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Abstract
Automatic speech recognition (ASR) for low-
resource languages remains a challenge due to
the scarcity of labeled training data. Parameter-
efficient fine-tuning and text-only adaptation
are two popular methods that have been used
to address such low-resource settings. In this
work, we investigate how these techniques
can be effectively combined using a multi-
lingual multimodal model like SeamlessM4T.
Multimodal models are able to leverage un-
labeled text via text-only adaptation with fur-
ther parameter-efficient ASR fine-tuning, thus
boosting ASR performance. We also show
cross-lingual transfer from a high-resource lan-
guage, achieving up to a relative 17% WER
reduction over a baseline in a zero-shot setting
without any labeled speech.

1 Introduction
Across the languages of the world, the automa-
tion of various speech and text tasks has led to
the creation of massive multilingual datasets such
as Multilingual LibriSpeech (Pratap et al., 2020),
that contain speech, text, and other metadata for a
number of different languages. This large-scale col-
lection has catalyzed the emergence of large multi-
lingual automatic speech recognition (ASR) mod-
els (Yadav and Sitaram, 2022), which utilize the
structural similarities between different languages
to learn language-invariant features and boost accu-
racy. Subsequently, multimodal multilingual mod-
els, such as M3P (Ni et al., 2021), that bridge the
gap between speech and text using joint representa-
tion spaces, have also emerged. These models are
trained using large amounts of multilingual speech
and text data.

However, less-spoken languages, especially
those from developing countries, do not have
such large data corpora available (Magueresse
et al., 2020), thus hurting model performance for
extremely low-resource languages (Chang et al.,
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2023). Thus, creating targeted models for severely
low-resource languages has become crucial. One
efficient way to do this is by adapting existing mod-
els to the target language using limited amounts
of labeled data. Such adaptation has to be done
carefully so as to not overfit to the target language
characteristics.

Parameter-efficient fine-tuning (PEFT) (Han
et al., 2024) techniques have gained wide accep-
tance where only relevant parts of a model are
identified and fine-tuned for a specific downstream
task. Text-only adaptation is another sub-area that
is gaining popularity for low-resource ASR (Bataev
et al., 2023; Vuong et al., 2023). Multimodal mod-
els have training pathways for both speech and
text data, offering a good framework to combine
both approaches. Multilingual models, on the other
hand, allow for cross-lingual transfer (Khare et al.,
2021), i.e., using a higher resource language to im-
prove performance on a lower resource language.

In this work, we have leveraged the multimodal
nature of Meta’s SeamlessM4T (Communication
et al., 2023) to explore the benefits of speech-based
adapter fine-tuning and text-only adaptation. These
techniques have been used both in isolation and in
combination to identify the best strategy to improve
low-resource ASR for a number of Indic languages.
We have also exploited the multilingual nature of
the model to use higher-resource languages to im-
prove low-resource ASR. Thus, our main contri-
butions include: (a) identifying how to combine
speech-based parameter-efficient fine-tuning and
text-only adaptation to boost low-resource ASR,
(b) identifying a cross-lingual transfer technique
that can give more than 17% relative reduction in
WER for a low-resource language without using
any speech of that language, (c) the use of small
amounts of available data to boost the performance
of SeamlessM4T (Communication et al., 2023) on
six Indic languages, Bengali, Gujarati, Kannada,
Maithili, Malayalam and Odia.
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Figure 1: Parameter-efficient Adaptations for SeamlessM4T: A multimodal ASR model such as SeamlessM4T
can be fine-tuned in a parameter-efficient manner through either speech-based adaptations or text-only adaptation.

2 Related Work

One of the key challenges in current ASR research
is enabling systems to handle multilingual inputs
(Yadav and Sitaram, 2022; Kannan et al., 2019)
while minimizing resource requirements in terms
of training, inference, and storage costs. Currently,
the most popular paradigm using multilingual mod-
els are to initially pre-train the models in a self-
supervised manner on a large multilingual dataset
(Babu et al., 2021) before being fine-tuned on a
set of target languages (Toshniwal et al., 2018; Bai
et al., 2022). A general way of performing such
model fine-tuning is by updating all the weights
or some specific model components while training.
These kinds of methods are parameter inefficient
and often cause catastrophic forgetting (Kessler
et al., 2021), for all non-target languages. Also,
training and storage costs for such methods in-
crease linearly with both the model size and the
number of languages.

To mitigate these limitations, recent literature
on NLP has introduced several parameter-efficient
fine-tuning methods (Xu et al., 2023; Tomanek
et al., 2021; Hu et al., 2021), often involving train-
able modules called adapters (Houlsby et al., 2019),
whose weights are updated while freezing the orig-
inal backbone. Significant efforts are being made
to develop better adapter architectures and efficient
training methods (Yu et al., 2023) to utilize con-
trastive learning (Zhang and Ré, 2024) and meta-
learning (Hou et al., 2021). These modules can
also be used to adapt multilingual ASR models
for a low-resource setting, with Simadapter (Hou
et al., 2022) being one of the first models to utilize
adapters to leverage cross-lingual features.

In the context of speech recognition, a low-
resource setting could refer to any scenario with
insufficient training data. This includes challenges
such as recognizing atypical speech (Tomanek
et al., 2021) or processing less commonly spoken
languages. A recent work (Mainzinger and Levow,
2024) demonstrated the benefits of using adapters
for very low-resource languages with less than five
hours of training data. For the low-resource situ-
ation, task- or language-specific adapter modules
showcase superior performance (Hu et al., 2024)
compared to fine-tuning the model components, but
even such approaches are constrained by inherent
limitations of the base model.

Over the past few years, considerable effort has
gone into developing multilingual ASR founda-
tional models with more generalizable features.
These models offer a stronger starting point for
low-resource adaptations and enable the use of
cross-lingual transfer learning. The exponential
growth in computing power has led to the creation
of increasingly large language models, which are
now used for a wide range of tasks, including as
backbones for multimodal ASR models (Ruben-
stein et al., 2023; Zhang et al., 2023; Chang et al.,
2023). For such models, the foundational backbone
is expanded using audio tokens generated using
techniques like wav2vec (Schneider et al., 2019)
and Hubert (Hsu et al., 2021) in order to learn a
joint representation in a multimodal space; the to-
ken vocabulary is expanded to encompass both text
and audio. Note that models with joint multimodal
representations are not only useful for ASR but
can also be integrated with a vocoder for TTS or
conversational chatbots (Zhang et al., 2023).

Multimodal models can be trained with joint text-
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audio tasks through self-supervision with masked
language modeling and denoising objectives; fur-
ther fine-tuning is often done with ASR and speech-
to-text or speech-to-speech translation tasks. One
of the most recent examples of such a multilingual
multimodal model has been SeamlessM4T (Com-
munication et al., 2023) by Meta AI, which is built
upon the NLLB (Team et al., 2022a) backbone and
can process speech and text inputs from nearly 100
languages. An implicit advantage of using such
multimodal models for low-resource ASR is the
ability to benefit from text-only learning for shared
parameters. In most cases, there is significantly
more text data available than speech data. Thus,
the capability to leverage text-only adaptation for
ASR models can be highly advantageous in these
scenarios.

While there is a lot of prior work in the domain
of text-only adaptation for ASR (Vuong et al., 2023;
Bataev et al., 2023; Chen et al., 2023; Mittal et al.,
2023), and there has been some work on a com-
parative analysis of various fine-tuning strategies
for low-resource ASR (Liu et al., 2024), to the best
of our knowledge, our work is the first to explore
them for multilingual multimodal models.

3 Methodology

In this work, we leverage a combination of
parameter-efficient adaptation, unlabeled textual
data, and minimal amounts of transcribed speech
to improve ASR performance in low-resource lan-
guages using multilingual multimodal models. Fig-
ure 1 demonstrates the overall workflow of our
proposed pipeline.

3.1 Multimodal base model: SeamlessM4T

We use SeamlessM4T (Communication et al.,
2023) as our base model for all our experiments.
SeamlessM4T, i.e., Massively Multilingual & Mul-
timodal Machine Translation, is a versatile end-to-
end model that provides support for multiple tasks,
including speech-to-speech translation, speech-to-
text translation, text-to-speech translation, text-to-
text translation, and automatic speech recognition
for up to 100 languages. The model has been
trained using over a million hours of unlabeled
speech in a self-supervised manner, along with
more than 400K hours of human and machine-
labeled audio. It supports 96 different languages
for input speech and text, as well as output text,
and can generate speech in 35 languages.

The SeamlessM4T model architecture is inspired
by UnitY (Inaguma et al., 2023), a two-pass mod-
eling framework that, unlike cascaded models, can
be jointly optimized. The text encoder and de-
coder models of SeamlessM4T are initialized by
the NLLB model (Team et al., 2022b), a text-to-
text translation model. To process speech inputs,
the model employs the Wav2Vec-BERT 2.0 speech
encoder, which is an enhancement over the origi-
nal model proposed by Chung et al. (2021) with
additional codebooks. The model also includes a
modality adapter (Zhao et al., 2022), referred to as
the length adapter, to align the speech modality
with text, projecting it to a unified representation
space. Lastly, the model uses a text-to-unit (T2U)
component for speech generation that produces
discrete speech units from the text output. These
units are then transformed into audio waveforms us-
ing a multilingual HiFi-GAN unit vocoder (Kong
et al., 2020). There are multiple variants of the
SeamlessM4T model; we have used SeamlessM4T-
medium with a total of 1.2 Billion parameters.

Although the entire model comprises multiple
components, our analysis focuses primarily on ap-
plying SeamlessM4T for multilingual ASR. The
ASR pipeline of SeamlessM4T consists of the
speech encoder (311M parameters), the length
adapter (46M parameters), and the text decoder
(201M parameters). Next, we will elaborate on
parameter-efficient fine-tuning of SeamlessM4T
(Section 3.2) and how we can use text-only adapta-
tion within such a multimodal model (Section 3.3).

3.2 Parameter-efficient Fine-tuning

The ASR components of SeamlessM4T amount
to more than 500M parameters. Full fine-tuning
of these components using limited amounts of
labeled data for low-resource languages may re-
sult in overfitting and degradation of ASR perfor-
mance. To alleviate these challenges, parameter-
efficient fine-tuning paradigms like the adapter
framework (Houlsby et al., 2019) are very popular,
especially for natural language processing tasks.
Adapters have also found success in low-resource
ASR tasks such as accent adaptation (Tomanek
et al., 2021) and cross-lingual adaptation (Hou
et al., 2022). Next, we will elaborate on the struc-
ture of an existing length adapter within Seam-
lessM4T and the new adapters we introduce in the
encoder and decoder layers.

177



Figure 2: SeamlessM4T Length Adapter: Projects
speech embedding X to a lower-dimensional represen-
tation X̃ in the multimodal space.

3.2.1 The Length Adapter

The length adapter in SeamlessM4T aims to bridge
the gap between speech and text representations. It
is inspired by the M-adapter architecture (Zhang
et al., 2023) and uses a Transformer-based module
to adapt speech representations to text. By com-
pressing the speech sequence, the length adapter
generates features tailored for multilingual speech-
to-text tasks by modeling both global and local
dependencies within the speech.

The main part of the original M-adapter archi-
tecture, illustrated in Figure 2, is the Multi-head
Pooled Self-Attention (MPSA) mechanism. In the
original MPSA, convolutional layers pool the in-
put X and are further projected to the inputs of
the multi-head attention module using linear trans-
formation matrices. An additional pooling is ap-
plied in parallel to X and then added to the output
of the attention module before being processed
through a feedforward network. These processes
together generate a lower dimensional representa-
tion of X , denoted by X̃ as the current layer output,
addressing any length mismatches between embed-
dings from different modalities. Unlike the original
M-adapter architecture with independent pooling
modules for the multi-head attention inputs, the
length adapter utilizes a shared pooling module,
generating a single X̂ for each X to improve effi-
ciency. More formally, given an input sequence
X ∈ RL×D, where L is the sequence length and
D is the embedding dimension, the MPSA mecha-
nism starts by applying shared pooling to the input
X to obtain X̂ ∈ RL′×D. This pooling operation is
performed using a 1D convolutional layer with ker-
nel size k, stride s, and padding p. Subsequently, X̂

is linearly projected into the query, key, and value
matrices, denoted as Q, K, and V , respectively.

X̂ = SharedPooling (X)

Q = X̂WQ, where Q ∈ RL′×D,

K = X̂WK , where K ∈ RL′×D,

V = X̂W V , where V ∈ RL′×D.

where the new sequence length L′ is given by:

L′ =
⌊
L+ 2p− k

s

⌋
+ 1.

We hypothesize that the length adapter module
could potentially learn prosodic characteristics of
languages, such as phoneme durations, by map-
ping speech embeddings — which include both
segmental and suprasegmental information — to
text embeddings that contain only content infor-
mation. Learning certain prosodic characteristics
like durations can be particularly beneficial for ex-
tremely low-resource languages that lack sufficient
data for learning fine-grained contextual and syn-
tactical information.

3.2.2 Encoder and Decoder Adapters

In addition to the pre-existing length adapter (Fig-
ure 2) in the SeamlessM4T architecture, we in-
serted additional trainable adapter layers within the
encoder and decoder modules to adapt this mul-
tilingual model for low-resource languages. The
adapter modules, following the architecture pro-
posed in (Houlsby et al., 2019), initially project
the original D1-dimensional features into an inter-
mediate space of dimension D2. A non-linearity,
specifically GeLU (Hendrycks and Gimpel, 2023)
in our implementation, is then applied, after which
the features are projected back to the original D1

dimensions. To adjust the number of parameters
for these adapters, we can change the intermediate
dimension D2. By decreasing the value of D2, the
number of trainable parameters in the adapters is
reduced accordingly.

In our current experimental setup, we have in-
serted adapters after every Conformer layer in the
encoders and after every Transformer layer in the
text decoder. By setting the intermediate dimen-
sion D2 to one-fourth of D1 for all adapters, we
introduce 6 million new trainable parameters each
in the encoder and decoder modules.
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Formally, the operations inside the ith speech
encoder layer can be summarized as:

H = MultiHeadAttn(hi−1,hi−1,hi−1)

C = Convolution(H)

ĥi = FFN(C)

hi = Adapter(ĥi)

Similarly, the operations inside the ith decoder layer
can be summarized as:

D = MultiHeadAttn(di−1,di−1,di−1)

D̂ = MultiHeadAttn(di−1,hℓ,hℓ)

d̂i = FFN(D̂)

di = Adapter(d̂i)

where ℓ is the last encoder layer, and MultiHea-
dAttn(Q, K, V) is the standard multi-head attention
implementation (Vaswani, 2017) with Q, K, and V
denoting queries, keys, and values, respectively.

During our experiments, we fine-tuned the en-
coder adapters and length adapters on labeled ASR
data, while the decoder was fine-tuned using ASR
and machine translation (MT) data, thereby lever-
aging the text-to-text pipeline of SeamlessM4T.

3.3 Text-only Adaptation

The text decoder in the SeamlessM4T model is
shared between the ASR pipeline and the text-to-
text translation pipeline, allowing it to be trained
for both tasks. This shared component in mul-
timodal models possesses the ability to transfer
knowledge from one task to another, thereby simul-
taneously enhancing the performance of multiple
tasks. We hypothesize that we can improve the
ASR performance for a target language by fine-
tuning the text decoder adapters via text-to-text
translation into that language. This allows us to per-
form a purely text-only fine-tuning of ASR models
and is especially beneficial for languages where
speech data is scarce. With the latest advancements
in NLP, the quality of machine-translation models
has greatly improved, allowing these models to be
utilized to augment the existing parallel text using
machine-translated text for these languages.

In our text-only fine-tuning experiments, we fine-
tuned the decoder adapters on an English-to-target
language translation task to help them learn the
relevant syntactical features for the target language.

4 Experimental Setup

4.1 Dataset

The IndicVoices dataset (Javed et al., 2024) was
utilized for all our experiments. This dataset is a
multilingual, multi-speaker collection of natural
and spontaneous speech in 22 Indian languages. It
comprises 9% read speech, 74% extempore speech,
and 17% conversational speech. Among these lan-
guages, Maithili is classified as a zero-shot lan-
guage for SeamlessM4T, while Bengali is the sole
high-resource Indic language. The remaining lan-
guages are categorized as low-resource languages
for the model (Communication et al., 2023). One
of the main reasons for using this dataset is that
it is among the most comprehensive open-source,
multilingual speech datasets for Indic languages
covering many low-resource languages and one of
the few published after the release of SeamlessM4T,
ensuring there is no data leakage between the eval-
uation sets and the SeamlessM4T training data.

4.1.1 Transcribed Speech Data
The speech data and the corresponding transcripts
from the IndicVoices dataset were used for the ASR
fine-tuning experiments. The dataset, primarily
consisting of extempore speech recorded under nat-
ural conditions, is characterized by a significant
amount of noise and includes occasional disfluen-
cies. For each language, 5 hours of speech were
selected for the training set, sourced from an av-
erage of 336 speakers, to simulate an extremely
low-resource setting. On average, each of the test
and validation sets had 1 hour of speech by 68 and
206 speakers respectively. The out-of-vocabulary
(OOV) rate of the test set was calculated to de-
termine the amount of test-train domain overlap
in the data. The OOV rates for Gujarati, Bengali,
Kannada, Maithili, Malayalam, and Odia test sets
were 39%, 35%, 58%, 41%, 53%, and 37%, re-
spectively, averaging to an OOV of 43.87% on the
test sets, further demonstrating the challenging na-
ture of the task.

4.1.2 Text-only Data
The IndicTrans2 (Gala et al., 2023) model was
used to translate all the transcriptions present in
the IndicVoices dataset to obtain parallel English-X
text. Another set of parallel text data was created by
using only the transcriptions of the 5-hour speech
data in the training set for every language. For Ben-
gali, Gujarati, Kannada, Maithili, Malayalam, and
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COMPONENTS LEARNABLE MAITIHLI MALAYALAM KANNADA GUJARATI ODIA BENGALI

FINE-TUNED PARAMETERS WER CER WER CER WER CER WER CER WER CER WER CER
NONE - 82.20 43.39 56.15 20.65 69.29 29.11 41.03 24.50 42.81 17.38 37.70 18.44
LENGTH ADAPTER 46M 54.97 26.10 52.82 18.14 55.48 20.38 33.91 16.40 35.48 13.75 35.90 17.08
TEXT DECODER 201M 54.56 26.21 54.04 19.28 54.3 20.57 33.62 17.12 35.14 13.48 36.14 17.95
SPEECH ENCODER 311M 43.87 17.79 46.99 13.45 47.91 14.93 27.79 11.58 29.82 9.24 29.07 12.09

Table 1: Fine-tuning a Multimodal Model: Comparison of WER (%) and CER (%) after ASR fine-tuning of
SeamlessM4T with 5 hours of labeled speech, without adaptations; the first row presents the pre-fine-tuning results.

TEXT-ONLY LEARNABLE MAITHILI MALAYALAM KANNADA GUJARATI ODIA BENGALI

ADAPTATION PARAMETERS WER CER WER CER WER CER WER CER WER CER WER CER
NONE - 82.20 43.39 56.15 20.65 69.29 29.11 41.03 24.50 42.81 17.38 37.70 18.44
5HR TRANSCRIPT 6M 71.32 37.92 53.96 18.94 70.52 32.54 35.67 19.19 38.77 14.84 35.28 16.77
FULL TRANSCRIPT 6M 68.24 36.84 55.30 20.43 68.13 26.91 35.45 18.66 38.39 16.22 35.44 17.73

Table 2: Text-only Adaptation: Comparison of WER (%) and CER (%) after text-only adaptation on SeamlessM4T
with Eng-X parallel text using the full dataset and a 5-hour subset; the first row presents the pre-adaptation results.

Odia, the number of tokens in the 5-hour text sets
were 40k, 43k, 30k, 42k, 34k, and 34k, respectively,
while those in the large text set were 785k, 118k,
297k, 834k, 398k and 503k respectively. Thus, on
average, each of the larger text data sets contained
489000 tokens for every language, while each of
the smaller sets contained only 37261 tokens.

4.2 Implementation Details

The SeamlessM4T model comprises a speech en-
coder with 12 Conformer blocks and a text de-
coder with 12 Transformer blocks, with a model
dimension D1 = 1024. Two D2 configurations
were tested: D2 = 256 (about 500K parameters
per adapter layer, totaling 6M parameters) and
D2 = 2048 (matching adapter parameters with
the length adapter, totaling 50M parameters). Text-
only adaptation needed roughly 200 epochs of fine-
tuning, while ASR fine-tuning required up to 40
epochs. All experiments were performed with a
learning rate of 5× 10−6 and a batch size of 16.

5 Experiments and Results

5.1 System A: Pure ASR Fine-tuning

We use the name System A to refer to the stan-
dard speech-to-text fine-tuning of SeamlessM4T
using labeled speech and the ASR objective. The
results of this experimental setup are summarized
in Table 1. From the results, it is evident that fine-
tuning the length adapter requires fewer parameters
while providing similar benefits to text decoder fine-
tuning across both metrics. Additionally, the ASR
fine-tuning of the speech encoder proves to be sig-
nificantly beneficial, although it involves training a
substantially larger number of parameters.

In order to reduce the computational and storage

requirements, the fine-tuning was substituted with
language-specific adaptations, wherein adapters
were introduced in the encoder and decoder, and
these were fine-tuned in various combinations us-
ing transcribed speech data while freezing the base
model. Table 3 depicts the results for the adapta-
tions on System A. The results demonstrate that
larger encoder adapters with 50M parameters are
the most beneficial in enhancing the ASR perfor-
mance, achieving WER and CER close to full fine-
tuning of the model and the adapters while reduc-
ing trainable parameters by 90%. Additionally,
Table 3 indicates that for the same number of train-
able parameters, speech-based training of encoder
adapters performs much better than that of decoder
adapters. The performance of the length adapter
fine-tuning surpasses that of the decoder adapters
but falls short compared to the encoder adapters.

5.2 System T-A: Using Text-only Adaptation

The parallel English-target language text data gen-
erated by translating the transcripts of IndicVoices
data was used to fine-tune the decoder adapters on
an English-to-target language MT objective. Table
2 shows the ASR word error rates (WERs) with the
complete transcription data and a smaller 5-hour
text data subset (described in Section 4.1) to check
the comparative benefits of text-only adaptation,
without any ASR fine-tuning. For most languages,
using the larger text corpus led to better perfor-
mance. However, the smaller parallel dataset, with
significantly fewer tokens, demonstrated compa-
rable performance to that of the complete corpus.
This suggests that text-only adaptation can be ef-
fective for multilingual multimodal models, even
with very limited amounts of data.

180



LANGUAGE

COMPONENT NONE LENGTH ENCODER DECODER LEN+ENC ENCODER ALL
FINE-TUNED ADAPTER ADAPTER ADAPTER ADAPTER ADAPTER (L) COMPONENTS

LEARNABLE - 46 M 6 M 6 M 52 M 50 M 571 M
PARAMETERS

SYSTEM A T-A A T-A A T-A A T-A A T-A A T-A A T-A

MAITHILI

WER 82.20 68.24 54.97 54.74 52.95 48.14 63.52 58.39 47.92 45.98 46.08 44.60 42.58 46.54

CER 43.39 36.84 26.10 27.10 22.86 21.58 31.60 29.70 20.56 20.47 19.20 19.52 17.14 20.78

MALAYALAM

WER 56.15 55.3 52.82 52.51 49.71 50.14 56.03 53.71 48.22 48.19 47.81 47.75 47.38 45.9

CER 20.65 20.43 18.14 18.87 15.34 16.35 20.21 20.00 14.76 15.46 14.12 14.92 13.86 13.38

KANNADA

WER 69.29 68.13 55.48 53.83 52.54 53.29 62.88 58.71 49.36 48.24 49.14 47.75 45.48 43.5

CER 29.11 26.91 20.38 20.94 16.95 18.84 23.76 23.44 15.63 16.51 15.26 14.92 14.06 14.18

GUJARATI

WER 41.03 35.45 33.91 34.41 29.20 27.72 38.88 35.53 28.03 27.73 28.09 27.90 25.56 26.31

CER 24.50 18.66 16.40 17.41 11.96 12.05 19.28 17.80 12.63 12.35 12.00 12.50 11.28 11.67

ODIA

WER 42.81 38.39 35.48 34.99 32.03 32.97 38.55 36.24 30.09 31.18 30.04 28.92 30.54 30.17

CER 17.38 16.22 13.75 14.62 10.57 11.25 14.50 14.57 10.11 11.32 10.01 9.92 10.37 10.30

BENGALI

WER 37.70 35.44 35.90 35.09 29.65 28.77 38.10 35.60 29.96 28.50 29.30 31.92 28.12 27.62

CER 18.44 17.73 17.08 17.22 12.76 12.58 18.59 17.72 13.06 12.38 12.52 14.63 12.12 11.91

Table 3: Parameter-efficient Adaptation Results: Comparison of WER (%) and CER (%) between different
parameter-efficient adaptation methods for SeamlessM4T. System A refers to pure ASR fine-tuning, while system
T-A refers to text-only adaptation followed by ASR fine-tuning. The best results for System A are underlined while
the best results for System T-A are in bold for every language. The overall best results have been highlighted .

Moreover, text-only adaptation can be combined
with ASR fine-tuning using labeled speech. We re-
fer to the resulting ASR system with text-only adap-
tation, followed by ASR fine-tuning, as System T-A.
Table 3 shows our overall results comparing System
A and System T-A. We observe that text-only adap-
tation followed by ASR fine-tuning is more bene-
ficial than pure ASR fine-tuning, as in System A.
The trends of System T-A matched those of System
A, with the larger encoder adaptation showing the
best performance across all languages except Ben-
gali, the only high-resource language in our study.
This suggests that for low-resource languages with
limited text and speech data, the most effective
strategy is to first use text-only decoder adaptation,
followed by speech-based encoder adaptation. It
must also be noted that the results of using this
strategy are comparable to those after full ASR
fine-tuning of the entire model, with a > 90% re-
duction in the number of trainable parameters, from
571M to 50M.

5.3 Cross-lingual Transfer
We hypothesize that the length adapter could cap-
ture content-agnostic prosodic characteristics of a
language without overfitting on its syntax. Conse-
quently, fine-tuning this adapter using data from a
closely related high-resource language might en-

hance the model’s predictions for a low-resource
target language. The target languages chosen for
this experiment were Maithili and Odia, catego-
rized as zero-shot and low-resource languages for
SeamlessM4T, respectively. Bengali, a language
belonging to the same Eastern Indo-Aryan lan-
guage family (Eberhard et al., 2020) as Maithili and
Odia, was selected as the high-resource pivot. To
further justify our choice of the pivot, we examined
the genetic distance between the pivot and target
languages using lang2vec (Malaviya et al., 2017).
Genetic distance (Bjerva et al., 2019) refers to the
measure of divergence between languages based on
their evolutionary relationship. The results showed
that Bengali was quantifiably close to both target
languages. The labeled Bengali speech was used to
fine-tune the length adapter and encoder adapters
individually and in combination. Separately, Kan-
nada speech was used for length adapter fine-tuning
to check if any benefits are obtained with an un-
related language. We also combined this with the
text-only adaptation of target language text data to
check if both approaches complement each other.
Table 4 summarizes the performance of the cross-
lingual systems with both the target low-resource
languages. Length adapter fine-tuning outperforms
encoder adaptation for cross-lingual transfer.
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LANGUAGE 1 LANGUAGE 2 GENETIC TEXT- ONLY ASR FINE-TUNED NUMBER OF
WER CER

(TARGET) (ASR FINE-TUNING) DISTANCE ADAPTATION COMPONENT PARAMETERS

MAITHILI

NONE - NO NONE - 82.2 43.39

BENGALI 0.625

NO LENGTH ADAPTER 46M 79.77 40.04
NO ENCODER ADAPTER 50M 81.81 41.61
NO LEN. + ENC. ADAPTER 52M 80.81 40.44
YES LENGTH ADAPTER 6M+46M 72.52 39.31

KANNADA 1.000
NO LENGTH ADAPTER 46M 80.29 38.37
NO ENCODER ADAPTER 50M 85.25 41.58

ODIA

NONE - NO NONE - 42.81 17.38

BENGALI 0.375

NO LENGTH ADAPTER 46M 41.05 15.07
NO ENCODER ADAPTER 50M 43.67 16.03
NO LEN. + ENC. ADAPTER 52M 42.4 15.27
YES LENGTH ADAPTER 6M+46M 35.45 13.92

KANNADA 1.000
NO LENGTH ADAPTER 46M 41.21 14.08
NO ENCODER ADAPTER 50M 44.01 14.59

Table 4: Results for cross-lingual transfer via ASR adaptation: Comparison of WER(%) and CER(%) on
low-resource languages with cross-lingual transfer through ASR adaptation of SeamlessM4T. The genetic distances
between the (language 1, language 2) pairs suggest that Bengali is related to both the target languages; Kannada,
despite being an Indic language, is genetically unrelated to both Maithili and Odia.

Additionally, we obtained an overall 17% re-
duction in relative WER for Odia, compared to
the base model, by inserting decoder adapters fine-
tuned on target language text data into the model
whose length adapter was fine-tuned on Bengali
ASR data. Thus, for low-resource languages with-
out any speech data, ASR performance may be
boosted by length adapter fine-tuning with a closely
related pivot language coupled with text adaptation.

6 Discussion

We observe that for decoder adapters, it is more
beneficial to use text-only adaptation compared to
ASR-based training; the latter’s benefit is mainly
derived via the encoder layers. This emphasizes the
role played by text data in improving the decoder’s
ability to enhance the internal language model of
the ASR system. We also observed that 5-hour
text data adaptation, having on average 92% fewer
tokens than the full text, performed comparably to
full-text data adaptation. This indicates that even
limited amounts of text data can significantly boost
ASR.

For a given target language with labeled speech,
we found that fine-tuning the encoder adapters was
the most accurate and parameter-efficient strategy.
However, for cross-lingual zero-shot settings with
no labeled data in a target language, we found it
beneficial to fine-tune the length adapter with data
in a related language rather than fine-tuning en-
coder adapters; the latter led to overfitting to the
related language rather than enabling transfer to
the target language. Text-based adaptation led to

further improvements in the cross-lingual setting,
indicating that even without speech data, ASR for
low-resource languages can be improved by fine-
tuning the length adapter. Lastly, a curious observa-
tion was that higher cross-lingual transfer was seen
for genetically closer language pairs, with Odia-
Bengali outperforming Maithili-Bengali in terms
of relative WER reduction.

7 Conclusion

In this work, we explored the combination of
parameter-efficient ASR fine-tuning and text-only
adaptation techniques to enhance ASR for low-
resource Indic languages using a multi-lingual
multi-modal base model (SeamlessM4T). We find
that a limited amount of text data was sufficient for
adaptation, text-based adaptation was superior to
ASR fine-tuning of decoder adapters, and encoder
adapters were most effective in limited speech set-
tings. In cross-lingual settings, however, the length
adapter (and not the encoder adapter) was most
successful, and text adaptation was additionally
beneficial. Future work will focus on developing a
better understanding of the interplay between dif-
ferent adapters within multimodal models.
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