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Abstract
Data annotation is expensive in Task-Oriented Dialogue (TOD) systems. New Intent Discovery (NID) is a task aims to
identify novel intents while retaining the ability to recognize known intents. It is essential for expanding the intent base
of task-based dialogue systems. Previous works relying on external datasets are hardly extendable. Meanwhile, the
effective ones are generally depends on the power of the Large Language Models (LLMs). To address the limitation
of model extensibility and take advantages of LLMs for the NID task, we propose LANID, a framework that leverages
LLM’s zero-shot capability to enhance the performance of a smaller text encoder on the NID task. LANID employs
KNN and DBSCAN algorithms to select appropriate pairs of utterances from the training set. The LLM is then asked
to determine the relationships between them. The collected data are then used to construct finetuning task and the
small text encoder is optimized with a triplet loss. Our experimental results demonstrate the efficacy of the proposed
method on three distinct NID datasets, surpassing all strong baselines in both unsupervised and semi-supervised
settings. Our code can be found in https://github.com/floatSDSDS/LANID.
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1. Introduction

In recent times, advancements in Large Language
Models’ (LLMs) zero-shot capabilities (Heck et al.,
2023) suggest that task-oriented dialogue (TOD)
systems may eventually be replaced by a univer-
sal model. Nevertheless, the current dependence
on third-party LLMs still poses concerns regarding
network communication and data privacy breaches.
Thus, we contend that TOD systems still have a
role to play. These systems rely on comprehend-
ing user input and precisely discerning their re-
quirements while also consistently updating and
maintaining intents for the Natural Language Un-
derstanding (NLU) Module.

Due to the high cost of manual annotation, previ-
ous work has proposed methods to automatically
do New Intents Discovery (NID) from the utter-
ances of conversational systems (Lang et al., 2022;
Zhang et al., 2022; Manik et al., 2021). These
works design novel new learning strategies and
architectures for NID tasks. However, the latter two
methods necessitate the use of external datasets
and knowledge graphs, and it remains unclear
whether they can be effectively employed in partic-
ular domains. Furthermore, the efficacy of these
methods hinges on the potent representational
prowess of the LLM. To improve the NID results,
one potential solution is to improve the LLM itself.
Currently, GPT4 is arguably the most potent LLM
available (OpenAI, 2023), but fine-tuning it with
domain datasets is not feasible due to its closed-
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source nature.
In order to employ the strongest LLM for the NID

task, we design a framework that utilizes LLM’s
impressive zero-shot capability to aid a smaller text
encoder in acquiring utterance representations and
enhancing the in-domain NID outcomes.

The framework is named LANID — LLM-
Assisted New Intent Discovery. The LANID method
comprises of several key phases. Initially, we utilize
KNN and DBSCAN algorithms to select appropri-
ate pairs of utterances from the training dataset.
This selection process takes into account both lo-
cal and global distributions to accurately reflect
the overall distribution of the domain data. Subse-
quently, we employ LLM’s zero-shot functionality
to determine the relationships between the chosen
utterance pairs. Once the relationship labels are
obtained, we develop a triplet margin loss to guide
the training of the small text encoder, aiming to re-
fine its representation of the domain data. Through
multiple iterations of these steps, we leverage the
small text encoder to extract representations that
enable us to perform the NID task through cluster-
ing. Our experimental design encompasses both
unsupervised and semi-supervised settings, and
we demonstrate the effectiveness of the LANID
method on three distinct NID datasets, where it
outperforms all strong baselines.

2. Related Works

The study of New Intent Discovery (NID) is an ac-
tive research area with several types of approaches
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Please differentiate whether they represent the
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A: I want to donate money to Italy.
B: How can I donate to New York city?
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I want to donate money to Italy.
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Figure 1: Illustration of the proposed LANID framework.

proposed. In the early stages of NID research, un-
supervised clustering methods (Shi et al., 2018;
Perkins and Yang, 2019; Chatterjee and Sengupta,
2020) were commonly explored. However, they
cannot utilize the existing labeled data in the sys-
tem and deviate from the practical situation.

To leverage known labels as well as discover
unknown intent, a more proper way is to apply
semi-supervised training scheme (Lin et al., 2020;
Zhang et al., 2021a,b, 2022; Pu et al., 2022). How-
ever, these methods often rely on smaller seman-
tic encoders, such as BERT (Devlin et al., 2018),
which can only provide limited general knowledge
for intent representation. In this paper, we leverage
the powerful semantic understanding capabilities
of large language model to generate auxiliary la-
bels for contrastive training.

3. Problem Formulation

In practice, we often need to mine new intents from
the mass of utterances in a TOD system, which
can be built either from scratch or as an upgrade to
an earlier system. To consider both scenarios, we
follow the prior research (Zhang et al., 2022) and
adopt unsupervised and semi-supervised evalua-
tion settings. We denote the utterance, its intent
label, the set of unseen intents, the set of seen
intents, the training set, and the test set as x, y,
Cu, Ck, Dtrain, and Dtest respectively. In the un-
supervised setting, Dtrain does not contain any
labels, and we aim to group utterances from Dtest

with similar intent into a cluster, each cluster being
a new intent (belongs to Cu). While in the semi-
supervised setting, Dtrain contains both labeled
dataset Dlabeled = {(xi, yi)|yi ∈ Ck} and an unla-
beled dataset Dunlabeled = {xi|y ∈ {Ck, Cu}}, our
goal is to discriminate existing intents from Dtest,
while mining for novel intents in the remaining ut-

terances.

4. Method

Our approach is to use a text encoder to extract
features from utterances and then do clustering
to mine new intents. There are three main steps
at training: 1) selecting the utterance pairs from
Dtrain that represents local and global information
2) requesting LLM to determine the relationship
between the utterance pairs 3) incorporating the
output of the LLM into the triplet margin loss on
which the parameters of the text encoder are up-
dated. The above three steps are repeated until
convergence. After that, we do clustering on Dtest

based on the learned representations. We summa-
rize the process in Figure 1.

4.1. Selecting the Utterance Pairs

Using an off-the-shelf text encoder to extract utter-
ance representations is suboptimal because the
focus on mining new intentions varies across differ-
ent domains. Therefore, we need to quickly adapt
the text encoder to new domains. We propose to
utilize the LLM’s powerful zero-shot capability to
determine the relationship between utterance pairs
in the current domain, allowing us to adjust the text
encoder’s parameters. Selecting appropriate utter-
ance pairs that accurately and comprehensively
represent the data distribution in the new domain
is critical. To this end, we chose to select utterance
pairs from both local and global perspectives.

Selection based on K Nearest Neighbors.
Starting locally, we first find those utterances that
are close to each other (based on the original rep-
resentation) and determine whether the distribution
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Table 1: Hyper-parameter settings. MinPts refers to the minimum number of points within a specified
radius (epsilon) that are required to form a dense region in DBSCAN.

K p nk m kn T #Epoch MinPts
Banking 50 0.1 2 5 2 3 10 4
Stackoverflow 50 0.05 2 8 2 2 10 4
M-CID 50 0.2 2 5 2 3 20 4

Table 2: Performance on unsupervised NID. For each dataset, the best results are marked in bold.
LANID-Near only adopts KNN-based sampling strategy, LANID-DBSCAN adopts only DBSCAN sampling
strategy, and LANID (combined) is a mixture of both strategies.

Banking StackOverflow M-CID
Methods NMI ARI ACC NMI ARI ACC NMI ARI ACC

unsupervised

SAE-KM 60.12 24.00 37.38 48.72 23.36 37.16 51.03 43.51 52.95
SAE-DEC 62.92 25.68 39.35 61.32 21.17 57.09 50.69 44.52 53.07
SAE-DCN 62.94 25.69 39.36 61.34 34.98 57.09 50.69 44.52 53.07
MTP 77.25 47.80 59.12 61.35 45.77 61.90 70.53 45.76 64.76
MTP-CLNN 82.15 57.68 66.88 75.20 63.13 79.20 80.03 67.39 79.94
LANID-Near 83.44 58.28 66.75 79.56 66.67 83.40 80.80 69.86 81.38
LANID-DBSCAN 83.21 58.02 65.78 81.25 72.86 85.30 80.41 68.10 79.08
LANID 84.12 60.40 70.58 81.25 72.96 86.60 82.64 71.36 82.52

among them is reasonable. Specifically, we ran-
domly sample p% utterances from Dtrain. Then, for
each sampled utterance xi, we search for its top-K
nearest neighbors NNear

i using the Euclidean dis-
tance, and we uniformly sample nk(nk < |NNear

i |)
utterances from NNear

i . We denote the nearest-
neighbor set for xi as MNear

i = {(xi, xj)|xj ∈
NNear

i }, where |MNear
i | = nk.

Selection based on Global Density. In general,
it is difficult to divide a data set into exactly a few
categories, and there will always be some outliers.
Also, the distribution of semantics is usually not
uniform, and there are high and low densities of dif-
ferent semantic clusters. We propose a DBSCAN-
based (Ester et al., 1996) sampling approach to
reflect the relationship between globally high and
low-density regions of semantics. Concretely, we
conduct DBSCAN clustering on Dtrain and obtain
a set of core points xc and a set of non-core points
xnc. Then, we randomly sample a subset x

′

nc from
xnc. For each utterance xi in x

′

nc, we search for its
m nearest neighbors in xc, forming a global den-
sity set as MDen

i = {(xi, xj)|xj ∈ NCore
i }, where

NCore
i is the set consisting of the nearest points to

xi in xc.

4.2. LLM Manager

The LLM manager is the other major module in
LANID. It constructs prompts with sampled data
and parse the responses from LLMs.

We construct promopts with three compo-
nents (Pan et al., 2023), namely schema, regu-
lations, and sentence input. The schema compo-
nent aims to prompt LLMs to produce responses
that meet our desired criteria. To identify an op-
timal schema for each dataset, several schemas

were manually crafted and subsequently evaluated
based on their performance on Dlabeled. The regu-
lations component constrains the format of LLM’s
responses. We chose to use the phrase "just an-
swer yes or no" uniformly for simplicity. Thirdly, the
sentence input component consists of utterance
pairs that are sampled as detailed in Section 4.1.
Finally, we predict r(i, j) = 1 for a data pair (i, j) if
’yes’ is in the LMs’ corresponding response other-
wise r(i, j) = 0. The regulations component con-
strains the format of LM’s responses. We chose to
use the phrase "just answer yes or no" uniformly
for simplicity.

4.3. Training and Optimization

To optimize the representation of the text encoder
on the domain data, we collect pairs of positive
samples from MNear

i or/and MCore
i , with their re-

lationships r(i, j) determined by the LLM manager.
For each positive sample pair {(xi, xj)}, we di-
rectly sample kn utterances at random from Dtrain

as negative samples to better represent the distri-
bution of the whole dataset (we assume that the
distribution of each dataset is not extreme). In this
way, we form a dataset Df = (xi, pi, ni) of triplets.
Then, we finetune the model with a triplet margin
loss defined as:

L(xi,pi, ni) = max(

d(xi, pi)− d(xi, ni) +margin, 0),
(1)

where xi here works as the anchor point, pi and ni

is its positive and negative, respectively. d(xi, yj) =
∥xi−yj∥ and the margin value is a hyperparameter
that determines the minimum desired difference
between d(xi, pi) and d(xi, ni).

As the training proceeds, the quality of the text
encoder’s representation improves, leading to en-
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Table 3: Performance on semi-supervised NID with different known class ratio. For each dataset, the best
results are marked in bold. Known Class Ratios (KCR) is defined as |Ck|

(|Ck|+Cu)
. We randomly sampled a

10% subset for each known class to form the Dlabeled.

Banking StackOverflow M-CID
Methods NMI ARI ACC NMI ARI ACC NMI ARI ACC

KCR-25%

BERT-KCL 53.85 20.07 28.79 35.47 16.80 32.88 29.35 11.58 24.76
DAC 69.85 37.16 49.67 53.97 36.46 53.96 49.83 27.21 43.72
MTP 79.17 50.83 62.05 74.86 62.27 77.20 70.53 45.76 64.76
MTP-CLNN 83.88 60.76 70.91 78.38 65.80 80.10 78.30 65.32 78.30
LANID-Near 85.28 63.48 72.47 80.83 65.86 83.30 81.91 70.30 81.09
LANID-DBSCAN 84.74 62.22 70.13 74.74 60.54 73.70 80.04 69.69 83.09
LANID 85.51 64.23 71.40 79.55 63.23 81.80 85.11 75.66 86.82

Banking StackOverflow M-CID
Methods NMI ARI ACC NMI ARI ACC NMI ARI ACC

KCR-50%

BERT-KCL 62.86 30.16 40.81 57.63 41.90 56.58 42.48 22.83 38.11
DAC 76.41 47.28 59.32 70.78 56.44 73.76 63.27 43.52 57.19
MTP 82.12 56.43 67.34 76.58 65.55 82.50 70.53 45.76 64.76
MTP-CLNN 86.42 66.66 74.97 81.41 72.15 86.00 79.34 66.18 78.80
LANID-Near 86.83 67.41 76.10 81.62 64.32 81.30 81.20 69.54 81.95
LANID-DBSCAN 85.62 64.35 72.44 81.19 65.75 81.40 79.16 67.85 80.80
LANID 86.31 66.53 75.49 82.07 70.51 83.00 81.58 70.66 82.81

Banking StackOverflow M-CID
Methods NMI ARI ACC NMI ARI ACC NMI ARI ACC

KCR-75%

BERT-KCL 72.18 44.29 58.70 70.38 57.98 71.50 54.22 34.60 52.15
DAC 79.99 54.57 65.87 75.31 60.02 78.84 71.41 54.22 69.11
MTP 84.61 63.23 72.76 80.41 70.01 81.10 77.90 64.57 77.65
MTP-CLNN 87.24 68.77 77.14 80.99 72.14 85.80 80.12 67.40 79.37
LANID-Near 87.59 70.13 78.51 82.14 73.05 85.80 81.13 69.75 83.09
LANID-DBSCAN 86.79 67.18 74.35 83.74 76.45 88.30 80.65 70.24 82.52
LANID 87.64 68.89 76.56 82.80 74.33 87.50 82.16 70.56 82.23

hanced sampling outcomes. In practice, the proce-
dure of choosing the utterance pairs and request-
ing the LLM manager recurs every T epochs, with
the fine-tuning dataset Df and the text encoder
being incrementally updated during this iterative
process.

5. Experiment

5.1. Experimental Details

Datasets. We evaluate LANID on three intent
recognition benchmarks. BANKING (Casanueva
et al., 2020) encompasses 13,083 utterances
distributed across 77 intents in the banking do-
main. StackOverflow (Xu et al., 2015) comprises
20,000 queries collected from an online question-
answering platform1, categorized into 20 cate-
gories. M-CID (Arora et al., 2020) consists of 1,745
utterances associated with 16 intents specifically
related to Covid-19 services.

Experimental Setup. Our proposed method is
evaluated under both unsupervised and semi-
supervised settings. We employed three clustering
evaluation metrics, namely normalized mutual in-
formation (NMI), adjusted rand index (ARI) (Yeung
and Ruzzo, 2001), and accuracy (ACC).

1https://stackoverflow.com/

Baselines. We compare LANID with both unsu-
pervised and semi-supervised NID SOTAs. Unsu-
pervised NID SOTAs include SAE (Xie et al., 2016)
series, MTP, and CLNN (Zhang et al., 2022). Semi-
supervised baselines includes BERT-KCL (Hsu
et al., 2019), DAC (Zhang et al., 2021b), MTP and
CLNN (Zhang et al., 2022).

Implementation Details. We use default settings
of CLNN (Zhang et al., 2022), and continue to train
the model pretrained by MTP-CLNN as a post fine-
tuning stage. It is also possible to conduct further
training in other NID baselines. As for LLMs, we
use gpt-3.5-turbo2 model. The hyper-parameters
of LANID are selected based on the performances
on the validation set. The parameters are shown
in Table 1.

5.2. Result Analysis

Table 2 and Table 3 summarizes the performance
of LANID in comparison to unsupervised SOTAs
and semi-supervised SOTAs on three intent recog-
nition benchmarks. The results reveal several key
observations. (1) LANID and its variants demon-
strate impressive performance under the unsuper-
vised learning settings, outperforming other base-
lines. This can be attributed to the proficient guid-
ance provided by the LLM labeling, which effec-
tively compensates for the absence of supervised
signals. (2) LANID consistently outperforms the

2https://platform.openai.com/docs/models/gpt-3-5
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baselines in almost all cases, highlighting its effi-
cacy. (3) Although the combination of two neigh-
borhood sampling strategies works well, relying
solely on the DBSCAN-based sampling strategy
can sometimes hinder performance. This is due to
the fact that the LLM is constraints to make binary
judgments and retain only positive pairs. For many
outliers, their nearest cores may not express the
same intent, thereby reducing the size of Df and
leading to overfitting problems.

6. Conclusion

This paper presents a novel framework, LANID,
which utilizes LLM for solving the NID problem.
Rather than asking LLM to directly recognize new
intents, our approach employs LLMs to extract
relations among data and construct fine-tuning
tasks accordingly. To improve data sampling effi-
ciency, we propose two neighborhood-based sam-
pling strategies for selective data pair sampling.
Extensive experiments on three intent recognition
benchmarks demonstrate the effectiveness of our
proposed method.
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