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Abstract
Task-oriented dialogue (TOD) systems help
users execute well-defined tasks across a va-
riety of domains (e.g., flight booking or food
ordering), with their Natural Language Un-
derstanding (NLU) components being dedi-
cated to the analysis of user utterances, pre-
dicting users’ intents (Intent Detection, ID)
and extracting values for informational slots
(Value Extraction, VE). In most domains, la-
belled NLU data is scarce, making sample-
efficient learning – enabled with effective trans-
fer paradigms – paramount. In this work, we
introduce SQATIN, a new framework for dia-
log NLU based on (i) instruction tuning and (ii)
question-answering-based formulation of ID
and VE tasks. According to the evaluation on
established NLU benchmarks, SQATIN sets
the new state of the art in dialogue NLU, sub-
stantially surpassing the performance of cur-
rent models based on standard fine-tuning ob-
jectives in both in-domain training and cross-
domain transfer, and it also surpasses off-the-
shelf large language models for the same task,
both in terms of performance and inference ef-
ficiency. Furthermore, SQATIN yields particu-
larly large performance gains in cross-domain
transfer, owing to the fact that our QA-based in-
struction tuning leverages similarities between
natural language descriptions of classes (i.e.,
slots and intents) across domains.

1 Introduction

Task-oriented dialogue (TOD) systems support
users in execution of specific, well-defined tasks
through natural language interaction (e.g., order-
ing food or purchasing tickets) (Young, 2002;
Budzianowski et al., 2018). Fine-grained under-
standing of user’s utterances, commonly referred
to as (dialogue) natural language understanding
(NLU) is necessary for successful TOD (Larson
et al., 2019; Casanueva et al., 2022). NLU mod-
ules of TOD systems typically solve two comple-
mentary tasks: (1) Intent detection (ID) aims to

recognise the purpose (i.e., intent) of the user’s
utterance, classifying utterances into a set of pre-
defined classes (e.g., the intent lost_luggage in
flight booking); (2) Value extraction (VE) aims to
extract spans that express values for any of the pre-
defined informational slots (e.g., a dialog system
for booking flights would have slots such as origin,
destination, time, maximal_price). Realistic
TOD setups for both ID and VE typically involve a
relatively large number of labels (e.g., >100 differ-
ent intent classes), commonly with a limited num-
ber of labelled instances per class. Successfully
addressing these tasks thus amounts to enabling
sample-efficient learning by means of transferring
knowledge from other tasks (Gao et al., 2019), lan-
guages (Hung et al., 2022b; Moghe et al., 2023), or
domains (Hung et al., 2022a; Moghe et al., 2023).

In recent years – in line with general NLP trends
– most NLU models (Budzianowski and Vulić,
2019; Hosseini-Asl et al., 2020; Henderson and
Vulić, 2021, inter alia) were obtained via standard,
task-specific fine-tuning of pretrained Transformer-
based language models (PLMs) (Devlin et al., 2019;
Radford et al., 2019). Standard fine-tuning comes
with task-specific (discriminative) objectives – dif-
ferent from LM-ing as the pretraining objective –
which in principle impedes both knowledge trans-
fer (1) from pretraining to downstream tasks and
(2) between different downstream tasks. Prompt-
ing in contrast (Liu et al., 2023b) recasts down-
stream tasks into language modelling, making them
more aligned with the models’ pretraining. Finally,
instruction-tuning (Sanh et al., 2022; Chung et al.,
2022) – supervised training in which prompts cre-
ated from instances are prepended with natural lan-
guage descriptions of the tasks – facilitate the trans-
fer between arbitrary tasks, leveraging the generali-
sation over task descriptions for zero-shot inference
(i.e., inference for tasks unseen in training). De-
spite the impressive zero-shot and in-context few-
shot inference abilities of the more recent Large
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LMs (LLMs) (Brown et al., 2020; Chowdhery et al.,
2023; Touvron et al., 2023), supervised fine-tuning
still brings substantial performance gains for dia-
log NLU (Hudeček and Dusek, 2023) and standard
NLU tasks, even with low-resource supervision
(Gao et al., 2021).

As generalisation to new domains (with limited
in-domain annotation effort) is one of the main
desiderata of TOD, some recent work on dialog
NLU (Fuisz et al., 2022; Casanueva et al., 2022) has
recognised that ID and VE can be cast as question
answering (QA) tasks: this facilitates transfer from
models trained on large QA datasets (Rajpurkar
et al., 2016a; Lee et al., 2020), allowing also to
capitalise on other large datasets previously recast
as QA (McCann et al., 2018; Wang et al., 2022b).
These efforts, however, amount to sequential trans-
fer with standard fine-tuning for QA and thus (i) do
not align their fine-tuning with the models’ pretrain-
ing objective; and without an LM-based objective
they (ii) cannot benefit from cross-task transfer via
natural language task formulations.

Contributions. Motivated by the above observa-
tions, we propose a new framework for dialogue
NLU driven by QA-based instruction tuning. In
SQATIN (Supervised Question Answering Tun-
ing on INstructions for dialogue NLU), we re-
formulate ID and VE into QA-based natural lan-
guage instructions and, starting from a massively
instruction-tuned PLM (Chung et al., 2022), fine-
tune it for our tasks relying on a small number of in-
domain examples. The rationale behind SQATIN
is two-pronged: (1) transfer with a model that was
previously instruction-tuned at scale improves the
efficiency of learning from task-specific samples
– this is highly desirable in most TOD domains,
where one typically deals with only a handful of
labelled utterances; (2) while small-scale ID/VE
instruction-tuning specialises the model for a par-
ticular TOD domain (e.g., restaurant booking), the
negligible size of in-domain training (compared to
model’s massive instruction-“pretraining”) should
prevent overfitting to the TOD training domain and
allow for effective cross-domain transfer.

Our results strongly support both of the above
assumptions: SQATIN yields state-of-the-art per-
formance on two prominent dialogue NLU bench-
marks both in in-domain and cross-domain eval-
uations. SQATIN brings particularly large gains
in transfer between close TOD domains: classes
in these domains have similar prompt descrip-

tions, unlike the existing approaches based on stan-
dard fine-tuning. The code is openly available at
https://github.com/cambridgeltl/sqatin/.

2 SQATIN: Methodology

Standard Classification vs. Instruction Tuning
for Dialog NLU. ID and VE are two tasks that
comprise most Dialogue NLU modules. Both tasks
are commonly cast as classification tasks: ID as a
sequence classification task (i.e., one or more intent
labels assigned for the whole utterance) and VE as a
span extraction task, i.e., token-level classification.

In standard classification with pretrained LMs,
a task-specific classifier ct : X ∈ Rh 7→ P(Ct)
converts h-dimensional sequence or token repre-
sentations (output by the LM) into a multinomial
probability distribution over the set of task classes
Ct. This means that a classifier ct, trained for task t
with classes Ct, cannot be used to make predictions
for any other classification task t′ with a different
set of classes Ct′ : thus, transfer between tasks can
only occur indirectly through the parameters of the
LM. This is particularly unfortunate for domain
transfer in dialog NLU, where different domains
often have semantically overlapping ID and VE
classes (e.g., intent confirm_order is essentially
the same intent in flight booking and in food order-
ing). In contrast, instruction-tuning recasts classi-
fication as a language modelling (i.e., generation)
task LM : x ∈ Rh 7→ P(Vt), with Vt as the subset
of the LM’s vocabulary where each token vt ∈ Vt

represents one class ct. This removes the need for
a task-specific classifier (on top of the LM) and
facilitates transfer between tasks, especially those
with semantically overlapping class tokens.

QA-Based Instruction Tuning in SQATIN. For
the above reasons, we adopt an instruction tuning
approach to ID and VE. We start from models that
have been instruction-tuned at scale (Wang et al.,
2022a; Chung et al., 2022), since these models
come with a strong inductive bias to complete any
new task expressed as an instruction, exhibiting
impressive generalisation abilities (i.e., good per-
formance on new tasks).

As illustrated in Figure 1, we formulate both
ID and VE as text-to-text tasks, with our instruc-
tion input consisting of (i) context, (ii) instance,
and (iii) prompt. Context (e.g., “The user says:”)
is the additional natural language description that
is added (in our case, prepended) to the instance,
a user’s utterance; Prompt is the text that follows
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Intent classification Slot labelling

The user says: How much in advance do I 
have to book a table for 8 people?
Question: did the user intend to to talk 
about some booking?

yes

The user says: How much in advance do I 
have to book a table for 8 people?
Question: did the user intend to to ask 
about check in?

no

The user says: How much in advance do I 
have to book a table for 8 people?
Question: what is the number of people 
mentioned in this sentence?

8

The user says: How much in advance do I 
have to book a table for 8 people?
Question: what is the specific time in the 
day mentioned in this sentence?

unanswerable

Figure 1: Instruction examples for ID and VE: for each
we show one example where the class matches the ut-
terance (i.e., for ID: correct intent class; for VE: a value
for the slot class present) and one where it does not.

the instance and describes the actual task, that is,
what is to be predicted from the instance. We for-
mulate prompts as questions for both tasks. The
motivation for this is the fact that the instruction-
tuned model from which we start (Chung et al.,
2022) has been pretrained on QA formulations of
various tasks and thus comes with an inductive
bias for answering questions. For each training ut-
terance, we create one instruction-based training
example for each of the intent and slot classes:
(1) for ID, the question incorporates a natural lan-
guage description of the intent class (e.g., did
the user intend to talk about some booking? corre-
sponds to the intent class booking) and requires a
binary answer (yes or no); (2) for VE, the question
incorporates a natural language description of an in-
formational slot (e.g., what is the number of people
mentioned? corresponds to the slot num_guests)
– the expected answer is the value for that slot, as
expressed in the instance or unanswerable if the
instance does not contain a value for the slot.

A possible alternative to this “one instruction per
instance and class” approach would be the more
common prompt-based classification approach in
which we create only one instruction per instance
(e.g., with the question prompt “what is the intent
of this sentence?”) and the model is expected to
generate the token of the correct intent, choosing
between tokens of all intent classes. This, however,
comes with two major drawbacks: (i) ID tasks com-
monly come with a large number of classes (e.g.,
more than 50) – incorporating descriptions of all
intent classes into a single prompt might thus sur-
pass the input size of most models or they might
struggle with memorizing all the options (Liu et al.,
2023a); (ii) ID is, in principle, a multi-label, rather
than multi-class problem, which means that utter-

None

Descriptive

what time do the cleaning personel come? when, housekeeping

User utterance Intents

Intent: wifi what time do the cleaning personel come?
Did the user intend to ask something related to wifi or wireless? No

Intent: 
housekeeping

what time do the cleaning personel come?
Did the user intend to talk about housekeeping issues?

Yes

Intent: wifi
The user says: what time do the cleaning personel come?
Question: did the user intend to ask something related to wifi or 
wireless?

No

Intent: 
housekeeping

The user says: what time do the cleaning personel come?
Question: did the user intend to talk about housekeeping issues?

Yes

Figure 2: An annotated utterance from NLU++ trans-
formed into corresponding SQATIN instruction in-
stances. For brevity, we display the transformation for
only two intents (wifi and housekeeping), but the
same transformation was applied for all intents.

ances can express more than just one intent – this
would require the model to output the text that
somehow combines the tokens of more than one
class, which is not something that instruction-based
models have been pretrained for.

We experimented with two different instruction
formulations: (1) without context (None), in which
the instruction consists only of the instance and
prompt; and (2) with descriptive context (Desc.,
where we prepend the utterance with “The user
says:” and the question prompt with “Question:”,
as illustrated Figure 2. We selected these two par-
ticular instruction formulations (None and Desc.)
based on their performance in a pilot study, which
we describe in detail in the Appendix (A).

3 Experimental Setup

We rely on the Flan-T5 instruction-pretrained mod-
els (Chung et al., 2022). Unless stated otherwise,
the main model is the Base variant. Training hyper-
parameters are described in detail in Appendix D.

Dialogue NLU Datasets. We run our experiments
on two prominent dialogue NLU benchmarks:
NLU++ (Casanueva et al., 2022) and CLINC-150
(Larson et al., 2019). NLU++ contains user ut-
terances from real conversations in two domains:
banking and hotels. NLU++ differs from most other
TOD datasets in two important aspects: (i) it encom-
passes both generic (i.e., domain-universal) intents
(e.g., booking) and slots (e.g., date) as well as the
domain-specific ones (e.g., intent credit_card in
the banking domain or slot no_rooms in the ho-
tels domain) and (ii) its intents are “factorized”
into “atomic” labels, with utterances then being as-
signed multiple intents (e.g., an utterance “wanna
change my room reservation” is labelled with three
atomic intents – change, room, and booking – rather
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than one complex intent change_room_booking).
CLINC-150 encompasses over 20K utterances
from 10 versatile domains (e.g., travel, small talk).
Each domain has 15 intent labels, resulting in 150
intents in total. CLINC also contains utterances
that do not belong to any of the 150 intents (la-
belled as out_of_scope). The fact that all CLINC
domains have 15 intents, with the same number
of instances per intent, allows for direct perfor-
mance comparison across domains.1 With few-shot
fine-tuning in focus, we evaluate the models in
a folded cross-validation setup. NLU++ already
comes with predefined splits for 10-fold and 20-
fold cross-validation.2 Analogously, we split data
from each CLINC domain in 10 folds, resulting in
150 training examples per fold.

Baselines. We compare SQATIN against two types
of state-of-the-art models for dialogue NLU. For
brevity, we provide training and model selection
details for both baselines in the appendix.
Classification from Sentence Embeddings (CL-SE).
Recent work on ID (Gerz et al., 2021; Casanueva
et al., 2022) resorts to classifying – with a shal-
low feed-forward classifier – fixed sentence embed-
dings produced by of-the-shelf sentence encoders
(SE). This avoids expensive fine-tuning of base
LMs (e.g., RoBERTa) and yields comparable (or
better) performance. We use LaBSE (Feng et al.,
2022) as a state-of-the-art (SotA) SE.
Standard QA Fine-Tuning (QA-FT). Similar to us,
these models adopt a QA-based formulation of dia-
logue NLU but exclude the instruction component
(Namazifar et al., 2021; Casanueva et al., 2022;
Fuisz et al., 2022). The key aspect is that the QA-
based fine-tuning for ID and VE starts from the
model that has previously been fine-tuned on large-
scale QA datasets (e.g., SQUAD, Rajpurkar et al.
(2016b, 2018)). To maximise comparability (given
that SQATIN is based on Flan-T5), we obtain our
QA-FT baseline by fine-tuning the T5 model (Raf-
fel et al., 2020) previously trained on SQUAD 2.0.3

We report the standard micro-F1 scores. VE pre-
dictions are considered correct only if they exactly

1Prior work has mostly used CLINC-150 as a single-
domain dataset with 150 intents, rather than multi-domain
with domain-specific intents. In contrast, we are interested in
cross-domain dialogue NLU performance and thus split the
examples by domains. To ensure the replicability of results,
we will make public the exact dataset splits that we used.

2In the 20-fold setup, one fold contains ≈ 100 utterances
in the banking domain and ≈ 50 in the hotels domain.

3We use the checkpoint at https://huggingface.co/
mrm8488/t5-base-finetuned-squadv2.

Model ID VE

20-Fold 10-Fold 20-Fold 10-Fold

BANKING

QA-T5 0.6 0.6 12.5 12.5
Flan-T5 21.9 21.9 3.2 3.2

HOTELS

QA-T5 0.4 0.4 0.0 0.0
Flan-T5 20.9 21.9 5.9 5.8

Table 1: Zero-shot results for ID and VE on NLU++.

Model Templ. ID VE

20-F 10-F 20-F 10-F

BANKING

CL-SE 58.1 68.8 N/A N/A
QA-FT: RoBERTa 80.3 85.6 50.5 56.7
QA-FT: mDeBERTa 80.8 85.0 59.7 66.5
QA-FT: T5 82.7 86.8 61.5 73.5

SQATIN None 85.6 88.5 64.9 75.4
Desc. 85.8 88.4 66.3 76.3

HOTELS

CL-SE 51.9 61.8 N/A N/A
QA-FT: RoBERTa 67.4 73.3 48.1 52.4
QA-FT: mDeBERTa 66.9 73.2 61.6 67.3
QA-FT: T5 69.2 76.5 57.2 67.9

SQATIN None 73.1 78.0 58.0 67.7
Desc. 73.4 78.1 58.7 67.0

Table 2: In-domain ID and VE performance for
SQATIN and SotA baselines (CL-SE and QA-FT with
different base models). Bold: best column score.

match the gold value span.

4 Main Evaluation

Preliminary Study: Zero-Shot ID & VE. The
key hypothesis behind SQATIN is that instruction-
tuned models have stronger inductive bias for dia-
logue NLU than models fine-tuned in the standard
manner, including those trained for QA (Namazifar
et al., 2021; Fuisz et al., 2022). We thus prelimi-
narily compare zero-shot ID/VE performance of
(1) the instruction-trained Flan-T5 and (2) T5 fine-
tuned for QA on SQUAD2.0 (denoted QA-T5) on
NLU++. The results in Table 1 show that Flan-T5 is
much more robust “out of the box”. While QA-T5
has better VE performance in the banking domain,
it yields near-zero performance in all other setups.
This validates our selection of the instruction-tuned
Flan-T5 as the starting point for SQATIN.

In-Domain Results. We next compare the super-
vised in-domain performance (i.e., training and
test instances from the same domain) of SQATIN
against the CL-SE and QA-FT baselines. Tables 2
and 3 display the results on NLU++ and CLINC-
150, respectively. On NLU++, we additionally pro-
vide QA-FT results with two other base models,
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Model Template AUTO BANKING
CREDIT
CARD HOME

KITCHEN
&DINING META

SMALL
TALK TRAVEL UTILITY WORK AVG

CL-SE 92.74 92.30 90.48 88.58 91.19 90.19 90.90 95.29 94.53 91.93 91.81
QA-FT: T5 90.42 94.38 94.42 89.23 93.22 90.10 81.36 97.67 94.66 89.99 91.54

None 94.47 96.04 95.64 91.92 95.01 90.55 93.10 97.77 95.72 91.56 94.18SQATIN Desc. 94.47 96.11 95.85 92.66 95.36 91.52 93.12 96.97 96.07 92.01 94.42

Table 3: In-domain ID results on CLINC-150 for SQATIN and the baselines (CL-SE and QA-FT).

Model Templ. ID VE

20-F 10-F 20-F 10-F

BANKING → HOTELS

QA-FT: T5 66.70 69.68 30.86 38.09

SQATIN None 66.68 68.18 33.24 39.48
Desc. 67.04 68.48 33.24 37.41

HOTELS → BANKING

QA-FT: T5 59.76 66.12 35.08 44.60

SQATIN None 65.35 67.34 44.72 52.05
Desc. 66.44 68.56 45.69 51.87

Table 4: Domain transfer results for SQATIN and the
QA-FT (T5) baseline on NLU++ (between BANKING
and HOTELS). Bold: best score in each column.

RoBERTa (Liu et al., 2019) and mDeBERTa (He
et al., 2022), copied directly from (Casanueva et al.,
2022) and (Moghe et al., 2023), respectively.

SQATIN consistently and considerably outper-
forms the baseline models, on both tasks and on
both datasets. These results confirm that instruction-
based models have stronger inductive biases than
QA-fine-tuned models: these biases are propagated
in task-specific instruction-based fine-tuning, re-
sulting in SotA performance. The gains seem more
pronounced in setups with less training data (i.e.,
20-Fold in Table 2) rendering instruction-tuning
more sample efficient than (QA-based) fine-tuning.
Overall, SQATIN seems to work slightly better
with descriptive context prompts added to the in-
struction (compare Desc. vs. None).

Domain Transfer Results. We next train SQATIN
in one (source) domain and apply it in another
(target) domain. Table 4 and Figure 3 summarize
the domain transfer results for NLU++ and CLINC-
150 (all domain pairs), respectively.

Much like in in-domain training, SQATIN con-
sistently outperforms the SoTA baseline QA-FT
in domain transfer (the only exception is BANK-
ING→HOTELS transfer for ID in the 10-Fold setup),
only now by much wider margins for VE (e.g., by
over 10 points in HOTELS→BANKING transfer in
the 20-Fold setup). On CLINC-150, the results re-
veal not only that SQATIN consistently outper-
forms QA-FT (consistently lighter heatmap cells
for SQATIN variants than for QA-T5) but that it is

also able to better exploit label similarity between
domains: e.g., for CREDIT CARD as the target do-
main, SQATIN obtains best performance when
transferring from the BANKING domain, whereas
QA-FT, in this case, finds AUTO as the best source.

Similarity of Intent Class Descriptions. Observ-
ing that SQATIN yields best transfer performance
between intuitively related domains, we now inves-
tigate more closely what type of similarity between
domains drives the transfer: (i) similarity of exam-
ples (sim-E) or (ii) similarity of intent class descrip-
tions, incorporated in SQATIN’s prompts (sim-C).
We quantify sim-E as the average similarity across
all pairs of utterances between the domains: with
similarity of two utterances computed as cosine
between their sentence embeddings, obtained with
mpnet (Song et al., 2020) as the sentence encoder.
Analogously, sim-C is computed as the average sim-
ilarity of pairs of class prompts between the two
domains. We then measure the correlation (Pear-
son’s ρ) between the transfer performance and sim-
E or sim-C. Table 5 shows these correlations for
each CLINC-150 domain as transfer target. Corre-
lations are largest for domains that do have related
domains in the dataset (e.g., BANKING and CREDIT

CARD) and lowest for domains that are quite differ-
ent from all other (e.g., AUTO or UTILITY). Impor-
tantly, sim-C shows higher average correlation with
transfer performance than sim-E: this suggests that
SQATIN’s instruction-based tuning with class de-
scriptions in prompts truly captures similarities sets
of intents and, consequently, especially improves
transfer between related domains.

5 Further Analyses and Discussion

Cross-Task Generalisation. We next hypothesise
that SQATIN facilitates transfer between the two
dialogue NLU tasks, given that SQATIN’s QA for-
mulation conceptually allows for such cross-task
transfer and presents both tasks to the model in
the same format. Table 6 compares the zero-shot
ID performance of the off-the-shelf Flan-T5 (Non-
tuned) against the variant we SQATIN-fine-tune
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Template AUTO BANKING
CREDIT
CARD

HOME
KITCHEN
&DINING

META
SMALL
TALK

TRAVEL UTILITY WORK AVG

In-Domain Training Examples

None -0.1443 0.5476 0.4268 0.1318 0.0204 0.0970 0.3279 0.0890 -0.2613 0.5451 0.2591
Desc. -0.1069 0.5710 0.4695 -0.1121 0.1649 0.0929 0.1304 -0.3360 -0.35 0.6086 0.2942

Intent Descriptions

None -0.2600 0.6260 0.5076 0.3059 0.1208 0.2454 0.6019 0.1633 0.1388 0.3830 0.3353
Desc. -0.3376 0.5533 0.5327 0.2319 -0.1091 0.3165 0.4884 0.1076 0.0449 0.4860 0.3208

Table 5: Correlation (Pearson’s ρ) between domain transfer performance and domain similarity, measured in terms
(i) of examples (sim-E) and (ii) class prompts (sim-C): shown for every CLINC-150 domain as the target.
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Figure 3: Cross-domain transfer results for ID on CLINC-150 for SQATIN and the SotA QA-FT baseline. Full
results in the tabular format are in Appendix B. Diagonal values correspond to in-domain results. Source domains
shown along the vertical axis and target domains along the horizontal axis.

Model BANKING HOTELS

20-Fold 10-Fold 20-Fold 10-Fold

Non-tuned 21.91 21.93 20.85 21.94
Tuned for VE 26.28 26.85 30.77 33.39

Table 6: SQATIN’s (Desc. cross-task transfer perfor-
mance on NLU++; VE→ID.

for VE. We observe substantial improvements in ID
after instruction-tuning for VE (around 5% in the
BANKING domain and over 10% in the HOTELS do-
main), proving effective cross-task generalisation
of SQATIN in dialogue NLU.

We then fine-tune the models jointly on ID and
VE. Table 7 compares single-task training vs. multi-
task training on both tasks. While multi-task train-
ing yields no clear gains for ID (as the easier of
the two tasks), it gives consistent gains for VE (0.5-
1.5 F1 points). This again indicates that SQATIN
facilitates transfer between the dialog NLU tasks.

Model Size. To analyse the impact of the underly-
ing instruction-tuned model’s size on performance,
we also train SQATIN on top of the following
Flan-T5 models: SMALL (80M parameters), BASE

(250M) and LARGE (780M), with the scores pro-
vided in Appendix E. SQATIN yields strong in-
domain performance even on top of the SMALL

Flan-T5. The margin between LARGE and BASE is

Model Template ID VE

20-F 10-F 20-F 10-F

BANKING

SQATIN
None Single-task 85.55 88.53 64.92 75.41

Multi-task 85.69 88.34 66.89 76.08

Desc. Single-task 85.78 88.41 66.32 76.26
Multi-task 85.79 88.42 67.88 76.76

HOTELS

SQATIN
None Single-task 73.11 78.04 57.99 67.71

Multi-task 72.70 77.73 61.27 68.66

Desc. Single-task 73.35 78.11 58.74 66.94
Multi-task 73.15 77.74 61.74 68.66

Table 7: Cross-task transfer: comparison between (in-
domain) single-task (ID or VE) and multi-task training
(ID and VE) on NLU++.

substantially smaller than that between BASE and
SMALL; for in-domain ID, the gap between LARGE

and BASE is negligible. The SMALL models per-
forms notably worse than its larger siblings only
in cross-domain transfer, especially for VE. Cross-
domain performance of LARGE almost reaches the
in-domain performance of SMALL, which is in line
with observations that generalisation abilities of
instruction-tuned models generally improve with
their size (Chung et al., 2022).

Sample Efficiency. Due to large-scale instruction
pretraining, we expect SQATIN to be more sam-
ple efficient than QA-FT and CL-SE. To test this,
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Figure 4: Comparison of ID models on BANKING do-
main on NLU++ for different training data sizes. The
results are averages over 3 random seeds.

we train the models on training data of different
sizes. The process is as follows: i) first, 1000 exam-
ples are randomly chosen for the test set; ii) from
the rest we sample a random subset of N training
examples; iii) models are then trained on training
set from step ii) and evaluated on test set from
step i). This ensures that models trained on sets
of different sizes are evaluated on the same test
set, making the performances comparable. We use
the same hyperparameter configuration from §3 for
all training sizes. Results in Figure 4 demonstrate
that the scarcer the resources are, the more benefits
SQATIN brings over the baselines (QA-FT and es-
pecially CL-SE). Another observation is that both
QA-based approaches, QA-FT as well as SQATIN
drastically outperform CL-SE in few-shot scenarios
(cf. results for 32 and 64 training examples): this
result justifies QA formulation for intent detection
and value extraction in low-data setups.

Base Instruction-Tuned Model. To evaluate the
impact of the underlying instruction-tuned model,
we apply SQATIN on top of Flan-T5-base and
Tk-Instruct-base (Wang et al., 2022c). The mod-
els are of the same size (250M), but pretrained
on a different set of tasks (1,800+ tasks for Flan
and 1,600+ tasks for Tk-Instruct). The experimen-
tal setup and training hyperparameters were kept
the same across the models (see §3 and Appendix
D for the exact values). We run experiments on
the intent detection task in the 20-Fold setup. The
results presented in Table 8 demonstrate improve-
ments of SQATIN over QA-FT irrespective of the
underlying instruction-tuned model. At the same
time, the absolute scores do depend on the underly-
ing model’s quality with Flan-T5 achieving better
absolute scores.

Model Model In-Domain Cross-Domain

B H B → H H → B

QA-FT N/A 82.7 69.2 66.7 59.8

SQATIN Flan 85.8 73.4 67.4 66.4
Tk-Instruct 84.2 71.2 66.5 60.4

Table 8: Comparison of ID results in 20-Fold setup for
different instruction-tuned models.

Independent QA versus Multiple-Choice. By
design SQATIN involves asking an independent
question about every intent (for ID) and every slot
(VE) from the ontology for each user utterance: this
decomposition might impact inference efficiency.
A more efficient alternative might be a common
multiple-choice prompt-based approach, where we
create one instruction per utterance and provide the
model with all possible intent classes or slots. The
model is then expected to generate all intents or slot
values that apply to the given utterance in a single
response. We use the same instruction formulations
to ensure comparability and represent possible in-
tent classes with natural language descriptions (e.g.,
“to deny something”, “to greet someone”); see an in-
put example in Appendix F. Similarly to SQATIN,
we finetune an instruction-tuned model, namely,
Flan-T5 (BASE), on the MC-style input. Training
hyperparameters are provided in Appendix D.

While offering potential benefits with inference
speed, there are known deficiencies of this multiple-
choice formulation (MC), as previously discussed
in §2. For instance, the average length (in tokens)
of input of the independent, binary SQATIN for-
mualation for NLU++ ID and the MC formulation
is 29.85 and 310.13, respectively. The difference
might become even more salient with larger ontolo-
gies. The results for NLU++ in Table 9 demonstrate
that the MC approach is considerably behind the
independent-QA SQATIN both in in-domain and
cross-domain setups, regardless of the training data
size or template formulation. This indicates that the
per-intent or per-slot independent question formula-
tion is necessary for sample-efficient generalisation
of SQATIN. We hypothesise that this is due to the
data augmentation effects achieved this way.

SQATIN versus In-Context Learning with
ChatGPT. One alternative to supervised tuning
of smaller models is in-context learning (ICL) with
much larger instruction-tuned language models.
ICL could be more computationally efficient at
training time as it does not require fine-tuning the
model while being more demanding at inference
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Model Templ. In-Domain Cross-Domain

20-F 10-F 20-F 10-F

BANKING

ChatGPT ZS N/A 38.2 38.2 – –

ChatGPT ICL N/A 67.5 67.6 – –

SQATIN None 85.6 88.5 66.7 68.2
Desc. 85.8 88.4 67.0 68.5

MC None 62.0 67.9 39.3 46.1
Desc. 63.9 68.5 42.5 47.7

HOTELS

ChatGPT ZS N/A 39.1 39.2 – –

ChatGPT ICL N/A 63.1 67.9 – –

SQATIN None 73.1 78.0 65.4 67.3
Desc. 73.4 78.1 66.4 68.6

MC None 45.5 58.2 37.3 50.8
Desc. 50.0 59.7 41.3 51.9

Table 9: Standard SQATIN versus prompt-based
multiple-choice (MC) task formulation for in-domain
and cross-domain setups (ID on NLU++).

time, as the model size is considerably larger. To
compare the performance of ICL with SQATIN,
we evaluate ChatGPT in two standard scenarios:
(i) zero-shot (ZS), when the provided instruction
includes task description with all possible options
(intent descriptions in our case); and (ii) ICL, when
in addition to the above, the instruction also in-
cludes training examples which were used for su-
pervised training in the models in every respective
setting.4 We evaluate GPT-3.5-turbo-instruct
as the underlying model due to its strong ICL capa-
bilities (Ye et al., 2023).

Results in Table 9 demonstrate that SQATIN
performs consistently better than ChatGPT in both
ZS and ICL scenarios. This suggests that even
large models with ICL (and higher inference de-
mands and cost) cannot surpass smaller highly spe-
cialised SQATIN models for the fine-grained dia-
logue NLU tasks such as the NLU++ ones.

Parameter Efficiency. Next, we also investigate
whether the performance benefits of SQATIN
extend when we replace full-model fine-tuning
with the standard parameter-efficient fine-tuning
(PEFT) methods (Ruder et al., 2022) such as
adapters (Houlsby et al., 2019; Pfeiffer et al., 2021).
In our case, relying on the standard bottleneck
adapters with the reduction factor of 16 (Poth et al.,
2023), for Flan-T5 BASE, the number of tunable
parameters is ≈ 250× smaller than the size of the
original model. The hyperparameters and training
procedure are the same (see §3), except for the

4For the 10-Fold setup including all examples was impos-
sible due to the context length limit. In this case, we fitted as
many examples as possible by the context length.

Figure 5: Full-model fine-tuning (≈ 248M tunable pa-
rameters) versus PEFT with Adapters (≈ 1.8M tunable
parameters) in in-domain ID and VE.

learning rate which was increased to 5e-4.5 Fig-
ure 5 displays the performance of adapter-based
fine-tuning on NLU++. The results render adapters
extremely effective and comparable to full model
fine-tuning, indicating that the benefits of SQATIN
are not tied only to full-model fine-tuning.

6 Related Work

Pretraining for TOD Dialogue. LLMs, trained on
large web-scale corpora, revolutionised NLP, bring-
ing massive performance gains to most NLP tasks.
Besides general corpora, the most successful pre-
trained LMs for dialogue have have been addition-
ally trained on more specialised, conversation-like
data (e.g., from Reddit or Twitter). These models
have been increasingly successful in both open-
domain (Adiwardana et al., 2020; Bao et al., 2021;
Thoppilan et al., 2022; Dettmers et al., 2023, in-
ter alia) and task-oriented dialogue (Budzianowski
and Vulić, 2019; Lin et al., 2020; Ham et al., 2020;
Zhao et al., 2020). Compared to general-purpose
LM pretraining (e.g., BERT), dialogic pretraining
has been shown to lead to higher performance in
cross-domain transfer for dialogue NLU tasks (Mi
et al., 2021; Lin et al., 2021; Hung et al., 2022a,
interalia) due to the versatility of texts used in pre-
training. Another stand of work incestigated multi-
task learning setups for dialogue NLU (Hosseini-
Asl et al., 2020; Liu et al., 2021; Su et al., 2022).
In this work, in contrast, we resorted to models pre-
trained on multiple tasks with instruction-based ob-
jectives, resulting with stronger inductive biases for
cross-domain and cross-task settings. To the best
of our knowledge, this work is the first to propose
a unified (QA- and instruction-based) framework
for both dialogue NLU tasks (ID and VE).

Instruction Tuning for Dialogue NLU. Instruc-
tion tuning is an emergent framework in NLP

5Grid search over the set {5e-5, 5e-4, 5e-3} was run.
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where a generative model completes a task by fol-
lowing natural language instructions, possibly in-
cluding few labelled instances following the in-
struction to make the whole prompt. These models
generalise particularly well to tasks unseen dur-
ing training (Chung et al., 2022; Chowdhery et al.,
2023) due to their ability to leverage the infor-
mation about a task during inference (Liu et al.,
2023b). The performance, especially in zero-shot
setup, is highly dependent on task definitions (Liu
et al., 2023b) or providing several training exam-
ples (Min et al., 2022) in the instruction text (com-
monly known as in-context learning).6 Dialogue
follows the same trend: recent work (Gupta et al.,
2022) demonstrated the zero-shot effectiveness of
instruction-tuned models on dialogue tasks. Instruc-
tion engineering (Gupta et al., 2022; Ruder et al.,
2023) and increasing the number of in-context in-
stances can further improve the models’ perfor-
mance (Madotto et al., 2021; Mi et al., 2022). The
input (context) size of the models, however, puts
a limit on the number of (1) training examples (2)
classes (i.e., their descriptions) one can include in
the prompt. SQATIN deals with the issue in two
ways: a) by recasting the dialogue NLU tasks as
independent QA, at inference time we remove the
need for the model to see all class descriptions at
once; and b) we allow the model to learn from
training examples in supervised fashion (versus in-
context) thus not being limited by the base model’s
input length. We empirically validate that both have
strong positive impact on task performance.

7 Conclusion

We have introduced a novel framework for dialogue
NLU, SQATIN, which combined (i) supervised in-
struction tuning and (ii) question-answering formu-
lation of intent detection and value extraction. We
evaluated SQATIN on two established dialogue
NLU benchmarks, demonstrating that SQATIN
brings substantial and consistent improvements
over the existing SoTA approaches. The perfor-

6We note for completeness that prior work proposed to
utilise masked language modelling abilities of pretrained
models on standard, non-dialogue NLU tasks via cloze-style
phrases (Schick and Schütze, 2021a) and demonstrated the
potential of using few labelled examples for parameter up-
dates (Schick and Schütze, 2021b). Gao et al. (2021) show the
effectiveness of prompt-based fine-tuning of masked language
models when several task demonstrations are included into the
input context. This is in contrast to SQATIN which a) focuses
on dialogue NLU tasks; b) utilises instruction-tuned genera-
tive language models and relies on their instruction-following,
rather than mask-filling capabilities.

mance gains are especially pronounced in cross-
domain transfer, as SQATIN can leverage simi-
larities between classes across domains via their
descriptions. SQATIN also performs well in cross-
task transfer, enabling the two dialogue NLU tasks
to benefit from one another. We also show that
SQATIN supports parameter-efficient fine-tuning
and that it largely outperforms ICL with much
larger (and more expensive) language models.

Limitations

The majority of our experiments are based on the
Flan collection of models as they were pretrained
on a wide collection of tasks. However, we note that
there are other instruction-based models (Ouyang
et al., 2022; Sanh et al., 2022; Zhang et al., 2022,
inter alia), with more getting published almost on
a daily basis, which could be used with the pro-
posed method and the choice of the instruction-
based model is orthogonal to the proposed method-
ology. We leave wider exploration in this direction
as future work.

Additionally, we have focused on a single-source
transfer across domains, i.e., a model trained on
one domain was expected to be able to transfer to a
multitude of others. Future work will also explore
the multi-source cross-domain transfer where the
model would be finetuned on combined data from
several domains and tested on data from domains
not included in training.

In the evaluation, we rely on available standard
dialogue NLU benchmarks built specifically to
test few-shot in-domain and cross-domain gener-
alisation abilities of the models. It is important
to note that the benchmarks are only for English
dialogue NLU. We opt to confirm the effective-
ness of SQATIN in multilingual settings in future
work. Exploration of SQATIN in multilingual set-
tings would be also dependent on the availability of
strong multilingually pretrained instruction-based
models.

NLU++ includes the descriptions of intent and
slot classes which means that they did not have to
be created specifically for SQATIN. It is important
to note that when applying it to other datasets, such
descriptions would need to be created manually,
and there is no guarantee that the descriptions in
NLU++ are optimal for fine-tuning.

Lastly, due to the computational cost of finetun-
ing instruction-based models we largely rely on
instruction wordings and training hyperparameters
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from prior work. We hope to perform a more de-
tailed hyperparameter search in both wording of
the instructions and training hyperparameters in
the future, which might yield even higer absolute
scores with SQATIN.
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Context

• “” [none]
• “Given the following sentence: ” [given]
• “Sentence: ” [sent]
• “The user says: ” [usersaid]

Pre-question

• “” [none]
• “Question: ” [question]
• “Based on the question: ” [based]
• “Based on the question above: ” [basedabove]

Prompt

• “” [none]
• “Answer: ” [answer]
• “Options: -yes -no

Answer:” [answeroptions]

Table 10: Variants of instruction formulation.

A Different Instruction Formulations

Choosing the right instruction formulation is of-
ten crucial (or at least important) to obtain strong
performance from the instruction-based models.
Thus, we conducted a pilot study for picking an
optimal one. We experiment with 4 context op-
tions, 4 options of text preceding a question and 3
prompt options. The options (shown in Table 10)
were adapted from the templates used to train the
Flan models (Chung et al., 2022). We use Fold-0
of 10-Fold in-domain setting for intent detection to
determine the best instruction formulation.

The results of the preliminary study are shown
in Table 11. Although the range of results is not
that large, we focus on two instruction formula-
tions in further experiments: none-none-none and
usersaid-question-none. The former is picked
for similarity with the simple question answer-
ing formulation, although it leads to a lower
performance. This enables direct comparison to
QA-based models. As this formulation contains
only the input sentence and the questions (no de-
scription of the task or its context), we denote
it as None. The former instruction formulation
(usersaid-question-none) is used as it contains
the description of the context of the task and it led
to the highest performance in the pilot study. As it
contains a short description of the task, we denote
it as Descriptive (Desc.).

Context Pre-question Prompt Banking Hotels AVG

none none none 77.2 67.3 72.25
sent none none 81.31 76.45 78.88
none none answer 80.96 77.14 79.05
given none none 81.4 76.96 79.18
none none answer-options 81.22 77.26 79.24
none based-above answer 82.65 75.9 79.28
usersaid none none 81.72 77.35 79.54
given none answer 81.49 77.69 79.59
sent none answer 81.36 78.06 79.71
none based answer 82.1 77.33 79.72
none based answer-options 82.1 77.37 79.74
sent based none 82.13 77.38 79.76
sent based-above none 82.68 77 79.84
sent based-above answer 82.73 77.06 79.90
sent based answer 82.15 77.74 79.95
none based-above answer-options 82.67 77.24 79.96
sent none answer-options 81.4 78.63 80.02
none based none 82.08 78.1 80.09
usersaid based none 82.34 77.92 80.13
usersaid none answer-options 82.05 78.28 80.17
given none answer-options 81.7 78.63 80.17
given question answer 83.49 76.94 80.22
sent based-above answer-options 82.8 77.65 80.23
none based-above none 82.57 77.93 80.25
none question answer 83.17 77.35 80.26
sent question none 83.25 77.27 80.26
usersaid based answer 82.39 78.15 80.27
sent question answer 83.39 77.29 80.34
usersaid based none 82.99 77.72 80.36
usersaid based answer 83.05 77.68 80.37
none question answer-options 83.22 77.61 80.42
given question answer-options 83.6 77.39 80.50
usersaid none answer 81.83 79.17 80.5
sent based answer-options 82.29 78.78 80.56
given question none 83.42 77.66 80.54
usersaid based answer-options 82.42 78.67 80.55
sent question answer-options 83.4 77.7 80.55
usersaid based answer-options 83.08 78.44 80.76
none question none 83.08 78.5 80.79
usersaid question answer 83.88 77.74 80.81
usersaid question answer-options 84.2 77.43 80.82
usersaid question none 83.85 78.07 80.96

Table 11: Performance of SQATIN with different in-
struction wordings. The options are ordered in ascend-
ing average order.

B Full Cross-Domain Results on
CLINC-150 for Different Base Models

The cross-domain results on CLINC-150 for QA-
FT and different versions of SQATIN are provided
in Tables 12, 13 and 14.

C Comparison of Single-Task and
Multi-Task Models for Cross-Domain
Setups

Comparison of cross-domain results of models
trained with SQATIN in single-task and multi-task
setings is shown in Table 15.

D Fine-tuning and Hyperparameters

The classifier of the CL-SE baseline is a feed-
forward network with a single hidden layer of di-
mensionality 512 and tanh as the non-linear acti-
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QA-FT pretrained on SQUAD 2.0

AUTO BANKING
CREDIT
CARD

HOME K AND D META
SMALL
TALK

TRAVEL UTILITY WORK

AUTO 90.42 71.08 65.22 42.03 61.23 61.78 65.64 77.04 66.7 60.5
BANKING 34.67 94.38 62.16 43.35 62.51 49.43 50.35 74.33 58.96 61.45
CREDIT
CARD

35.19 66.94 94.42 41.28 64.05 55.86 61.13 76.54 64.14 66.92

HOME 26.68 60.4 46.07 89.23 55.95 48.64 43.35 76.05 56.65 68.08
K AND D 35.96 66.85 67.75 46.98 93.22 54.52 68.6 80.95 71.08 65.5
META 32.51 58.92 45.94 41.11 51.25 90.1 61.68 74.11 67.33 58.19
SMALL
TALK

27.2 49.17 39.61 30.69 49.17 52.4 81.36 64.59 58.16 51.62

TRAVEL 32.96 58.54 38.89 39.71 50.6 46.53 39.46 97.67 61.13 59.72
UTILITY 32.61 63.12 42.76 35.91 46.87 52.67 65.77 73.62 94.65 60.08
WORK 36.32 62.9 55.93 41.05 58.24 53.14 58.62 81.83 69.13 89.99

Table 12: Cross-domain intent detection using QA-based model on CLINC-150 (Larson et al., 2019). K AND D
stands for KITCHEN AND DINING domain. The rows are source domains while columns show target domains.

SQATIN: None

AUTO BANKING
CREDIT
CARD

HOME K AND D META
SMALL
TALK

TRAVEL UTILITY WORK

AUTO 94.47 70.87 67.26 39.75 54.96 52.2 61.57 85.01 67.09 65.71
BANKING 71.2 96.04 74.53 46.92 58.31 52.81 58.3 86.02 65.58 70.27
CREDIT
CARD

70.08 77.44 95.64 48.97 58.71 57 58.4 84.3 65.53 71.68

HOME 65.8 76.24 68.91 91.91 63.3 49.18 56.1 89.59 66.98 72.51
K AND D 77.25 77.38 79.84 52.53 95.01 56.22 67.09 88.01 72.75 69.7
META 66.5 70.49 67.33 46.85 59.05 90.55 71.51 85.98 67.26 65.47
SMALL
TALK

67.36 67.07 63.8 41.52 57.04 51.12 93.1 83.94 61.43 62.68

TRAVEL 62.8 66.26 63.34 41.94 50.58 47.71 55.97 97.77 67.35 64.58
UTILITY 64.6 70.71 64.35 45.68 55.88 61.6 70.91 88.28 95.72 67.97
WORK 68.68 77.19 73.12 50.89 58.03 48.63 54.5 83.31 67.05 91.56

Table 13: Cross-domain intent detection using SQATIN on CLINC-150 (Larson et al., 2019) with None templates.
K AND D stands for KITCHEN AND DINING domain. The rows are source domains while columns show target
domains.

SQATIN: Desc.

AUTO BANKING
CREDIT
CARD

HOME K AND D META
SMALL
TALK

TRAVEL UTILITY WORK

auto 94.47 75.69 70.47 41.68 56.88 50.47 59.61 82.45 68.54 67.51
banking 72.43 96.11 75.91 46.77 59.13 51.44 55.68 81.96 65.14 69.08
credit
card 73.62 80.39 95.85 49.55 61.13 54.34 60.59 80.81 66.01 70.23

home 65.04 76.7 66.99 92.66 62.81 49.83 54.21 88.98 66.03 72.07
k and d 66.79 73.88 66.92 47.91 95.36 57.31 65.57 87.18 72.71 69.37
meta 66.73 73.66 67.55 47.56 59.12 91.52 68.59 86.31 67.01 63.85
small
talk 67.08 69.89 61.95 41.26 55.93 51.33 93.12 84.28 62.62 62.97

travel 64.5 73.05 63.56 46 54.73 48.81 59.14 96.97 68.92 66.66
utility 65.39 73.03 64.25 45.66 55.26 59.82 68.29 87.59 96.07 67.09
work 67.8 79.15 71.26 50.41 58.86 47.48 53.41 82.07 67.15 92.01

Table 14: Cross-domain intent detection using SQATIN on CLINC-150 (Larson et al., 2019) with Descriptive
templates. K AND D stands for KITCHEN AND DINING domain. The rows are source domains while columns show
target domains.
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Model Template ID VE

20-Fold 10-Fold 20-Fold 10-Fold

BANKING → HOTELS

SQATIN
None Single-Task 66.61 68.18 33.24 39.48

Multi-Task 66.73 68.59 33.81 39.77

Desc. Single-Task 67.04 68.48 33.25 37.41
Multi-Task 67.28 68.15 33.08 36.18

HOTELS → BANKING

SQATIN
None Single-Task 65.35 67.34 44.72 52.05

Multi-Task 64.68 67.06 45.38 51.44

Desc. Single-Task 66.44 68.56 45.69 51.87
Multi-Task 66.86 68.08 46.02 52.04

Table 15: Comparison of single-task and multi-task mod-
els for cross-domain intent detection and value extrac-
tion on NLU++.

vation function. With multi-label formulations of
classification tasks (because instances in NLU++
can have multiple labels and those in CLINC-150
none), we apply sigmoid as an output activation
and train with the binary cross-entropy loss. At in-
ference, we consider an intent class to be predicted
if its probability, output of the sigmoid activation,
is above the threshold θ = 0.3.

The models are implemented using Transform-
ers library (Wolf et al., 2020). The models are
loaded with sequence-to-sequence language model-
ing head. Baseline QA-based models and SQATIN
are fine-tuned with the same protocol and hyperpa-
rameters as in prior work (Casanueva et al., 2022;
Fuisz et al., 2022; Moghe et al., 2023). They are
trained for 10 epochs with the batch size of 8, with
Adam optimizer (Kingma and Ba, 2015) and the
learning rate of 5e-5. Unless stated differently, we
report the average cross-validation performance
across all 10 or 20 folds the results are averages of
10 and 20 runs for 10- and 20-Fold setups, respec-
tively.7

E Results for Different Model Sizes

The results for different model sizes for the two
domains of NLU++ are plotted in Figure 6 and
Figure 7.

F Instructions with the Multiple Choice
Formulation

Figure 8 shows an example of the multiple choice
formulation for the ID task, including the instruc-
tion text, user query example and all possible op-
tions for the answers.

7We focus on the pre-defined few-shot 10-Fold and 20-
Fold setups, as the baselines already demonstrate saturated
performance on Large training data setups (Casanueva et al.,
2022).
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Figure 6: ID and VE performance (BANKING domain
of NLU++, 20-Fold setup) for SQATIN trained on top
of Flan-T5 models of different sizes. Similar trends are
observed in the HOTELS domain, see Figure 7.
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Figure 7: ID and VE performance (HOTELS domain of
NLU++, 20-Fold setup) for SQATIN trained on top of
Flan-T5 models of different sizes.

The user says: we will arrive tomorrow at 25 to 7 
p.m.

Question: what did the user intend to ask? 
Include all applicable options. Split the outputs 
with $$.

Options: 
to affirm something
to deny something
to say I don’t know
to acknowledge what was said
to greet someone
<...>
to ask something related to wifi or wireless
to ask something related to gym
to ask something related to spa or beauty services
to ask something related to some room amenities
to talk about housekeeping issues
to talk about room service

Answer:

Figure 8: Input example for the multiple-choice formu-
lation in the ID task.
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