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Abstract

Recent progress in large language models (LLMs) has enabled the deployment of many generative NLP applications.
At the same time, it has also led to a misleading public discourse that “it’s all been solved.” Not surprisingly, this has,
in turn, made many NLP researchers — especially those at the beginning of their careers — worry about what NLP
research area they should focus on. Has it all been solved, or what remaining questions can we work on regardless
of LLMs? To address this question, this paper compiles NLP research directions rich for exploration. We identify
fourteen different research areas encompassing 45 research directions that require new research and are not directly
solvable by LLMs. While we identify many research areas, many others exist; we do not cover areas currently
addressed by LLMs, but where LLMs lag behind in performance or those focused on LLM development. We welcome
suggestions for other research directions to include: https://bit.ly/nlp-era-11lm
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1. Background

Language models represent one of the fundamen-
tal building blocks in NLP, with their roots traced
back to 1948 when Claude Shannon introduced
Markov chains to model sequences of letters in En-
glish text (Shannon, 1948). They were then heavily
used in connection with early research on statisti-
cal machine translation (Brown et al., 1988; Wilkes,
1994) and statistical speech processing (Jelinek,
1976). While these models have always been an in-
tegral part of broad application categories such as
text classification, information retrieval, or text gen-
eration, only in recent years have they found a “life
of their own” with widespread use and deployment.
The impressive advancements we have wit-
nessed in current large language models (LLMs)
directly result from those earlier models. They build
on the same simple yet groundbreaking idea: given
a series of previous words or characters, we can
predict what will come next. The new LLMs benefit
from two main developments: (1) the proliferation
of Web 2.0 and user-generated data, which has led
to a sharp increase in the availability of data; and
(2) the growth in computational capabilities through
the introduction of GPUs. Together, these devel-
opments have facilitated the resurgence of neural
networks (or deep learning) and the availability of
very large training datasets for these models.
Current LLMs have output quality comparable to
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Figure 1: Research areas in NLP that are rich for
exploration, spanning Fundamental, Responsible,
and Applied research.

human performance, with the added benefit of in-
tegrating information from enormous data sources,
far surpassing what one individual can accumulate
in their lifetime. The number of applications that
benefit from using LLMs is continuously growing,
with many cases where the LLMs are used to re-
place entire complex pipelines. LLMs becoming
“lucrative” has led to a surge in industry interest and
funding, alongside a sharp increase in the number
of research publications on LLMs.

While these advances in LLMs are very real
and truly exciting, and give hope for many new
generative language applications, LLMs have also
“sucked the air out of the room.” A recent funding
call from DARPA has completely replaced the term
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NLP with LLM: in their listing of experts sought
for the program, we see the fields of “Computer
Vision” and “Machine Learning” listed alongside
“Large Language Models” (but not “Natural Lan-
guage Processing”).* Replacing NLP with LLMs is
problematic for two main reasons. First, the space
of language insights, methods, and broad appli-
cations in NLP is much vaster than what can be
accomplished by simply predicting the next word.
Second, even if not technologically new, LLMs still
represent an exclusionary space because of the
amount of data and computation required to train.

This public discourse that often reduces the en-
tire field of NLP to the much smaller space of LLMs
is not surprisingly leading to a dilemma for those
who have dedicated their careers to advancing
NLP research, and especially for junior PhD stu-
dents who have only recently embarked on the
path of becoming NLP researchers. “What should
I work on?” is a question we hear now much
more often than before, often as a reaction to the
misleading thought that “it's been all solved.”

The reality is that there is much more to NLP
than just LLMs. This paper aims to answer the
question: “What are rich areas of exploration in
the field of NLP that could lead to a PhD thesis
and cover a space that is not within the purview of
LLMs.” Spoiler alert: there are many such research
areas!

About This Document. This document reflects
the ideas about “the future of NLP research” from
the members of an academic NLP research lab in
the United States. The Language and Information
Technologies (*LIT) lab at the University of Michi-
gan includes students at various stages in their
degree, starting with students who are about to
embark on a Ph.D., all the way to students who re-
cently completed a Ph.D. degree. The LIT students
come from a wide variety of backgrounds, including
China, Iran, Japan, Mexico, Nigeria, Romania, Rus-
sia, South Korea, the United States, and Uruguay,
reflecting a very diverse set of beliefs, values, and
lived experiences. Our research interests cover
a wide range of NLP areas, including computa-
tional social science, causal reasoning, misinfor-
mation detection, healthcare conversation analysis,
knowledge-aware generation, commonsense rea-
soning, cross-cultural models, multimodal question
answering, non-verbal communication, visual un-
derstanding, and more.

We provide a list of open research questions that
are not solved by LLMs. As showed in Figure 1,
we cover three major categories, from fundamental
NLP (Section 2), to responsible NLP (Section 3),
and applied NLP (Section 4). Spanning across the

*https://apply.knowinnovation.com/
darpaaiforward/

three categories, we cover 14 open research topics,
each with three to four specific research directions.
Note that when a research topic touches multiple
categories, for convenience, we list them under the
major one.

When compiling the ideas in this document, we
followed three main guiding principles. First, we
aimed to identify areas of NLP research that are
rich for exploration, e.g., areas one could write a
Ph.D. thesis on. Second, we wanted to highlight
research directions that do not have a direct depen-
dency on a paid resource; while the use of existing
paid APls can be fruitful for certain tasks, such
as the construction of synthetic datasets, building
systems that cannot function without paid APls
is not well aligned with academic core research
goals. Third, we targeted research directions that
can find solutions with reasonable computational
costs achievable with setups more typically avail-
able in academic labs. Finally, we found inspiration
in the ACL list of research areas, from which we
selected the ones not in the purview of LLMs.*

Our brainstorming process started with ideas
written on sticky notes by all the authors of this doc-
ument, followed by a “clustering” process where we
grouped the initial ideas and identified several main
themes. These initial themes were then provided
to small groups of 2—3 students, who discussed
them, expanded or merged some of the themes,
and identified several directions worthy of explo-
ration. The final set of themes formed the seed of
this document. Each research area has then had
multiple passes from multiple students (and Rada)
to delineate the background of each theme, the
gaps, and the most promising research directions.

Disclaimer. The research areas listed in this
document are just a few of the areas rich in ex-
ploration; many others exist. In particular, we
have not listed the numerous research directions
where LLMs have been demonstrated to lag in
performance (Bang et al., 2023a), including infor-
mation extraction, question answering, text sum-
marization, and others. We have also not listed
the research directions focused on LLM develop-
ment, as that is already a major focus in many
current research papers, and our goal was to high-
light the research directions other than LLM de-
velopment. We welcome suggestions for other
research areas or directions to include: https:
//bit.ly/nlp-era-11lm

Document Organization. We provide a list of
open research questions that are not solved by
LLMs. As showed in Figure 1, we cover three ma-
jor categories, from fundamental NLP (Section 2),

*We used the ACL 2018 list of areas. The mapping
of our research areas and the ACL tracks can be found
in the Appendix in Table 1.
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to responsible NLP (Section 3), and applied NLP
(Section 4). Spanning across the three categories,
we cover 14 open research topics, each with three
to four specific research directions. Note that when
a research topic touches multiple categories, for
convenience, we list them under the major one.

The following sections provide brief descriptions
of fourteen research areas rich in exploration, each
with 3—4 research directions. These areas can be
divided into areas that cannot be solved by LLMs
for being too data-hungry or for lacking reasoning
or grounding abilities (subsections 2.1-2.5, 3.3,
4.3); areas for which we cannot use LLMs because
of not having the right data (subsections 2.6, 4.1,
4.2); or areas that could contribute to improving
the abilities and quality of LLMs (subsections 3.1,
3.2, 3.4, 4.4). When compiling the research direc-
tions, we follow several guiding principles. First, we
aim to identify areas that are rich for exploration,
that one could write a PhD thesis on. Second,
we want to highlight research directions that do
not directly depend on a paid resource, such as a
paid API. Third, we target research directions that
can find solutions with reasonable computational
costs, achievable in academic labs. Finally, we find
inspiration from ACL 2018 list of research areas,
from which we select the ones not in the purview of
LLMs (15/21 areas). The mapping of our research
areas and the ACL 2018 tracks can be found in
Appendix Table 1.

2. Fundamental NLP

Fundamental NLP tasks represent a significant
subset of NLP research, as illustrated in Figure 2.
Among these, we first consider different “L’s in
“NLP;” namely different choices of languages. Al-
though most NLP tasks and datasets use English
as a medium, there is a growing trend to extend
NLP to more non-English languages (Section 2.1),
child language (Section 2.5), and non-verbal com-
munication (Section 2.6). Moreover, there are dif-
ferent “P”’s in “NLP” too, where we consider dif-
ferent types of processing tasks on text, such as
reasoning (Section 2.2), knowledge bases (Sec-
tion 2.3), and language grounding (Section 2.4).
In the following, we present the main research
directions for each of these research areas.

2.1. @ Multilinguality

Low-resource machine translation. Despite
the impressive performance of machine translation
(MT) on major languages (Hassan et al., 2018a;
Liu et al., 2020), there is a big gap when it comes
to low-resource languages. There has been a rise
in small benchmarks dedicated to low-resource lan-
guages (Vegi et al., 2022; Reid et al., 2021; Goyal

et al., 2021), but there is also a big need for large
training corpora. As many low-resource languages
do not have a significant web presence, alternative
solutions are needed, such as manually curated
parallel corpora (Zheng et al., 2022; Koto and Koto,
2020), OCR (Rijhwani et al., 2020; Ignat et al.,
2022), or translation dictionaries using models of
word formation (Wu and Yarowsky, 2018, 2020).

Multilingual models that work well for all lan-
guages. Although most recent LLMs claim to be
multilingual, they do not perform equally well in all
languages (OpenAl, 2023; Huang et al., 2023a;
Ahuja et al., 2023). This inequality stems from the
different proportions of text of different languages
in the training corpora, as well as the annotators
with demographics focused in a few countries in
the RLHF process to finetune the models (Ouyang
et al., 2022b). At present, general-purpose LLMs
do not perform as well as models trained specif-
ically for translation; future research can explore
incorporating off-the-shelf LLMs into MT systems.

Code-switching. Code-switching refers to text
involving expressions in several languages while
adhering to the grammatical structure of at least
one language. Challenges include the large vari-
ation of code-switching phenomena, lack of train-
ing data, and a large number of out-of-vocabulary
tokens (Cetinoglu et al., 2016). Open research
directions include synthetic data generation (Xu
and Yvon, 2021; Fang and Wu, 2022; Lee and Li,
2020), evaluating existing LLMs on code-switched
text across language combinations (Aguilar et al.,
2020; Khanuja et al., 2020), and distinguishing
highly similar languages, such as dialects of the
same parent language (Aguilar et al., 2020).

2.2. Z@E Reasoning

Complex reasoning. Complex and multi-step
reasoning has proven to be challenging for LLMs.
For instance, LLMs still fall short in numerical rea-
soning (Stolfo et al., 2023; Miao et al., 2020), logi-
cal reasoning (Jin et al., 2022c; Eisape et al., 2023),
grounded reasoning (Ignat et al., 2021), and causal
inference (Jin et al., 2023a,c), often making obvi-
ous mistakes (Goel et al., 2021; Jin et al., 2020b).
One reason for that is that the next-word prediction
objective can easily encourage the LM to assign a
high likelihood to invalid reasoning (Khalifa et al.,
2023). Even fully-supervised training over correct
reasoning demonstrations does not solve the is-
sue (Uesato et al., 2022). While scaling seems
to help, careful prompt engineering is still needed
to tease out correct reasoning (Wei et al., 2022c;
Fu et al., 2022; Zhou et al., 2022b; Zhang et al.,
2022c). To build LLMs that are robust at reasoning,
one could explore a variety of directions, such as
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combining the strengths of neural networks and
symbolic Al. Another growing direction is the inte-
gration of LLMs with external reasoning tools, such
as calculators, interpreters, database interfaces, or
search engines (Schick et al., 2023; Mialon et al.,
2023a).

Responsible reasoning in social contexts.
With an increasing number of applications that
use NLP models, it is foreseeable that models
will need to make complicated decisions that in-
volve moral reasoning as intermediate steps. For
example, when creating a website, there may be
moral choices to consider such as catering to cer-
tain sub-populations, or overly optimizing for user
attention or click-through rates. These decision
principles are pervasive in our daily life, across
small and large tasks. We believe there is much to
be studied in understanding or improving the ability
of Al systems to reason over socially-complicated
and morally-charged scenarios given different so-
cial contexts and cultural backgrounds (dJin et al.,
2023b; Hendrycks et al., 2021a; Liu et al., 2021).
We foresee that interdisciplinary collaboration with
domain experts and policymakers will be needed.

Formally defining reasoning and designing a
proper evaluation framework. There is a ris-
ing need to refine the definition of reasoning, as
LLMs start showing an increasing mastery of tem-
plated solutions through pattern matching — when
a model memorizes a reasoning pattern, does it
count as reasoning or knowledge? Fundamentally,
this leads to questions about what are the domains
of intelligence that humans excel at, and how differ-
ent these are from empirically learning how to do
template matching. Beyond redefining reasoning,
other open questions include how to test a model’s
reasoning skills in the face of data contamination,
Goodhart’s law (a dataset failing to reflect the skill
once exploited) (Goodhart, 1984), and a lack of
reliable metrics to evaluate multi-step reasoning
(Golovneva et al., 2022).

2.3.

Automatic knowledge base construction. Spe-
cialized knowledge bases are helpful resources
for domain-specific applications. Successful auto-
matic knowledge base construction can take up-
to-date text in free forms (Maedche and Staab,
2000), and adapt an ontology for complex appli-
cations, such as tracking medication interactions
from articles from PubMed (Xu et al., 2020).* How-
ever, this task faces many challenges, such as
knowledge coverage, factuality of the knowledge,
and knowledge linking, which are rich, open ar-
eas of research. Specifically, Wang et al. (2023a)

Knowledge Bases

*https://pubmed.ncbi.nlm.nih.gov/

shows that ChatGPT performs poorly on out-of-
distribution data, such as new medical diagnosis
and product review datasets. Also, the training
data cutoff limits the coverage of new concepts.
Specifically concerning factuality, KG completion
framed as a text generation task also suffers from
hallucination from the LLM in various tasks (Ji et al.,
2022).

Knowledge-guided NLP. As NLP models be-
come more powerful through exposure to mas-
sive pretraining corpora (Hoffmann et al., 2022a;
Wei et al., 2022a), researchers start to question
whether mere pretraining is sufficient, as models
suffer heavily from hallucination (Xiao and Wang,
2021; Dziri et al., 2022a). A rising research ques-
tion is how to efficiently and effectively interact with
external knowledge bases (Zhang et al., 2019),
such as through web browsing (Nakano et al.,
2021; Komeili et al., 2022; Schick et al., 2023) and
customized knowledge base lookup (Wilmot and
Keller, 2021; Mialon et al., 2023b).

Culture-specific knowledge and common
sense. Knowledge and common sense in NLP
models are usually dominated by a few Western
cultures, and do not account for the vast diversity of
the cultural views in the world (Arora et al., 2023).
The first step is to understand the limitations of
NLP models, including LLMs, with respect to their
knowledge of different cultural groups (Hovy and
Yang, 2021; Hershcovich et al., 2022; Arora et al.,
2023). Once these limitations are better under-
stood, a major open research direction is how to
acquire and represent the knowledge that encodes
these cultural views, as well as how and when to
invoke this cultural knowledge.

2.4. Language Grounding

Fusing multiple modalities. Efficiently and ef-
fectively combining different modalities, i.e., audio,
video, text, and others, is still an open problem.
Different modalities often complement each other,
thus potentially reducing the need for billions of
data points. However, in some cases, modalities
end up competing with each other (Yao and Mihal-
cea, 2022), and thus many uni-modal models out-
perform multi-modal models (Wang et al., 2019b;
Huang et al., 2021).

Grounding for less studied modalities. Most
work on grounding revolves around visual, tex-
tual, or acoustic modalities. However, less-studied
modalities, such as physiological, sensorial, or be-
havioral, have been found valuable in diverse appli-
cations, including measuring driver alertness (Jie
et al., 2018; Riani et al., 2020), detecting depres-
sion (Bilalpur et al., 2023), or detecting deceptive
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behaviors (Abouelenien et al., 2016). Current mul-
timodal LLMs are restricted to textual, audio, and
visual domains (Zhang et al., 2023a; Lyu et al.,
2023a), requiring much effort to integrate the less-
studied modalities.

Grounding “in the wild” and for diverse do-
mains. Most research around grounding uses
data collected indoors in the lab, or on images
and videos of indoor activities from sources such
as movies (Lei et al., 2019a) or online vlogs (lg-
nat et al., 2019). There are fewer studies on out-
door activities in more realistic “in the wild” settings
(Castro et al., 2022). Collecting such data poses
new challenges related to availability, quality, or
distribution, which opens up new research direc-
tions. Moreover, applying these models to diverse
domains (e.g., robotics, medicine, and education)
requires adapting to fewer data points or different
types of data, and adding in-domain expertise to
understand the problem setup better. As shown in
Yin et al. (2023), the multimodal LLMs are currently
not equipped to tackle these challenges.

2.5. W Child Language Acquisition

Sample-efficient language learning. Child lan-
guage acquisition is both an important research
topic in psycholinguistics (McNeill, 1970), and also
a valuable source of inspiration for sample-efficient
language learning for NLP (Linzen, 2020). By mim-
icking the learning strategies of children, models
can achieve better generalization with limited train-
ing data (Barak et al., 2016). Research in this area
brings hope to improve the performance of NLP
models while reducing the amount of training data
required (Gulordava et al., 2018; Warstadt et al.,
2023a,b). LLMs require far more data than children
to acquire language, and LLMs can be improved in
sample efficiency by learning how children acquire
language.

Language models as biological models for
child language acquisition. Since the last cen-
tury, there has been research using neural mod-
els as biological models to develop theories of hu-
man cognitive behavior (McCloskey, 1991). Com-
bining powerful LLMs with psycholinguistic stud-
ies, researchers can gain inspiration for various
processes in child language acquisition. For in-
stance, insights into word acquisition can be gained
by comparing the models’ learning curves and
children’s age of acquisition for different words
(Chang and Bergen, 2021). Other phenomena,
such as phoneme-level acquisition (Christiansen
and Chater, 1999; Martin et al., 2023) or intrinsic
rewards (Gibson et al., 2019; Mu et al., 2022), can
also be explored by using computational models

on existing benchmarks such as WordBank (Frank
et al., 2016) or CHILDES (MacWhinney, 1992)

Benchmark development in child language ac-
quisition. While there are currently only very
few language acquisition benchmarks, NLP and
multimodal systems bring opportunities to ease
and scale child language benchmark construction.
For example, controlled experiments on carefully-
constructed supervised benchmarks can be aug-
mented by large video datasets of children learning
a language over a long period of time.

2.6. 7<= Non-Verbal Communication

Non-verbal language interpretation. Non-
verbal language interpretation analyzes non-verbal
cues such as facial expressions, gestures, and
body language to enhance the performance of
NLP systems (Mavridis, 2015; Schuller, 2018).
For instance, while previous work has identified
a potential “code-book” of facial expressions
(Song et al., 2013), it remains an open research
direction how to determine the set of expressions
and gestures that can be used across modalities,
contexts, and culture (Matsumoto and Assar,
1992; Abzaliev et al., 2022). Currently, there are
no LLMs that combine the gesture modality with
the text.

Sign language. As a visual-gestural communi-
cation system, sign language has gained increas-
ing attention in NLP due to its unique challenges
and wide applications (Koller et al., 2016, 2018;
Camgoz et al., 2020a). There are many research
directions in sign language, such as data curation
and evaluation addressing the high variability in
manual gestures (Athitsos et al., 2008b; Li et al.,
2020a), incorporation of additional information, i.e.,
facial expressions, body pose, eye gaze (Cao et al.,
2018; Baltruaitis et al., 2018); and sign language
generation for various scenarios, such as speakers
of the same sign language, across different sign
languages, and with a combination of verbal and
sign languages (Adaloglou et al., 2022). Current
systems use separate models for translating sign
language into the text (Lim et al., 2023), which
is then provided to LLMs. Directly providing sign
language to LLM might be more efficient.

Joint verbal and non-verbal communication.
Ultimately, both verbal and non-verbal signals
should be considered during communication. Fu-
ture Al systems should be equally capable of un-
derstanding “I don’t know”, shrugging the shoul-
ders, or \_(V)_/~ . Representing, fusing, and inter-
preting these signals jointly is ultimately the long-
term goal of Al-assisted communication (Mavridis,
2014). Open research problems encompass not
only the development of language models for each
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of these modalities but effective fusion methodolo-
gies that enable large joint models for simultaneous
verbal and non-verbal communication.

3. Responsible NLP

With NLP models in more applications, it is crucial
to promote responsible NLP via ethical consider-
ations (Section 3.1), interpretability (Section 3.2),
green/efficient NLP (Section 3.3), and careful use
of NLP in online environments (Section 3.4).

3.1. & NLP and Ethics

Dual use. Many NLP applications that have a
positive impact can at the same time be used in
harmful ways (Hovy and Spruit, 2016; Wu et al.,
2023b). Donker (2023) highlights an instance
where LLMs were used to generate erroneous re-
view reports, thereby disrupting the standards for
peer review. The research community should fos-
ter interdisciplinary collaboration to fight against
malicious applications of NLP technologies, such
as deceptive text generation, automated disinfor-
mation campaigns, LLM-powered cybersecurity at-
tacks (Kang et al., 2023), and arms racing.

Fairness. There is a need for methods that eval-
uate the fairness of NLP models, and mitigate
their bias. Generative language models have been
found to manifest harmful stereotypes in down-
stream tasks such as automated reference letter
writing (Wan et al., 2023). While fairness in LLMs
is an active area of research, much existing work
focuses on limited aspects such as binary gender.
Mitigating bias will involve investigating dataset
creation practices and their correlation with model
bias (Wang et al., 2020). Such research should
examine whether stricter requirements for data cre-
ation can reduce bias and inequalities that might
be exacerbated by models trained on or evaluated
on biased data (Anonymous, 2024).

Privacy. With the increasing use of LLMs for per-
sonalized NLP applications, concerns have been
raised regarding access to user data through LLMs,
especially in sensitive areas like healthcare (Meskd
and Topol, 2023; Marks and Haupt, 2023). In
response, researchers are investigating privacy-
preserving methods such as differential privacy
(Dwork, 2006), federated learning (McMahan et al.,
2017), and secure multi-party computation to en-
sure the confidentiality and security of user data
(Lindell, 2021).

Attribution of machine-generated data. The
use of generative LLMs in the creative industry has
led to issues such as lack of copyright, plagiarism,
and profit shifting. Text generated by LLMs can
reveal sensitive or copyrighted contents from their

training data. Therefore, it is essential to develop
standard approaches (e.g., membership inference
(Shokri et al., 2017)) for attribution that NLP models
can use while generating content (Collins, 2023),
especially for domains such as programming or
creative writing (Swanson et al., 2021), where LLM-
generated content is on the rise.

3.2. & Interpretability

Probing. One promising direction to investigate
is the internal representation of NLP models, in-
cluding LLMs, by designing probing tasks that can
reveal the linguistic (Hewitt and Manning, 2019;
Hewitt and Liang, 2019) and world knowledge cap-
tured by the models (Elhage et al., 2022; Geva
et al,, 2021, 2022b). This can help understand the
reasoning capabilities of models and identify po-
tential biases (Li et al., 2022a; Meng et al., 2022a).

Mechanistic interpretability. While probing
mostly considers the attributes of the features
learned by the model, there are currently several
open research questions around mechanistic inter-
pretability, which aims to uncover the underlying
mechanisms and algorithms within a model that
contributes to its decision-making process (Nanda
et al., 2023; Conmy et al., 2023). These models
aim to extract computational subgraphs from neural
networks (Conmy et al., 2023; Wang et al., 2023b;
Geiger et al., 2021), and their high-level goal is to
reverse engineer the entire deep neural network
(Chughtai et al., 2023).

Human-in-the-loop to improve interpretability.
Incorporating human feedback to enhance model
interpretability can improve model transparency, fa-
cilitate better decision-making, and foster trust be-
tween Al systems and users. By involving humans,
researchers can identify and address biases, en-
sure ethical considerations, and develop more reli-
able and understandable NLP models. There are
various promising directions, such as active learn-
ing and interactive explanation generation (Mosca
et al., 2023; Mosqueira-Rey et al., 2023a).

Basing the generated text on references. As
model-generated text is prone to hallucinations
(Ji et al., 2022), a promising way to improve its
reliability is to explain its conclusion step by step
and supply references or sources to back up the
claims (Wei et al., 2022d; Izacard et al., 2022).

®
3.3. @ Green/Efficient NLP

Model efficiency. The trend of scaling up NLP
models has accentuated the need of increasing
model efficiency (Strubell et al., 2020; Hessen-
thaler et al., 2022). Researchers have proposed
efficiency enhancement techniques from various
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aspects, such as improving the attention mecha-
nisms (Tay et al., 2020, 2022; Dao et al., 2022; Ma
et al., 2022), sparsing models to scale up the width
of models for increased expressiveness while re-
ducing theoretical FLOPs, and applying mixture-of-
experts architectures (Fedus et al., 2021, 2022; Du
et al., 2022). However, there are open challenges
in how to develop the optimal architectures that
balance economics, efficiency, and performance
(Mustafa et al., 2022).

Efficient downstream task adaptation. In-
creased applicability of pre-trained models requires
efficient fine-tuning methods that adapt to down-
stream tasks (Lee et al., 2020; Liu et al., 2023; Wu
et al., 2023a) by updating a small subset of the
parameters (Pfeiffer et al., 2020; Moosavi et al.,
2022; Schick and Schitze, 2021; Hu et al., 2023).
For example, prompt-tuning/ prefix-tuning modifies
activations with additionally learned vectors without
changing model parameters (Valipour et al., 2022;
Lester et al., 2021).

Data efficiency. Another method to improve ef-
ficiency is to remove redundant or noisy data in
the first place. Despite existing efforts on removing
noisy examples and deduplicating data on smaller
scales (Lee et al., 2022b; Mishra and Sachdeva,
2020; Hoffmann et al., 2022b), there is a lack of
effective methods for data deduplication and cura-
tion for vast corpora (>700B Tokens) or raw web
data used for training very big models.

f]
3.4. o5 NLP for Online Environments

Combating misinformation. With the rising ca-
pability of text generation models and strong com-
mercial and political interests, it is inevitable to
see an increase in online misinformation. To fight
back against powerful generative models to spread
misinformation, we need to use powerful discrim-
inative models to detect them. There is a large
need for fact-checking technology (Thorne et al.,
2018; Nakov et al., 2021; Kazemi et al., 2022),
across different languages (Das et al., 2023), dif-
ferent modality (Abdelnabi et al., 2022), and by
utilizing techniques from other areas, such as net-
work analysis to track who likes or reposts false
contents (Guarino et al., 2020), and retrieval and
knowledge-augmented methods (Ciampaglia et al.,
2015; Markov et al., 2023) to search through and
find the relevant context around the claim. One cau-
tion is that LLMs are prone to hallucinations (Dziri
et al., 2022b; Raunak et al., 2021) and factual in-
consistencies (Tam et al., 2023), so they might not
be self-sufficient to combat misinformation reliably.

Ensuring content diversity. With the prevalence
of LLM-generated content, the majority’s voice may
end up amplified on the web, since data-driven

models such as LLMs tend to remember the type
of data that is the most represented in its corpus.
Thus, the lack of diversity and especially repre-
sentation of marginalized groups’ voices will be a
concerning problem as LLM-generated content will
be increasingly used online (Field et al., 2021a).

Preventing mis- and over-moderation. Similar
to the heterogeneity issue in content generation,
content moderation techniques might also overlook
the nuances of expressions in under-represented
groups, or specific social environments, making
them unfairly delete safe speech by minority groups
(Sap et al., 2019a; Xia et al., 2020). Apart from mis-
moderation, there is also over-moderation. Due to
various political interests (e.g., Florida aiming to
curtail discussions about race or queer identities),
governments are likely to limit the set of topics
discussed online, so it is important to trace what
topics and opinions are filtered or demoted on the
internet and reflect on the freedom of speech in the
political environment (Wright, 2006; Gorwa et al.,
2020).

4. Applied NLP

After discussing tasks in fundamental NLP and
responsible NLP, we now look into the wide ap-
plications of NLP in various domains, with a few
selected discussions on NLP for healthcare (Sec-
tion 4.1), education (Section 4.2), computational
social science (CSS) (Section 4.3), and synthetic
data generation (Section 4.4).

4.1, NLP for Healthcare

Healthcare benchmark construction. Health-
care is a domain that heavily suffers from data
scarcity, which is usually due to data unavailabil-
ity (typically for low-resource domains), or inac-
cessibility (due to privacy and ethics concerns).
Potential strategies to create and scale-up health
datasets include synthetic data generation (Chinta-
gunta et al., 2021a; Liednikova et al., 2020; Mattern
et al., 2022b) or data augmentation from existing
data (Dai et al., 2023). These strategies can im-
prove the distribution of biased datasets, help en-
sure data privacy protections, and reduce the cost
of data collection. However, data generation by
LLMs also brings concerns of bias propagation
and information leakage (Arora and Arora, 2022).
Furthermore, researchers need metrics to mea-
sure the fidelity of synthetic data compared with
real data (Chen et al., 2021).

Improving clinical communication. NLP has
shown great potential in enhancing communica-
tion in healthcare, such as simplifying the medical
jargon for laymen (Jin et al., 2022a), developing
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educational tools for healthcare professionals (Min
etal., 2022), and providing personalized healthcare
recommendations (Choi et al., 2016; Roehrs et al.,
2018). New research directions include developing
advanced NLP models for medical dialogue sys-
tems and exploring the ethical implications of NLP-
driven communication in healthcare (Ravi et al.,
2016; Jakesch et al., 2019). Current LLMs may
only be useful in limited settings, as trust in LLMs
has been shown to depend on the health-related
complexity of questions (Nov et al., 2023).

Drug discovery. Since the hypothesis space
for drug designs is exponential (Ruddigkeit et al.,
2012), NLP methods have been explored to as-
sist clinicians to efficiently extract and analyze in-
formation from large amounts of scientific litera-
ture, patents, clinical records, and other biomedical
sources. Open research directions in this domain
include identifying and prioritizing the drug-target
interactions, discovering new drug candidates, pre-
dicting compound properties, and optimizing drug
designs (Brown et al., 2020a). Despite their great
potential, the use of LLMs still face many chal-
lenges, such as the lack of transparency in the
model decision-making process, which limits the
applicability and reliability (Thirunavukarasu et al.,
2023).

4.2. &= NLP for Education

Intelligent tutoring systems. The rising capa-
bility of NLP systems has given rise to intelli-
gent tutoring systems to generate targeted prac-
tice questions and explain students’ mistakes in
a wide range of subjects, from English or History
to Physics or Computer Science (Mousavinasab
et al., 2021). Responsible development of these
systems requires human-in-the-loop checks to en-
sure their reliability, as NLP models are still lack-
ing when it comes to more challenging reasoning
and grounding tasks (Kanda et al., 2004). Other
challenges include lack of diverse data, both in
terms of population and time, privacy concerns
and trustworthiness, and the need for better evalu-
ation mechanisms (Lin et al., 2023).

Educational explanation generation. To enrich
teaching materials, NLP models can also help gen-
erate explanations for complicated questions or
reading materials, as well as for automatic grading
systems, since students improve more easily when
grading is justified by corresponding explanations
(Mohler and Mihalcea, 2009). However, some con-
cerns include overreliance on the model, lack of
expertise among educators (Redecker and Punie,
2017), and between real knowledge and convinc-
ingly written but unverified model output (Kasneci
et al., 2023). Therefore, it is important to under-

stand the limitations of LLMs and use them only as
a tool to support and enhance learning, but not as
a replacement for human teachers (Pavlik, 2023).

Controllable text generation. In education,
there is a growing need for controllable text gener-
ation (Lee et al., 2011; Zhang et al., 2022a). This
is helpful, for instance, for applications aiming to in-
troduce students to new terms by generating mem-
orable stories corresponding to their academic skill
levels, interests, and prior experience. However, it
is often difficult for LLMs to ensure domain diversity
of the generated text while pursuing controllability,
which leads to the catastrophic forgetting problem
in LLMs (Zhai et al., 2023). Additionally, we lack re-
liable evaluation techniques, as well as dedicated
benchmarks and datasets for text generation with
diverse control requirements (Zhang et al., 2023b).

4.3. Computational Social Science

Development of new abstractions, concepts,
and methods. NLP enables automatic analyses
of massive text for the study of computational social
science (CSS), which has been benefited by the
evolution of NLP methods from topic modeling (Blei
et al., 2003), keyword extraction (Onan et al., 2016),
to word embeddings (Pennington et al., 2014), and
LLMs (Brown et al., 2020c). It is foreseeable that
further advancement in NLP models will unlock
the possibilities of more customized, high-level text
analyses for CSS. Evaluation paradigms need to
evolve to capture the validity of LLMs as language
generators, since human evaluation also can be
unreliable in CSS (Karpinska et al., 2021). More-
over, many CSS tasks contain large target label
spaces (Grudin, 2006), which is a challenge for cur-
rent LLMs that have limited memory and quadratic
space complexity (Ziems et al., 2023).

Population-level data annotation and labeling.
CSS research shows a large interest in using LLMs
to annotate data to simulate human interactions
(Gilardi et al., 2023a). However, human studies
will be unlikely to go away, as LLMs’ effectiveness
in annotation remains partial. Ollion et al. (2023)
show that few-shot and zero-shot models are often
outperformed by models fine-tuned with human
annotations. Additionally, ChatGPT usually yields
higher recall than precision, showing a tendency
to output more false positives.

Multicultural and multilingual CSS. Most CSS
studies focus on English or other major languages,
and address mostly Western cultures. However,
there are many important questions in social sci-
ence that require large-scale, multilingual, and mul-
ticultural analyses (Shen et al., 2019), such as how
languages evolve, and how values vary across
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cultures (Garimella et al., 2016). This area for fu-
ture work can lead to compounding impacts on
the social sciences. However, the data-driven na-
ture of LLMs makes them limited by the under-
representation of minority communities and low-
resource languages in the training data. Collecting
more data related to this can help minimize the
data disparity. Additionally, CSS researchers study
cultures, norms, and beliefs that change across
time, hence LLMs will need a high level of temporal
grounding (Ziems et al., 2023).

4.4. & Synthetic Datasets

Knowledge distillation. Knowledge distillation
transfers knowledge from larger, more complex
models (the teacher) to typically smaller, simpler
models (the student). Knowledge distillation allows
the knowledge and capability to be compressed
into much smaller models, reducing the computa-
tional and memory requirements of NLP systems.
While earlier methods in knowledge distillation of-
ten learn from the soft output logits of teacher mod-
els (Hinton et al., 2015), more recent ones utilize
LLM outputs as synthetic examples (West et al.,
2022; Kim et al., 2022). This allows practitioners to
transform or control the generated data in different
ways, such as using finetuned models to filter for
quality. Moreover, synthetic data can be used to
directly emulate the behavior of LLMs with much
smaller, focused models (Taori et al., 2023).

Control over generated data attributes. Cur-
rently, the predominant method is to provide natural
text specifications with instructions and examples,
but optimizing these prompts often relies on a sim-
ple trial-and-error approach. Additionally, specify-
ing attributes through instructions or examples can
be imprecise or noisy. The development of robust,
controllable, and replicable pipelines for synthetic
data generation remains an open research ques-
tion (Kim et al., 2022).

Transforming existing datasets. Given an ex-
isting dataset, one can apply various changes
to create a semantically preserving new dataset,
but with a new style. Common approaches in-
clude format change (e.g., converting a dataset of
HTML news articles to plain text), modality transfer
(e.g., generating textual descriptions of images or
videos or generating captions or subtitles for audio-
visual content), or style transfer (Chintagunta et al.,
2021Db; Jin et al., 2022a) (e.g., translating the writ-
ing style of the text from verbose to concise).

5. So “What Should / Work On?”

The future of NLP research is bright +. As illus-
trated by the 45 research directions spanning the

| prefer , Fundamental
fundamental NLP NLP

@ NLP PhD |
= Journey |

| want to mitigate
the risks of NLP

> Motivation , Responsible

| care about

immediate impact RN

No, competition brings me too much stress.

Yes, | love catching up with newest work. | love working at my own pace.
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Figure 2: So “What should | work on?” Based on
your motivation, you can choose from at least three
main NLP areas: Fundamental, Responsible, and
Applied. Furthermore, your choice could depend
on whether or not you like fast-paced research,
whether you want to make models transparent and
trustworthy, or, whether you prefer broader or more
specific domains.

fourteen research areas overviewed in this paper,
the rapid progress we are currently witnessing in
LLMs does not mean that “it’s all been solved.” On
the contrary, numerous research directions within
NLP are not solved by the current LLMs. They add
to the many existing tasks in NLP where LLMs’
performance is limited (Bang et al., 2023a), as well
as the growing number of new areas enabled by
the new LLM capabilities.

More broadly, as a field, we now have the op-
portunity to move away from performance-focused
technology development and acknowledge that
NLP is about language and people. This brings
about a new focus on enabling technologies that
are culture and demographic aware, that are ro-
bust, interpretable, efficient, and aligned with solid
ethical foundations — ultimately, technologies that
make a lasting positive impact on society.

How to choose a research direction to work on?
As suggested in Figure 2, start with your motivation
and interests: consider your previous experiences,
look around at your community, explore your cu-
riosities about language and about people, and try
to find what resonates with you the most. Building
on this foundation, identify the tasks that connect
to your motivations. This paper serves as a starting
point to inspire this exploration.

Broader Impact

We believe this work and the open research direc-
tions we identified can have an overall positive im-
pact on the NLP research community, especially for
junior students facing the challenge of re-orienting
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their research directions in the era of LLMs.

We conclude by highlighting what we foresee
as the main role of this paper. First, we did not
aim to cover the entire rich space of NLP, which
is impossible for any research lab to enumerate
exhaustively. Instead, we provided a starting point
for students and researchers to regain their hope
in NLP research, and find a direction they can con-
tribute to that is not solved by LLMs. Second, this
overview paper did not aim to solve any of the tasks
we listed, but rather to identify the open space for
future work. We thus did not provide full details
for the research directions; instead, we introduced
each research direction with a brief description, its
broad application, and highlight the remaining chal-
lenges and open questions, especially those that
are not addressed by LLMs. Our main goal is to in-
spire future researchers to deepen their exploration
on the topics.

We welcome suggestions for other research ar-
eas or directions to include: https://bit.1ly/
nlp-era—-1lm.
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Our Area

Standard ACL 2018 Tracks

Sec 2.1 Multilinguality

Sec 2.2 Reasoning

Sec 2.3 Knowledge Bases

Sec 2.4 Language Grounding

Sec 2.5 Child Language Acquisition

Sec 2.6 Non-Verbal Communication
Sec 3.1 NLP and Ethics

Sec 3.2 Interpretability

Sec 3.3 Green/Efficient NLP

Sec 3.4 NLP for Online Environments
Sec 4.1 NLP for Healthcare

Sec 4.2 NLP for Education

Sec 4.3 Computational Social Science

Sec 4.4 Synthetic Datasets

Multilinguality; Machine Translation

Question Answering; Textual Inference

Information Extraction; Document Analysis

Vision, Robotics, Multimodal, Grounding and Speech
Linguistic Theories, Cognitive Modeling and Psycholinguis-
tics

Machine Learning; Resources and Evaluation

Social Media; Dialogue and Interactive Systems; Sentiment
Analysis and Argument Mining

Multidisciplinary; Dialogue and Interactive Systems; Infor-
mation Extraction; Generation

Multidisciplinary; Dialogue and Interactive Systems; Infor-
mation Extraction; Generation

Multidisciplinary; Multilinguality; Dialogue and Interactive
Systems; Sentiment Analysis and Argument Mining
Resources and Evaluation; Generation

Table 1: The mapping of our research areas and the ACL 2018 tracks. We address 15/ 21 areas from
ACL 2018 list of research areas. The unaddressed domains, are within the purview of LLMs or outside
our area of expertise (tagging and parsing): Discourse and Pragmatics; Phonology, Morphology and
Word Segmentation; Sentence-level Semantics; Summarization; Tagging, Chunking, Syntax and Parsing;

and Word-level Semantics.
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