Gender-specific Machine Translation with Large Language Models
Eduardo Sánchez, Pierre Andrews, Pontus Stenetorp, Mikel Artetxe, Marta R. Costa-jussà
Abstract
‘While machine translation (MT) systems have seen significant improvements,it is still common for translations to reflect societal biases, such as genderbias. Decoder-only language models (LLMs) have demonstrated potential in MT, albeitwith performance slightly lagging behind traditional encoder-decoder neural machinetranslation (NMT) systems. However, LLMs offer a unique advantage: the abilityto control the properties of the output through prompting. In this study, we leveragethis flexibility to explore Llama”s capability to produce gender-specific translations.Our results indicate that Llama can generate gender-specific translations withtranslation quality and gender bias comparable to NLLB, a state-of-the-art multilingualNMT system.’- Anthology ID:
- 2024.mrl-1.10
- Volume:
- Proceedings of the Fourth Workshop on Multilingual Representation Learning (MRL 2024)
- Month:
- November
- Year:
- 2024
- Address:
- Miami, Florida, USA
- Editors:
- Jonne Sälevä, Abraham Owodunni
- Venues:
- MRL | WS
- SIG:
- Publisher:
- Association for Computational Linguistics
- Note:
- Pages:
- 148–158
- Language:
- URL:
- https://preview.aclanthology.org/fix-sig-urls/2024.mrl-1.10/
- DOI:
- 10.18653/v1/2024.mrl-1.10
- Cite (ACL):
- Eduardo Sánchez, Pierre Andrews, Pontus Stenetorp, Mikel Artetxe, and Marta R. Costa-jussà. 2024. Gender-specific Machine Translation with Large Language Models. In Proceedings of the Fourth Workshop on Multilingual Representation Learning (MRL 2024), pages 148–158, Miami, Florida, USA. Association for Computational Linguistics.
- Cite (Informal):
- Gender-specific Machine Translation with Large Language Models (Sánchez et al., MRL 2024)
- PDF:
- https://preview.aclanthology.org/fix-sig-urls/2024.mrl-1.10.pdf