datasets to allow comparison. This
approach aims to provide a representative measure
of data quality relative to existing datasets in the
literature.
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Label WAVE-27K CTI ENISA TRAM
T1021 ✓ ✓ ✓
T1072 ✓ ✓
T1505 ✓ ✓ ✓ ✓
T1543 ✓ ✓ ✓ ✓
T1546 ✓ ✓ ✓ ✓
T1547 ✓ ✓ ✓ ✓
T1550 ✓ ✓
T1552 ✓ ✓ ✓
T1553 ✓ ✓ ✓ ✓
T1562 ✓ ✓ ✓ ✓
T1566 ✓ ✓
T1574 ✓ ✓ ✓ ✓

Table 2: Intersection of labels in the dataset using as
reference WAVE-27K

4.1 Metrics

The F1 score is a widely used metric for assess-
ing binary and multi-class classification tasks, pro-
viding a balanced assessment of the ability of the
model to classify both positive and negative in-
stances by considering both precision and recall.
In this specific context, since we are evaluating a
model trained in WAVE-27K that includes multi-
label and multi-output samples, we selected the
micro-average F1 score. The micro-average F1
score provides consistency across all classes by
considering each instance equally, regardless of its
class, providing unbiased results in multi-class and
multi-output settings.

We selected the micro-average F1 score as it is
best suited for evaluating our dataset. However,
we are aware that two datasets in the comparison
include only single-output samples, which could
lead to this metric penalizing them. To address
this, in addition to evaluated directly using single
output samples in the WAVE-27K (experiment 2),
we included accuracy in our evaluation as well, as
it is a commonly used performance metric in the
state of the art for TTPs related tasks (Noor et al.,
2019; Alves et al., 2022).

5 Results

For the first experiment, after training the five pro-
posed BERT-based models in Section 4 to establish
a baseline for comparison on WAVE-27K, the re-
sults indicate that SecRoberta achieved the highest
performance with a 77.52% F1 score and a 83.51%
accuracy, followed by BERT with 77.31% F1 score
and 83.29% accuracy, as shown Table 3.

In the second experiment, we used secRoBERTa
as it had the highest performance in the previ-
ous experiment. After the training phase, the se-
cRoBERTa model from the WAVE-27K dataset

Model Accuracy (%) F1 Score (%)
BERT 83.29 77.31

CyBERT 81.13 73.88
RoBERTa 83.67 76.91
SecBERT 82.83 76.12

secRoBERTa 83.51 77.52

Table 3: Experiment 1. Performance metrics of different
models using the WAVE-27K dataset

achieved an accuracy of 91.39% on the test set as
shown in Table 4, demonstrating the highest perfor-
mance among the single output models tested.

Experiment Dataset name Classes N. Test Samples ACC
CTI 188 1942 90.73

TRAM 80 221 83.26
Complete
Test Set

WAVE-27K 27 4507 91.39

Table 4: Experiment 2. Detailed performance of the
models trained using single output datasets

Regarding the comparison between overlapped
classes of WAVE-27K and the public datasets, the
results demonstrate that the model trained with
WAVE-27K outperforms those trained with the
CTI, TRAM, and ENISA datasets, achieving Mi-
cro F1-scores of 96.46%, 95.50%, and 92.15%,
respectively, as shown in Table 5. The last result
presents a quantitative insight into the proficiency
of one model across various datasets, highlighting
its robust performance in classifying cybersecurity-
related data. However, as we described in Section
4, the discrepancy of labels across datasets prevents
direct comparison. Therefore, we rely on these re-
sults to validate that the data within WAVE-27K
includes pertinent information for incident classifi-
cation, demonstrating a sufficient level of quality
for machine learning model training.

Experiment Dataset name Classes N. Test Samples ACC F1 Micro
CTI 12 266 74.43 74.43

CTI - WAVE-27K
WAVE-27K 12 1363 91.25 96.46

TRAM 9 37 59.46 19.04
TRAM -WAVE-27K

WAVE-27K 9 1327 91.61 96.50
ENISA 8 431 80.22 83.48

ENISA - WAVE-27K
WAVE-27K 8 1177 79.86 92.15

Table 5: Comparison of available datasets with WAVE-
27K, results using only the common classes by each
public dataset and WAVE-27K.

6 Conclusions and future work

This paper presents an automated approach to link
several CTI sources through the mapping of exter-
nal references, resulting in a more complete dataset.
The previous is due to the inclusion of insights from
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different four sources. Our method facilitates the
automatic construction of datasets, allowing for up-
dates and the inclusion of new samples and labels.

To assess the data collection method, we used a
subset of features extracted from the consolidation
of the four sources, namely Weakness, Attack, Vul-
nerabilities, and Events 27K dataset (WAVE-27K).
The WAVE-27K includes the CVE description as
a free-text sample and the corresponding MITRE
techniques related to the description. While one
potential limitation derives from the coverage of
the dataset, with limited control over class balance,
this approach suggests that the collected samples
reflect prevalent trends and patterns in cyberattacks,
providing valuable insights into real-world threat
scenarios.

Wave27K contains 27801 samples, where 22539
of them are associated with a single technique and
the remaining 5262 samples are linked to two or
more techniques. WAVE-27K includes 27 distinct
labels of MITRE techniques.

We trained five BERT-based models in the eval-
uation process, finding that SecRoBERTa reaches
the highest performance with a 77.52% F1 score.
Subsequently, the model trained with the WAVE-
27K dataset achieved a 91.39% accuracy in the
single output test. Finally, in the comparison of
overlapping classes, our model using the WAVE-
27K dataset outperforms others, achieving an F1
score of up to 96.46%. These findings demonstrate
that the data within WAVE-27K contains relevant
information for incident classification. The results
show that the proposed method effectively built a
dataset with a level of quality sufficient to train a
machine-learning model.

In future research, we aim to explore additional
machine learning models that were not considered
in this study. Additionally, we plan to study the
possibility of training specialized models for each
class to assess the effectiveness of classification in
such a scenario. Furthermore, we will explore a
cascading classification approach, initially classi-
fying tactics followed by a technique classification
using a stacking method. This approach will al-
low us to determine if hierarchical classification
enhances overall performance.

We aim to face the challenge of processing
longer unstructured text and associating it with rel-
evant tags as well. Incorporating state of the art
models into this context will improve the capabil-
ities of attack classification systems into a more

realistic scenario. This advancement will facilitate
the automatic generation of alerts from free and un-
structured text, enhancing the efficiency of threat
detection and response mechanisms.
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