@inproceedings{zhu-etal-2024-multi,
title = "A Multi-Task Transformer Model for Fine-grained Labelling of Chest {X}-Ray Reports",
author = "Zhu, Yuanyi and
Liakata, Maria and
Montana, Giovanni",
editor = "Calzolari, Nicoletta and
Kan, Min-Yen and
Hoste, Veronique and
Lenci, Alessandro and
Sakti, Sakriani and
Xue, Nianwen",
booktitle = "Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)",
month = may,
year = "2024",
address = "Torino, Italia",
publisher = "ELRA and ICCL",
url = "https://preview.aclanthology.org/fix-sig-urls/2024.lrec-main.78/",
pages = "862--875",
abstract = "Precise understanding of free-text radiology reports through localised extraction of clinical findings can enhance medical imaging applications like computer-aided diagnosis. We present a new task, that of segmenting radiology reports into topically meaningful passages (segments) and a transformer-based model that both segments reports into semantically coherent segments and classifies each segment using a set of 37 radiological abnormalities, thus enabling fine-grained analysis. This contrasts with prior work that performs classification on full reports without localisation. Trained on over 2.7 million unlabelled chest X-ray reports and over 28k segmented and labelled reports, our model achieves state-of-the-art performance on report segmentation (0.0442 WinDiff) and multi-label classification (0.84 report-level macro F1) over 37 radiological labels and 8 NLP-specific labels. This work establishes new benchmarks for fine-grained understanding of free-text radiology reports, with precise localisation of semantics unlocking new opportunities to improve computer vision model training and clinical decision support. We open-source our annotation tool, model code and pretrained weights to encourage future research."
}
Markdown (Informal)
[A Multi-Task Transformer Model for Fine-grained Labelling of Chest X-Ray Reports](https://preview.aclanthology.org/fix-sig-urls/2024.lrec-main.78/) (Zhu et al., LREC-COLING 2024)
ACL