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Abstract
Large pretrained language models (LLMs) have shown surprising In-Context Learning (ICL) ability. An important
application in deploying large language models is to augment LLMs with a private database for some specific task.
The main problem with this promising commercial use is that LLMs have been shown to memorize their training data
and their prompt data are vulnerable to membership inference attacks (MIA) and prompt leaking attacks. In order to
deal with this problem, we treat LLMs as untrusted in privacy and propose a locally differentially private framework of
in-context learning (LDP-ICL) in the settings where labels are sensitive. Considering the mechanisms of in-context
learning in Transformers by gradient descent, we provide an analysis of the trade-off between privacy and utility in
such LDP-ICL for classification. Moreover, we apply LDP-ICL to the discrete distribution estimation problem. In the
end, we perform several experiments to demonstrate our analysis results.
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1. Introduction

Large language models (LLMs) have exhibited sur-
prising emergent abilities for in-context learning
(Brown et al., 2020a). With a few input-label pairs
as exemplars, they can predict the label for an
unseen input without additional parameter modifi-
cations. Although the training data for an LLM is
usually assumed to be public and non-private, the
demonstration pairs in in-context learning for the
downstream task may contain private information
about individual users and are often considered to
be sensitive. After Samsung leaked private data by
using the LLM ChatGPT (Mitchell, 2023) and Italy
banned the use of ChatGPT due to the concern
about the exposure of personal information, it be-
comes imminent to study the privacy-preservation
for the LLMs.

In this paper, we propose a locally differentially
private in-context learning (LDP-ICL). Differential
privacy (DP) is now a gold standard of privacy-
preserving which addresses the paradox of learn-
ing nothing about an individual while learning use-
ful information about a population (Dwork et al.,
2006). There are two kinds of DP models: one is
the central model and the other is the local model
(Kasiviswanathan et al., 2011; Duchi et al., 2013;
Warner, 1965). In the central model, the original
private data are aggregated by the curator and
then are perturbed by a DP mechanism before
publishing. On the other hand, in the local model,
the private data of each individual get random-
ized locally according to a DP mechanism and
then are aggregated by the curator. The main dif-
ference between these two models is that the lo-
cal model treats the data curator untrusted while

the central model believes in the curator. In the
in-context learning, LLMs are usually the data ag-
gregator and LLMs have been shown to memorize
their training data (Biderman et al., 2023; Carlini
et al., 2019), and their prompt data are vulnera-
ble to membership inference attacks (MIA) (Duan
et al., 2023) and prompt leaking attacks (Perez and
Ribeiro, 2022). In this sense we consider LLMs as
untrusted. Our first contribution is to propose a
locally differentially private mechanism for protect-
ing individuals’ privacy in ICL. In this paper, we
focus on the classification problem, especially the
binary classification. For each input-label pair in
the demonstration set, we consider the input as an
identifier and hence nonsensitive but regard the
label as sensitive (Dinur and Nissim, 2003). We
employ the well-known LDP mechanism k-ary ran-
domized response (k-RR) to perturb each label
and obtain an input-label pair with a noisy label
(Kairouz et al., 2016; Wang et al., 2017). An ad-
versary can query the LLM with xtest prepended
by such a perturbed demonstration set. Due to the
noises in the labels in the demonstration set, the
adversary obtains a corresponding noisy label as
response to the input xtest, from which he cannot
reliably tell the true label of any input in the private
demonstration set. This implies that the privacy in
the labels are protected. The process of such an
LDP-ICL is illustrated in Figure 1.

Our second contribution is to propose a formula
to represent the prediction output probability for
the noisy label of the query in the LDP-ICL (Eq.
(7)) by considering ICL for classification as an im-
plicit gradient-descent based optimization, which
is the dual form of the Transformer attention in
ICL (Irie et al., 2022a; Von Oswald et al., 2023;
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Figure 1: The framework of LDP-ICL: We first sample a few input-label pairs from the original private
database to form the demonstration set. Next we employ the k-ary randomized response mechanism
Qk-RR to perturb the labels and then perform the ICL with a given query xtest prepended by the noisy
demonstration set. At the end, the response is returned to the adversary.

Dai et al., 2022). From this formula, we obtain
the trade-off between privacy-preservation and util-
ity, which is measured by the accuracy rate of
the query answers. When the privacy-preservation
gets stronger, i.e., ϵ in k-RR gets smaller, the ac-
curacy becomes smaller. Moreover, we run exper-
iments on several datasets for the classification
task and demonstrate the trade-off effects (Figure
3). In order to support our understanding of LDP-
ICL, we apply it to a touch-stone LDP problem: the
discrete distribution estimation problem (Kairouz
et al., 2016; Wang et al., 2017). We design an
algorithm with LDP-ICL to perform distribution es-
timation of sensitive labels in the original private
database (Algorithm 2) and compare the results
with the classic Warner’s mechanism for the same
task (Warner, 1965). Our results show that our al-
gorithm performs better than Warner’s mechanism
in the privacy-utility trade-off for the high-privacy
region.

The rest of the paper is organized as follows. In
Section 2, we present the definition of in-context
learning. In Section 3, we consider ICL as implicit
gradient-descent optimization which is a dual form
of Transformers attention mechanism and propose
LDP-ICL. And we analyse the trade-off between
privacy and utility in the LDP-ICL and further deal
with the discrete distribution estimation problem
with the analysis. We perform experiments to sup-
port our analysis in Section 4 and conclude with
related works and further problems in Section 5.
Besides, we will add the effects with demonstra-
tion sets of different sizes in the extended version,
which also include some experiment details and
proofs.

2. In-context Learning

In this paper, we focus on in-context learning(ICL)
for classification tasks using large language mod-
els (LLMs) (Brown et al., 2020a). In-context learn-
ing is a paradigm that allows large language mod-
els to learn tasks given only a few examples in
the form of demonstrations, which is an emergent
ability for LLMs. Essentially, it gauges the proba-
bility of a prospective answer based on the pro-
vided demonstrations, leveraging a well-trained
large language model. For a classification task,
given a query input text xtest and a candidate an-
swer set Y = {y1, y2, . . . , yM}, we need to pre-
dict a label ŷtest ∈ Y conditional on n demonstra-
tion examples En = {I, s(x1, y1), . . . , s(xn, yn)} or
En = {s(x1, y1), . . . , s(xn, yn)}, where I is an op-
tional task instruction and s(xi, yi)(1 ≤ i ≤ n) is an
example written in natural language texts accord-
ing to the task. Formally, given a GPT3.5 model
M, we calculate the probability for each answer
yj : PM(yj | En,xtest). Then, the ultimate predicted
label ŷtest is given by the candidate answer with
the highest probability: ŷtest = LLM(En,xtest) =
yargmaxj PM(yj |En,xtest). For example, we could pre-
dict the class label in a binary sentiment classifi-
cation by comparing the prediction probability of
the two labels: 0 and 1. The following are some
characteristics which make ICL an important form
of learning method: without optimizing any param-
eters, ICL directly performs predictions on the pre-
trained language models; by altering the demon-
stration and templates, it is easier to incorporate
human knowledge into LLMs (Wei et al., 2022); ICL
is a training-free learning framework and can be
easily applied to large-scale real-world tasks.

In this paper, we work with ICL for large lan-
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guage models, which can override semantic priors
from pretraining when presented with in-context
demonstrations that contradict priors (Wei et al.,
2023). It performs both task recognition for identify-
ing tasks and task learning for learning new input-
label mappings from demonstrations (Pan et al.,
2023). So its performance improves consistently
with more demonstrations.

3. Locally Differentially Private ICL

This section is our main contribution. First we adapt
some previous results in the literature and obtain a
formula for the prediction probability of the query
answer in ICL by considering ICL as a dual form of
gradient-descent-based optimization. Next we for-
mulate locally differentially private ICL and use the
above prediction formula to analyze the trade-off
between privacy-preservation and prediction accu-
racy. After that, we design an algorithm with LDP-
ICL for the discrete distribution estimation problem
and compare with the standard Warner’s mecha-
nism (Warner, 1965).

3.1. In-context Learning by Gradient
Descent

Mathematically, let W 0,∆W ∈ RN×M be the
initialized weight and update matrix for a given
classification task, respectively, where update
is performed across few demonstrations: En =
{(xi,yi)}ni=1 comprising input representations
xi ∈ RN and corresponding labels yi ∈ Y =
{y1, · · · , yM} ⊆ RM . W 0xtest is the answer of the
zero-shot learning, i.e., ICL with no demonstrations
and hence serves as an important reference. In
this paper, we will fix this formalization. According
to (Irie et al., 2022b), transformer attention has a
dual form of gradient descent. Gradient descent
use back-propagation algorithm to calculate ∆W ,
by summing the outer products of {xi}ni=1 with
their corresponding error signals ei ∈ RN×M

∆W =

n∑
i=1

ei ⊗ xi =

n∑
i=1

eix
T
i (1)

Then, given a specific query xtest, we obtain its
prediction

ŷtest = (W 0 +∆W )xtest (2)

Combining (1) and (2), we derive the dual form
of gradient decent

ŷtest = W 0xtest +

n∑
i=1

eix
T
i xtest

= W 0xtest +

n∑
i=1

ei
(
xT
i xtest

)
= W 0xtest + LinearAttn (E,X,xtest)

where Linear Attention operation is performed over
error signal matrix E, demonstration set X and
query xtest representing values, keys and query,
respectively.

We now illustrate that our ICL for classifica-
tion tasks can be realized through self-attention
mechanism followed by an activation function
such as softmax or sigmoid, also interpretable
as an implicit gradient descent step on the cross-
entropy(CE) loss. For simplicity and illustration,
we focus on binary classification, where the 2-
dimensional one-hot label vector can be treated
as a real number in {0, 1}. Given demonstrations:
En = {(xi, yi)}ni=1, yi ∈ {0, 1}, the binary CE loss
measures the dissimilarity between the predicted
probability with the true binary labels

L (W ) =

n∑
i=1

[yi ln [σ (Wxi)] + (1− yi) ln [1− σ (Wxi)]]

where σ(z) ≜ 1
1+e−z denotes sigmoid function

and W ∈ RN is weight matrix. Applying a single
gradient descent iteration to the loss function L
with learning rate η yields the weight change

∆W = −η∇WL (W ) = −η
n∑

i=1

(σ (Wxi)− yi)xi
T

(3)

Let p̂test be the prediction probability of the true
label for the query xtext in the zero-shot learning.
Consequently, this alteration in weights will result
in an update in the prediction p̂test for query xtest(

xtest

p̂test

)
=

(
xtest

σ (W 0xtest)

)
←
(

xtest

σ ((W 0 +∆W )xtest)

)
=

(
xtest

σ (W 0xtest +∆Wxtest)

)
(4)

Combining (3) and (4), we rewrite the updated
prediction as

p̂(u)
test ≜ σ (W 0xtest +∆Wxtest)

= σ

(
W 0xtest − η

n∑
i=1

(σ (W 0xi)− yi)xi
T · xtest

)
(5)

Note that the gradient-descent step is performed
on the inner transformer attention mechanism.
Following (Zhmoginov et al., 2022), self-attention
mechanism can emulate gradient descent on a
classification task:

Proposition 3.1 Given previous token: En =
{(xi, yi)}ni=1, we can construct key, query and
value matrices Wk, Wq, Wv as well as the projec-
tion matrix P such that a 1-head linear attention
operation on the matrix X := [En,xtest] followed by
sigmoid(or softmax) yields the same results p̂

(u)
test

as induced by gradient descent

p̂
(u)
test = σ(W 0xtest+P LinearAttn(WvX,WkX,WqX))
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Proof. For simplicity, we don’t specify the sizes of
different matrices. The context will determine the
sizes.

We define matrix P and operator σ− by

P = ηI, and σ−(

[
W 0xi

yi

]
) =

[
0

σ(W 0xi)− yi

]
where I is the identity matrix. Note that σ− is

just a sigmoid function followed by a subtraction.
Define

WK = WQ =

[
I 0
0 0

]
,W V =

[
W 0 0
0 I

]
Consider

P =

n∑
i=1

[
σ−

([
W 0 0
0 I

] [
xi

yi

])
⊗

([
I 0
0 0

] [
xi

yi

])]
·
([

I 0
0 0

] [
xtest
ptest

])
We can compute the above expression and

obtain that it is equal to η
∑n

i=1(σ(W 0xi) −
yi))xi

Txtest, which is just −∆Wxtest. Then the ma-
trices W v,W k and W q can be constructed from
σ− and the above matrices W V , WK and WQ

respectively.
QED

This proposition can explain well why the per-
formance of ICL for classification improves with
more demonstrations with true labels. We see from
the formula Eq. (5) that any demonstration with
true label will increase the prediction probability of
the query xtest and any exemplary with false label
will decrease the prediction probability. For the bi-
nary classification, when xT

i xtest > 0 and yi = 1,
then (σ (W 0xi)− yi)xi

T ·xtest) < 0. Since σ is an
increasing function, the demonstration (xi, yi) con-
tribute to increase the prediction probability. Other
cases can be analyzed similarly. This may explain
well the emergent ability of task learning of the
LLMs, especially the increasing ability of the in-
context learning with more exemplaries with true
labels.

In the following, we will use Eq. (5) to formulate
our following framework for ICL with local differen-
tial privacy.

3.2. Locally Differentially Private ICL

Here we describe a threat model and emphasize
the importance of local differential privacy in the
preservation of individual privacy. In this model,
an organization owns a fully private database for
some specific task (for example, presidential vot-
ing data, the school students’ health records) and
hosts large language models (LLMs) via an API

endpoint, allowing users to query the LLM for an-
swers based on the private data. Sometimes, we
assume that LLMs are frozen without any update of
parameters (Panda et al., 2023; Duan et al., 2023).
We know that, in this scenario, privacy leakage oc-
curs under a canonical private attack called mem-
bership inference attack (MIA) which assesses
whether a data point is used in the prompts ap-
pended to the inputs of a trained LLM (Duan et al.,
2023). The above formula Eq. (5) explains well
the membership inference attack. Given a query
q = (xtest, ?), an adversary tries to distinguish
whether it is within an demonstration set En =
{(x1, y1), · · · , (xn, yn)}. Without loss of general-
ity, we assume that xtest = x1 ∈ Xn where Xn =
{x : (x, y) ∈ En for some y}, i.e., xtest is within the
demonstration set En. Let E ′n := En \ {(x1, y1)} ∪
{(x′, y′)} where (x′, y′) ̸∈ En. In particular, Since
xtest ̸= x′, the similarity xT

testxtest is usually much
bigger than the similarity xT

testx
′. It follows from

Eq. (5) that P (ytest|En,xtest) > P (ytest|E ′n,xtest). In
other words, the prediction probability of the an-
swer ytest to the query xtest in the in-context learn-
ing with the demonstration set En should be larger
than the prediction of the answer to the same
query with the demonstration set E ′n. So the ad-
versary may easily use the query xtest to distin-
guish En and E ′n especially when n is small, and
hence distinguish between membership and non-
membership. However, when n gets larger (say
32), the difference between these two probabil-
ities P (ytest|En,xtest) and P (ytest|E ′n,xtest) is rela-
tively very small. Then it is not easy to distinguish
between membership and non-membership.

Moreover, LLMs are shown to memorize individ-
ual data from the original training data and to retain
users’ data from smaller private datasets used to
fine-tune them for downstream tasks (Mireshghal-
lah et al., 2022; Zhang et al., 2021; Ippolito et al.,
2022; McCoy et al., 2023). If prompts contain sen-
sitive information, the LLM might expose privacy
during queries as in Samsung privacy leakage
(Mitchell, 2023; Duan et al., 2023). In this case,
we may regard LLMs as an untrusted aggregator
in in-context learning.

Our goal is to employ LLMs to provide accurate
answers to different queries from users but protect
the privacy of individual data in the database. In
this paper, we focus on the scenarios where the
LLMs are untrusted in privacy and the labels in
in-context learning are sensitive information. We
employ local differential privacy for these settings.
Let A be the private input alphabet set and O be a
finite output alphabet set.

Definition 3.2 A randomized mechanism Q from A
to O is called ϵ-locally differentially private if, for any
two inputs a and a′, and any output event O ⊆ O, the
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following inequalities holds

Q(O|a) ≤ eϵQ(O|a′) (6)

◁

It formulates the privacy requirement that, by ob-
serving the same outcome O, an adversary cannot
reliably distinguish whether the conditioned input
is a or a′. So the privacy in the input alphabet is
preserved. When the privacy index ϵ is smaller, it
is more difficult for the adversary to tell the two
inputs apart and hence the privacy-preserving is
better. Differential privacy (central or local) satis-
fies two important properties that are crucial for the
practical uses of DP mechanisms. The first one is
called composition. Multiple DP mechanisms can
be adaptively composed and applied to the same
dataset. The second is called postprocessing. If a
mechanism is differentially private, then any post-
processing applied to the output of that mechanism
is also differentially private.

In particular, we use the k-ary randomized re-
sponse mechanism (k-RR for short) to protect the
privacy with labels (Kairouz et al., 2016; Wang
et al., 2017). Let Y = {y1, · · · , yM} be the label
set and En := {(x1, y1), · · · , (xn, yn)} be the set
of demonstration examples where y1, · · · , yn ∈ Y.
The k-ary randomized response on the label set
Y is a randomized mechanism which maps Y
stochastically to itself as follows:

Qk-RR(y
′|y) = 1

M − 1 + eϵ

{
eϵ if y′ = y,
1 if y′ ̸= y.

Note that here k = M . In En, yi is considered
to be the true label of the input xi (1 ≤ i ≤ n).
If we apply the k-RR mechanism Qk-RR to
protect the privacy in labels, we obtain the
perturbed demonstration set Qk-RR(En) =
{(x1, Qk-RR(y1)), · · · , (xn, Qk-RR(yn)} where
Qk-RR(yi)(1 ≤ i ≤ n) is a perturbation of the true
label yi. When k = 2, the k-RR mechanism is just
the well-known Warner’s mechanism. In this paper,
since we mainly focus on the binary classification
problem in in-context learning, we use Warner’s
mechanism to protect the privacy in labels. For
simplcity, we denote Y = {0, 1}. The obfuscation
from Warner’s mechanism is illustrated in Figure 2.

Figure 2: Obfuscation in labels, where p = eϵ

eϵ+1
.

Fix the demonstration set En :=
{(x1, y1), · · · , (xn, yn)}. We apply the ϵ-LDP
k-RR to En and obtain the perturbed demonstra-
tion set Qk-RR(En) for the following ICL. For any

given query xtest, we perform the ICL by querying
the LLM GPT3.5 with the demonstration set
Qk-RR(En). From the above analysis, we obtain the
prediction probability of the true label ytest for the
query xtest as follows:

P (ytest|Qk-RR(En),xtest)

= σ(W0xtest − η

n∑
i=1

(σ(W0xi)−Qk-RR(yi))xi
Txtest)

(7)

The privacy of the labels is preserved from
both the untrusted LLMs and the observers
of the query answers. By abuse of notion,
we use Q

(+xtest)
k-RR (En) for LLM(Qk-RR(En),xtest) =

argmaxl∈{0,1} P (ŷtest = l|Qk-RR(En),xtest) to em-
phasize that the input of the randomized algorithm
Q

(+xtest)
k-RR is En. The privacy of the true labels in

the private set En is preserved by the randomized
mechanism Qk-RR. Indeed, given a prediction out-
put probability for the label 1, the untrusted LLMs
cannot reliably tell in the perturbed demonstration
set Qk-RR(En) which one of 0 and 1 is the true label
of the input xi(1 ≤ i ≤ n). For example, although
we may know that (x, 0) is in Qk-RR(En), the LLM
cannot be certain of the true label of x in the pri-
vate demonstration set En because (x, 0) can be
the output of both (x, 0) and (x, 1) under the ran-
domized mechanism Qk-RR (Figure 2). Let E−n be
En\{(x1, y1)}∪{(x1, 1−y1)}. In other words, E−n is
obtained from En by flipping the label of the first ele-
ment. For any label l ∈ {0, 1}, e−ϵP (Q

(+xtest)
k-RR (En) =

l) ≤ P (Q
(+xtest)
k-RR (E−n ) = l) ≤ eϵP (Q

(+xtest)
k-RR (En) = l).

In this sense, the privacy in the true label is pre-
served by our Qk-RR against any observer of the
query outcomes.

We propose LDP-ICL (Algorithm 1), a new
framework for protecting private in-context learning
demonstration examples. We randomly sample n
demonstration examples from the private dataset
D, perturb their labels, and then send these per-
turbed samples concatenated with the query to a
LLM to predict the answer. The algorithm is illus-
trated in Figure 1.

Algorithm 1: LDP-ICL

Input: Private data D, query q, model LLM, pri-
vacy budget ϵ, number of demonstration exam-
ples n.

Output: Model prediction O(q)
1: Subsample of size n from D and obtain En
2: Perturb En using k-RR and obtain Qk-RR(En)
3: Concatenate query and form I(q) =

Qk-RR(En) ∪ q
4: Obtain model output O(q) = LLM(I(q))

There is a trade-off between the privacy and util-
ity in LDP-ICL, which is characterized by the above
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formula (Eq. (7)). From this formula, we can theoret-
ically compute the expected prediction probability
of Q(+xtest)

k-RR (En) and its variance. In the private En,
when more (true) labels yi are flipped, the terms
σ(W0xi)− yi will flip the signs and hence the pre-
diction output probabilities will decrease. When all
the labels are flipped, the probability is the smallest.
This also implies that, when ϵ in the randomization
mechanism Qk-RR gets close to 0, the accuracy
rate will decrease with the output probability in ex-
pectation. We run some experiments on several
datasets with different ϵ. The results show a trade-
off between the privacy index ϵ and the prediction
accuracy. If we want a better privacy-preservation
for the sensitive labels, then ϵ must get smaller
and hence the prediction accuracy decreases. The
results are illustrated in Figure 3. The privacy cost
accumulates with more demonstrations and more
queries according to the composition property of
DP.

3.3. Discrete Distribution Estimation

Now we apply the above LDP-ICL to a touch-
stone problem in DP: discrete distribution estima-
tion problem. Assume that D is a given private
database for some specific classification task (for
example, the 2016 US Presidential Election Data)
where each individual classification label is sen-
sitive. Now we want to estimate the discrete dis-
tribution of different labels, i.e., the proportion of
data points with each label in the whole database.
For simplicity and illustration, we choose the bi-
nary classification. Without loss of generality, let
the label set be {0, 1}, π0 and π1 be their unknown
prior proportion in the database. Now we select a
finite set Dn of input-label pairs from the database
D whose label distribution is the same as that of
the original dataset D. Let XDn := {x : (x, y) ∈
Dn for some y}. Now we use the above LDP-ICL
to perturb the answer to each query from XDn

. We
choose a demonstration set for each query and per-
turb the labels in the demonstration set with LDP
mechanism. With this noisy demonstration set for
in-context learning, the answer of each query is
also perturbed with a certain associated probability
without affecting the prediction accuracy much. The
noisy answer is regarded as an privacy-preserving
estimation of the true label. By collecting the noisy
answers to all queries from XDn

, we can estimate
π1 with local differential privacy.

The crux of this approach is to choose the
demonstration sets. One possible solution is to
choose a single set of input-label pairs from D
and its perturbed version as the demonstration
set for all queries from XDn

. The problem with
this approach is that each perturbed label in the
demonstration set would expose to the untrusted

LLM many times (precisely |Dn| times) so that the
adversary may estimate correctly the true labels
in the demonstration set via LLM. Our solution in-
stead is to first partition D into different subsets
of input-label pairs of relatively small size and try
to pick up a different subset for each query. The
perturbed version of the subset is chosen as the
demonstration set for the query. In this way, we can
avoid the possibility that a perturbed label might
expose to LLM many times and hence we can esti-
mate the proportion π1 without leaking information
about the true labels much. Our approach is de-
tailed in the following Algorithm 2. Specifically, in
line 1, we perform a random sampling of size R
from D without replacement to generate the query
set. Notably, it is crucial to maintain a consistent
proportion of samples of labels 0 and 1 during
the sampling process. In line 2, we split the orig-
inal dataset into l parts of demonstrations, each
containing n examples, where l = |D|/n. Finally,
we obtain predicted answers for each query and
calculate estimated positive rate

P̂t ≜

R∑
i=1

1
{
O(qi) = 1

}
R

(8)

Algorithm 2: LDP-ICL for distribution estimation

Input: Private data D, model LLM, privacy bud-
get ϵ, number of demonstration examples n,
number of round(queries) R

Output: Proportion estimation
1: Subsample of size R from D, obtain
{(xi

test, y
i
test)}Ri=1 and construct queries

{qi}Ri=1 = {(xi
test, ?)}Ri=1

2: Partition D into classes with size n:
D1

n, . . . ,Dl
n ← D

3: for i ∈ {1, . . . , R} do
4: Perturb Di

n using k-RR and obtain
Qk-RR(Di

n)
5: Concatenate corresponding query and

form I(qi) = Qk-RR(Di
n) ∪ qi

6: Obtain i-th model output O(qi) =
LLM(I(qi))

7: end for
8: Calculate estimated rate (Eq.(8))

For each query xi
test, since (xi

test, y
i
test) ∈ D, yitest

can be regarded as the true label of xi
test. So

LLM(Qk-RR(Di
n),x

i
test) is a perturbation of the true

label yitest according to the LDP-ICL. Now we com-
pare this in-context-learning approach with the well-
known Warner’s method on the same distribution
estimation problem. According to Warner’s method,
for each sample (xi

test, y
i
test), we flip the true la-

bel yitest according to Q2-RR (Warner’s mechanism).
By collecting the noisy labels, we empirically es-
timate the proportion of the labels in the original
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private database D. The main difference between
these two methods is that the LDP-ICL approach
perturbs directly the labels in the demonstration
set but the Warner’s method add noise directly to
the queries. Generally, the LDP-ICL approach per-
forms better in the high-privacy region ( when ϵ is
relatively small) because the semantic prior of the
LLM add some extra power to the estimation. The
experimental results are shown in Figure 4.

4. Experiments

We provide empirical results to demonstrate the
effectiveness of our proposed LDP-ICL under two
scenarios, classification(Alg.1) and distribution es-
timation(Alg.2).

4.1. Experimental Setup

4.1.1. Datasets and Model

We evaluate LDP-ICL using four binary classifi-
cation datasets, all obtained from Hugging Face.
SST-2(Socher et al., 2013) and Subj(Pang and Lee,
2004) are for sentiment classification; Ethos(Mollas
et al., 2022) is a hate speech detection dataset;
and SMS_Spam(Almeida and Hidalgo, 2012) is
used for recognizing spam text messages. Dataset
size details are provided in Table 1. The training
set of each task is considered as private data. Test
samples are randomly selected from the validation
set in the classification scenario, while they are
drawn from the training set in label distribution es-
timation scenario. We choose the GPT-3.5-turbo
model for all tasks which demonstrates strong per-
formance across various natural language tasks
while offering a balanced combination of perfor-
mance and cost-effectiveness.

Task Training dataset Validation dataset
SST-2 67349 872
Subj 8000 2000
Ethos 500(998) 498(-)

SMS_Spam 4070(5570) 1500(-)

Table 1: The dataset size for each task. In the clas-
sification scenario, we partitioned the initial Ethos
dataset (consisting of 998 training examples) and
SMS_Spam dataset (comprising 5570 training ex-
amples) into separate training and validation sets.

4.1.2. Baselines

In the classification scenario, we compare LDP-ICL
with the following baselines:

• Non-private ICL, i.e., ϵ = ∞ in LDP-ICL, is
equivalent to a non-private n-shot prediction.

• Zero-Shot Learning (ZSL) is the same as
one-shot learning except that no demonstra-
tions are allowed, and the model is only given
a natural language instruction describing the
task. ZSL performance enhances with larger
model sizes, demonstrating commendable out-
comes in GPT-3 175B(Brown et al., 2020b).

• Flipped-Label ICL(FL-ICL) is a pattern that
flips all class labels in the exemplars, indicat-
ing a disagreement between semantic prior
knowledge and input-label mappings. The per-
formance accuracy is inversely proportional to
the ability to learn input–label mappings and
override semantic priors (Wei et al., 2023).

For distribution estimation, we compare LDP-ICL
with simple Coin Flipping(CF) (Warner’s) method
that randomly flips the true lables in test queries.

4.1.3. Implementation Details

In our experiments, we employ a uniform template
for structuring examples across all tasks. Addition-
ally, to mitigate the influence of sensitive settings
on ICL performance, we ensure that our demon-
stration examples meet some constraints. Specific
templates for each task and constraints are pro-
vided in the Appendix B and C. By default, we
set the number of demonstrations to n = 32. For
classifying unknown test queries, we first tune the
random seed for each task to find a set of demon-
stration examples that achieves the best valida-
tion performance based on ICL. Then, the same
ordered demonstration set is used for fair LDP-
ICL comparisons across various discrete budget
levels(ϵ = {0, 0.5, 1, 2, 3, 8,∞}). Finally, we utilize
evaluation metric to assess model prediction ac-
curacy on a subset of 150 test examples from the
validation set. Evaluation performance is averaged
over 6 runs under the same parameter configu-
ration. In the distribution estimation scenario, we
selected number of queries separately R = 1000
for SST-2 dataset and R = 500 for Ethos dataset.

4.1.4. Evaluation Metrics

In the classification scenario, we gauge our
method’s performance by measuring the accuracy
between predicted answers with the true ones.
For estimating label distribution, we calculate esti-
mated positive rate using Eq.(8).

4.2. Experimental Results

This part consists of LDP-ICLs for classification
and distribution estimation.
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Figure 3: Classification scenario: Test performance on (a)SST-2, (b)Subj, (c)Ethos and (d) SMS_Spam
.

4.2.1. LDP-ICL for classification

Figure 3 shows the performance of our LDP-ICL
as well as three baselines in all tasks. As can
be seen, the consistently lowest accuracy of the
baseline FL-ICL method, falling below 50% for
all datasets(except Ethos), suggests vulnerability
to perturbed class labels. This vulnerability is at-
tributed to GPT-3.5-turbo’s emergent task learning
capability, enabling it to learn input-label mapping
that override established semantic priors(Wei et al.,
2023). Comparing against two additional baselines,
namely the lower bound ZSL and the upper bound
ICL, LDP-ICL demonstrates significant enhance-
ments over ZSL and achieves competitive results
similar to non-private ICL when ϵ ≥ 3. This obser-
vation underscores the beneficial impact of the op-
timization performed by LDP-ICL on downstream
tasks. Furthermore, it’s worth highlighting that with
ϵ ≥ 8, the privacy protection becomes almost neg-
ligible, leading to indistinguishable performance
between LDP-ICL and the non-private ICL setting.
Overall, reducing budgets ϵ strengthens privacy as-
surance in LDP-ICL but inevitably hampers down-
stream task performance. Specifically, at ϵ = 0,
half of the demonstration example class labels are
inverted, yielding performance on par with ZSL in
expectation. Conversely, at ϵ =∞, there is no pri-
vacy safeguard and our LDP-ICL degrades to ICL.
A more detailed analysis of those tasks reveals that
to attain or approach non-private ICL performance,
a slightly different budget value is needed. This
implies that downstream manufacturers should se-
lect the appropriate privacy protection parameter ϵ
based on task-specific needs without losing much
utility.

4.2.2. LDP-ICL for distribution estimation

Figure 4 presents a comparison between the per-
formance of LDP-ICL and CF. The results reveal
that our LDP-ICL estimation aligns more closely

with the true proportion and maintains a higher
level of stability especially in cases of smaller ϵ,
demonstrating better utility. Since we typically pre-
fer smaller budget, which indicates stronger privacy,
LDP-ICL outperforms CF in terms of utility.

Figure 4: Distribution estimation scenario: Esti-
mation results on (a)SST-2 and (b)Ethos.

.

Our initial analysis indicates that for a given pri-
vacy parameter value, a higher quantity of exam-
ples leads to a higher count of flipped examples,
which implies a more powerful task-learning ability
and hence a less accurate prediction rate.

4.2.3. Comparison Experiments

We have performed comparison experiments with
other three representative privacy-preserving meth-
ods: DP-SGD, DP-ICL and PromptPATE and their
comparison results are listed in Table 2. The re-
sults have demonstrated that locally differentially
private ICL also can reach the utility level of other
privacy-preserving methods.

4.2.4. Ablation study

Our intuition for choosing demonstration examples
was to assess whether a model can learn input-
label mappings and override semantic priors. A
performance below 50% accuracy in FL-ICL indi-
cates the model’s ability to achieve this(Wei et al.,
2023).



10694

Model Method ϵ = 3 ϵ = 8 ϵ =∞

RoBERTa
-large

DP-SGD 93.04 93.81 96.2
DP-SGD 94.6 94.7 95.5
DP-SGD 94.23 94.87 96.2

RoBERTa
-base promptPATE 86.35 92.32 93.23

GPT-3
Babbage

DP-ICL(n = 4) 95.8 95.92 96.05
DP-ICL(n = 16) 91.64 96.32 96.13

GPT-3.5
Turbo

LDP-ICL(n = 16) 94.45 94.9 95.77
LDP-ICL(n = 32) 94.11 94.12 94.12

Table 2: Performance comparison of DP-SGD,
promptPATE, DP-ICL and LDP-ICL under various
privacy budgets.

Dataset Number of demonstration examples
4 8 16 32 64

SST-2 55 44 33 31 32
Subj 93 78 64 38 39

Table 3: Performance of FL-ICL over number of
demonstration examples on SST-2 and Subj.

Table 3 presents the performance for the selec-
tion of n = 32 demonstration examples, which indi-
cates that the accuracy rate falls below 50% and
hence show LLM’s capability to learn input-label
mappings and override semantic priors. Addition-
ally, we carried out ablation studies to analyze how
varying the quantity of demonstration examples af-
fects the sentiment analysis performance for the
SST-2 task. The analysis was conducted under
three demonstration number cases: n = 16, 32, 64.

As depicted in Figure 5, we find that these three
curves exhibit an identical trend of change regard-
less of the variation in example quantities. A varia-
tion is observed when the privacy parameter falls
within the range of 0 to 0.5: with an increase in
the number of examples, accuracy diminishes. Our
initial analysis indicates that for a given privacy
parameter value, a higher quantity of examples
leads to a higher count of flipped examples, which
implies a more powerful task-learning ability and
hence a less accurate prediction rate. Drawing on
the preceding formula (Eq. (5)) in the main text),
the heightened presence of flipped examples cor-
responds to a more pronounced influence on the
accuracy.

Figure 5: Performance across numbers of the ex-
amples

5. Related Works and Conclusion

In this paper, following the tradition in DP (Dinur
and Nissim, 2003) literature, we treat the inputs in
the input-label pairs as identifiers and hence non-
sensitive but regard only the labels as sensitive.
In this setting, we are the first to study the locally
differentially private ICL. Our privacy-preserving of
labels is different from the so-called label differen-
tial privacy (Ghazi et al., 2021), which is essentially
central DP. There is a rich literature on privacy-
preserving ICL. Here we only discuss some closely
related to our work. There are some works which
work on the privacy-preservation for ICL but mainly
focus on the central DP that assume that the cu-
rator is trusted (Duan et al., 2023; Panda et al.,
2023). In some sense, our approach is similar to
PromptPATE in (Duan et al., 2023) that both use
noisy prompts prepended to a query to perform in-
context learning. The main difference is the method
to add noises. In PromptPATE, the noise is added
to the ensembled result in a central way while in
our LDP-ICL, we add noise locally to the labels in
prompts. In (Yu et al., 2021; Li et al., 2021), they
deal with the DP fine tuning of the parameters of
the LLMs. In contrast, we regard LLMs frozen and
the in-context learning proceeds without modifica-
tions of the parameters. In (Li et al., 2023), they
use text-to-text privatization while our work focuses
on only the privatization of the labels. We adapt the
ideas of ICL as Transformer attention mechanism
by a dual implicit gradient descent optimization
from (Dai et al., 2022; Von Oswald et al., 2023; Irie
et al., 2022a). But those papers mainly deal with
linear regression problem while we work on the
classification problem. Proposition 1 in our paper is
based on Appendix A in (Zhmoginov et al., 2022).
It this paper, our experiments are run on some
common datasets for classification which are not
privacy-sensitive (probably Ethos is an exception).
In the future, we will try a privacy-sensitive syn-
thetic dataset. In this paper, the perturbation is
on the labels only, which is a quite limited case.
We plan to employ LDP for more general cases of
demonstrations in ICL.

The selection of demonstrations is an important
issue (Zhang et al., 2022; Rubin et al., 2022; Zhao
et al., 2021; Dong et al., 2022) that we have not
addressed yet in this paper. From our formula (Eq.
(7)), we know that a good selection of demonstra-
tions can improve the trade-off between privacy
and utility of LDP-ICL. We would like to find an op-
timal adaptive selection algorithm for our LDP-ICL.
In this paper, we treat only labels as sensitive. We
also will privatize the input sentences or words with
local differential privacy (Du et al., 2023; Li et al.,
2023; Yue et al., 2021)



10695

6. References

Tiago Almeida and Jos Hidalgo. 2012. SMS Spam
Collection. UCI Machine Learning Repository.
DOI: https://doi.org/10.24432/C5CC84.

Stella Biderman, USVSN Sai Prashanth, Lintang
Sutawika, Hailey Schoelkopf, Quentin Anthony,
Shivanshu Purohit, and Edward Raf. 2023. Emer-
gent and predictable memorization in large lan-
guage models. arXiv preprint arXiv:2304.11158.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sas-
try, Amanda Askell, et al. 2020a. Language mod-
els are few-shot learners. Advances in neural
information processing systems, 33:1877–1901.

Tom B. Brown, Benjamin Mann, Nick Ryder,
Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish
Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel M. Ziegler,
Jeffrey Wu, Clemens Winter, Christopher Hesse,
Mark Chen, Eric Sigler, Mateusz Litwin, Scott
Gray, Benjamin Chess, Jack Clark, Christopher
Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. 2020b. Lan-
guage models are few-shot learners. CoRR,
abs/2005.14165.

Nicholas Carlini, Chang Liu, Úlfar Erlingsson,
Jernej Kos, and Dawn Song. 2019. The secret
sharer: Evaluating and testing unintended mem-
orization in neural networks. In 28th USENIX Se-
curity Symposium (USENIX Security 19), pages
267–284.

Damai Dai, Yutao Sun, Li Dong, Yaru Hao, Zhi-
fang Sui, and Furu Wei. 2022. Why can gpt
learn in-context? language models secretly per-
form gradient descent as meta optimizers. arXiv
preprint arXiv:2212.10559.

Irit Dinur and Kobbi Nissim. 2003. Revealing infor-
mation while preserving privacy. In Proceedings
of the twenty-second ACM SIGMOD-SIGACT-
SIGART symposium on Principles of database
systems, pages 202–210.

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiy-
ong Wu, Baobao Chang, Xu Sun, Jingjing Xu,
and Zhifang Sui. 2022. A survey for in-context
learning. arXiv preprint arXiv:2301.00234.

Minxin Du, Xiang Yue, Sherman SM Chow, and
Huan Sun. 2023. Sanitizing sentence embed-
dings (and labels) for local differential privacy. In

Proceedings of the ACM Web Conference 2023,
pages 2349–2359.

Haonan Duan, Adam Dziedzic, Nicolas Paper-
not, and Franziska Boenisch. 2023. Flocks of
stochastic parrots: Differentially private prompt
learning for large language models. arXiv
preprint arXiv:2305.15594.

John C Duchi, Michael I Jordan, and Martin J Wain-
wright. 2013. Local privacy and statistical min-
imax rates. In 2013 IEEE 54th Annual Sym-
posium on Foundations of Computer Science,
pages 429–438. IEEE.

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and
Adam Smith. 2006. Calibrating noise to sensitiv-
ity in private data analysis. In Theory of Cryptog-
raphy: Third Theory of Cryptography Conference,
TCC 2006, New York, NY, USA, March 4-7, 2006.
Proceedings 3, pages 265–284. Springer.

Badih Ghazi, Noah Golowich, Ravi Kumar, Pasin
Manurangsi, and Chiyuan Zhang. 2021. Deep
learning with label differential privacy. Ad-
vances in neural information processing sys-
tems, 34:27131–27145.

Daphne Ippolito, Florian Tramèr, Milad Nasr,
Chiyuan Zhang, Matthew Jagielski, Kather-
ine Lee, Christopher A Choquette-Choo, and
Nicholas Carlini. 2022. Preventing verba-
tim memorization in language models gives
a false sense of privacy. arXiv preprint
arXiv:2210.17546.

Kazuki Irie, Róbert Csordás, and Jürgen Schmid-
huber. 2022a. The dual form of neural networks
revisited: Connecting test time predictions to
training patterns via spotlights of attention. In
International Conference on Machine Learning,
pages 9639–9659. PMLR.

Kazuki Irie, Róbert Csordás, and Jürgen Schmidhu-
ber. 2022b. The dual form of neural networks re-
visited: Connecting test time predictions to train-
ing patterns via spotlights of attention. In Pro-
ceedings of the 39th International Conference on
Machine Learning, volume 162 of Proceedings
of Machine Learning Research, pages 9639–
9659. PMLR.

Peter Kairouz, Keith Bonawitz, and Daniel Ramage.
2016. Discrete distribution estimation under local
privacy. In International Conference on Machine
Learning, pages 2436–2444. PMLR.

Shiva Prasad Kasiviswanathan, Homin K Lee,
Kobbi Nissim, Sofya Raskhodnikova, and Adam
Smith. 2011. What can we learn privately? SIAM
Journal on Computing, 40(3):793–826.

http://arxiv.org/abs/2005.14165
http://arxiv.org/abs/2005.14165
https://proceedings.mlr.press/v162/irie22a.html
https://proceedings.mlr.press/v162/irie22a.html
https://proceedings.mlr.press/v162/irie22a.html


10696

Xuechen Li, Florian Tramer, Percy Liang, and Tat-
sunori Hashimoto. 2021. Large language models
can be strong differentially private learners. In
International Conference on Learning Represen-
tations.

Yansong Li, Zhixing Tan, and Yang Liu. 2023.
Privacy-preserving prompt tuning for large
language model services. arXiv preprint
arXiv:2305.06212.

R Thomas McCoy, Paul Smolensky, Tal Linzen,
Jianfeng Gao, and Asli Celikyilmaz. 2023. How
much do language models copy from their train-
ing data? evaluating linguistic novelty in text gen-
eration using raven. Transactions of the Associ-
ation for Computational Linguistics, 11:652–670.

Fatemehsadat Mireshghallah, Archit Uniyal,
Tianhao Wang, David Evans, and Taylor
Berg-Kirkpatrick. 2022. Memorization in
nlp fine-tuning methods. arXiv preprint
arXiv:2205.12506.

Robin Mitchell. 2023. Samsung fab data leak: How
chatgpt exposed sensitive information. elec-
tropages.

Ioannis Mollas, Zoe Chrysopoulou, Stamatis Kar-
los, and Grigorios Tsoumakas. 2022. ETHOS: a
multi-label hate speech detection dataset. Com-
plex & Intelligent Systems.

Jane Pan, Tianyu Gao, Howard Chen, and Danqi
Chen. 2023. What in-context learning" learns"
in-context: Disentangling task recognition and
task learning. arXiv preprint arXiv:2305.09731.

Ashwinee Panda, Tong Wu, Jiachen T Wang,
and Prateek Mittal. 2023. Differentially pri-
vate in-context learning. arXiv preprint
arXiv:2305.01639.

Bo Pang and Lillian Lee. 2004. A sentimental ed-
ucation: Sentiment analysis using subjectivity
summarization based on minimum cuts. In Pro-
ceedings of the 42nd Annual Meeting of the As-
sociation for Computational Linguistics (ACL-04),
pages 271–278, Barcelona, Spain.

Fábio Perez and Ian Ribeiro. 2022. Ignore previous
prompt: Attack techniques for language models.
In NeurIPS ML Safety Workshop.

Ohad Rubin, Jonathan Herzig, and Jonathan Be-
rant. 2022. Learning to retrieve prompts for in-
context learning. In Proceedings of the 2022
Conference of the North American Chapter of
the Association for Computational Linguistics:
Human Language Technologies, pages 2655–
2671.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Y. Ng,
and Christopher Potts. 2013. Recursive deep
models for semantic compositionality over a sen-
timent treebank. In Proceedings of the 2013
Conference on Empirical Methods in Natural
Language Processing, EMNLP 2013, 18-21 Oc-
tober 2013, Grand Hyatt Seattle, Seattle, Wash-
ington, USA, A meeting of SIGDAT, a Special
Interest Group of the ACL, pages 1631–1642.
ACL.

Johannes Von Oswald, Eyvind Niklasson, Ettore
Randazzo, João Sacramento, Alexander Mordv-
intsev, Andrey Zhmoginov, and Max Vladymyrov.
2023. Transformers learn in-context by gradient
descent. In International Conference on Machine
Learning, pages 35151–35174. PMLR.

Tianhao Wang, Jeremiah Blocki, Ninghui Li, and
Somesh Jha. 2017. Locally differentially pri-
vate protocols for frequency estimation. In 26th
USENIX Security Symposium (USENIX Security
17), pages 729–745.

Stanley L Warner. 1965. Randomized response:
A survey technique for eliminating evasive an-
swer bias. Journal of the American Statistical
Association, 60(309):63–69.

Jason Wei, Xuezhi Wang, Dale Schuurmans,
Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le,
Denny Zhou, et al. 2022. Chain-of-thought
prompting elicits reasoning in large language
models. Advances in Neural Information Pro-
cessing Systems, 35:24824–24837.

Jerry Wei, Jason Wei, Yi Tay, Dustin Tran, Albert
Webson, Yifeng Lu, Xinyun Chen, Hanxiao Liu,
Da Huang, Denny Zhou, and Tengyu Ma. 2023.
Larger language models do in-context learning
differently.

Da Yu, Saurabh Naik, Arturs Backurs, Sivakanth
Gopi, Huseyin A Inan, Gautam Kamath, Janard-
han Kulkarni, Yin Tat Lee, Andre Manoel, Lukas
Wutschitz, et al. 2021. Differentially private fine-
tuning of language models. In International Con-
ference on Learning Representations.

Xiang Yue, Minxin Du, Tianhao Wang, Yaliang Li,
Huan Sun, and Sherman SM Chow. 2021. Dif-
ferential privacy for text analytics via natural text
sanitization. arXiv preprint arXiv:2106.01221.

Chiyuan Zhang, Daphne Ippolito, Katherine Lee,
Matthew Jagielski, Florian Tramèr, and Nicholas
Carlini. 2021. Counterfactual memorization
in neural language models. arXiv preprint
arXiv:2112.12938.

https://doi.org/10.1007/s40747-021-00608-2
https://doi.org/10.1007/s40747-021-00608-2
https://doi.org/10.3115/1218955.1218990
https://doi.org/10.3115/1218955.1218990
https://doi.org/10.3115/1218955.1218990
https://aclanthology.org/D13-1170/
https://aclanthology.org/D13-1170/
https://aclanthology.org/D13-1170/
http://arxiv.org/abs/2303.03846
http://arxiv.org/abs/2303.03846


10697

Yiming Zhang, Shi Feng, and Chenhao Tan. 2022.
Active example selection for in-context learning.
In Proceedings of the 2022 Conference on Em-
pirical Methods in Natural Language Processing,
pages 9134–9148.

Zihao Zhao, Eric Wallace, Shi Feng, Dan Klein, and
Sameer Singh. 2021. Calibrate before use: Im-
proving few-shot performance of language mod-
els. In International Conference on Machine
Learning, pages 12697–12706. PMLR.

Andrey Zhmoginov, Mark Sandler, and Maksym
Vladymyrov. 2022. Hypertransformer: Model
generation for supervised and semi-supervised
few-shot learning. In International Conference on
Machine Learning, pages 27075–27098. PMLR.


	Introduction
	In-context Learning
	Locally Differentially Private ICL
	In-context Learning by Gradient Descent
	Locally Differentially Private ICL
	Discrete Distribution Estimation

	Experiments
	Experimental Setup
	Datasets and Model
	Baselines
	Implementation Details
	Evaluation Metrics

	Experimental Results
	LDP-ICL for classification
	LDP-ICL for distribution estimation
	Comparison Experiments
	Ablation study


	Related Works and Conclusion
	References

