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Abstract
Event representation learning plays a crucial role in numerous natural language processing (NLP) tasks, as it
facilitates the extraction of semantic features associated with events. Current methods of learning event representation
based on contrastive learning processes positive examples with single-grain random masked language model (MLM),
but fall short in learning information inside events from multiple aspects. In this paper, we introduce multi-grained
contrastive learning and triple-mixture of experts (MCTM) for event representation learning. Our proposed method
extends the random MLM by incorporating a specialized MLM designed to capture different grammatical structures
within events, which allows the model to learn token-level knowledge from multiple perspectives. Furthermore, we
have observed that mask tokens with different granularities affect the model differently, therefore, we incorporate
mixture of experts (MoE) to learn the importance weights associated with different granularities. Our experiments
demonstrate that MCTM outperforms other baselines in tasks such as hard similarity and transitive sentence similarity,
highlighting the superiority of our method.
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1. Introduction

Events are one of the most common objective
entities in People’s daily life. Structural events
and learning their representations have played an
important role in the development of the field of
NLP (Li et al., 2018b). The goal of event repre-
sentation learning is to learn from the text how
to convert events into a form that computers can
understand and process (such as event embed-
dings), so as to better support NLP and related
applications. By acquiring distributed representa-
tions of events, we can construct a semantic model
of events within computers, enabling them to com-
prehend the significance, interpretation, and role of
events across various scenarios. This comprehen-
sion enhances various downstream tasks, including
successive events generation (Martin et al., 2018),
event detection (Deng et al., 2021), event predic-
tion (Granroth-Wilding and Clark, 2016) and story
generation (Chen et al., 2021).

Previous studies (Lee and Goldwasser, 2019) ap-
plied statistical script learning methods to embed
event representations and classify the relationship
between events based on similarity. However, re-
lying solely on the co-occurrence relationship of
events to infer similarity fails to capture the detailed
hidden feature information between events. Some
recent studies have focused on incorporating exter-
nal knowledge bases, such as external common-
sense knowledge (Ding et al., 2019), human action
intentions (Ding et al., 2019) and sentiments (Sap
et al., 2019) to provide finer granularity. Further-
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Figure 1: Illustration of the multi-grained positive
mask labeling method for contrastive learning. E is
the encoder of the model. x+

R, x+
SP

, x+
PO

are positive
examples, and x− is the corresponding negative
example.

more, there have been attempts (Vijayaraghavan
and Roy, 2021) to continuously update the feature
embeddings of events by combining social knowl-
edge, commonsense knowledge, and continuous
learning. However, these methods involve a wide
range of knowledge, making it challenging to en-
compass them all. Recent work (Gao et al., 2022)
considers using contrastive learning to learn event
representations in co-occurring events, which has
shown promising results. However, the single and
random masking method used in this approach
limits the model’s ability to learn the internal infor-
mation of events from multiple perspectives. We
observe that although the masked language model
(MLM) objective loss serves as an auxiliary loss,
its impact on the final model performance cannot
be ignored.

As depicted in Figure 1, when using the previ-
ous common single-grained labeling method (Gao
et al., 2022), where any token in the event is ran-
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domly masked, we obtain limited knowledge com-
pared to the negative example (x−). For instance,
when "to" is randomly masked in x+

R, there is no
meaningful similar or opposite semantic structure
compared to the negative example. Therefore, we
propose the addition of two additional granularities
for mask labeling: subject-predicate and predicate-
object. This decision is primarily motivated by the
fact that most of the semantic information in simple
events resides in these two grammatical structures.
As shown in Figure 1, we can observe semantic
similarity between "He returns to" in x+

SP
and "He

goes back to" in x−, as well as between "returns
to home" in x+

PO
and "goes back to house" in x−.

Moreover, different granularities hold varying de-
grees of importance for the model. Hence, it is
crucial to assign greater impact to the granularities
that possess higher significance and influence dur-
ing the model’s training process. This necessitates
assigning different importance weights to different
granularities. To achieve this, we incorporate the
Mixture of Experts (MoE) (Shazeer et al., 2017)
framework, which enables the model to learn the
optimal weights associated with each granularity.

To this end, we propose MCTM: a Multi-Grained
Contrastive Learning by using a Triple-Mixture of
Experts for event representation learning. Our
method adopts a multi-granularity labeling ap-
proach for positive examples. In addition, we also
use three Mixtures of Expert (MoE) layers to paral-
lelize the model structure, distribute the weight of
each granularity. To summarize, our contribution is
two-fold:

• We propose MCTM, which leverages multi-
grained labels in the positive examples of con-
trastive learning, enabling an understanding
of deep event features from multiple perspec-
tives.

• We adopt a triple-Mixture of Experts layer struc-
ture to optimize the model structure so that the
model can independently learn the importance
weights of each label granularity to achieve
better results.

2. Preliminary

In this section, we introduce the preliminary in 4
aspects: Event Presentation Model, Contrastive
Learning, Mixture of Experts, and Data Augmenta-
tion.

2.1. Event Representation Model
Previous research has predominantly relied on ten-
sor neural networks (NTNs) (Socher et al., 2013) for
representing events. NTNs employ a word embed-
ding model to convert individual words into vectors

and generate a three-dimensional tensor. However,
this approach has limitations, such as the need
for extensive annotation and the inability to han-
dle events with multiple additional elements, such
as location and timing words. Since the release
of BERT (Devlin et al., 2019), researchers have in-
creasingly considered pre-trained language models
as a replacement for static word representations.
BERT offers advantages such as flexible event rep-
resentation and portability. Consequently, we also
utilize BERT as our backbone model. In the follow-
ing sections, we discuss the composition of events
and the precoding method.

Simple events are broadly defined in the form:

Event = (Subject, Predicate,Object). (1)

The BERT encoder can process text and output
a sequence of tokens in a fixed format (a piece
of text starts with [CLS] and ends with [SEP] after
encoding). So the event tokens will be expressed
as follows after being input into BERT:

Eventtokens = [CLS], Sub, Pre,Obj, [SEP ]. (2)

The input sequence is obtained after converting
each word (including [CLS] and [SEP]) to the cor-
responding ID. Assuming the input sequence is
x = [xCLS , x1, ..., xn, xSEP ], then BERT will even-
tually return the tensor of this set of sequences, as
follows:

BERTx = [vCLS ,vx1
, · · · ,vxn

,vSEP ], (3)

where vCLS and vSEP are the representations for
[CLS] and [SEP] tokens. Moreover, vxn represents
the representation of each word in the text.

2.2. Contrastive Learning
Event representation learning aims to abstract
events in natural language text into mathematical
representations. The challenge of this problem is
that the same event can appear in different forms
in different texts, so a method is needed to capture
the commonality and variability of events.

Contrastive learning provides an effective way
to address this problem. In event representation,
the basic idea of contrastive learning is to compare
the similarities or differences between different text
segments. By comparing the representations of
the same event in different texts, contrastive learn-
ing can capture the commonality of events and
generalize across different texts. Additionally, con-
trastive learning can also use negative samples to
capture the variability of events. Therefore, using
contrastive learning can bring similar events closer
and push irrelevant events farther away.

Recently, InfoNCE objective (Oord et al., 2018),
as a powerful contrastive learning loss function,
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has an excellent effect in the field of representation
learning. The core idea of this loss function is to
use the mutual information in information theory to
measure the correlation between two representa-
tions learned by the model, thereby facilitating the
learning of more discriminative representations.

The original InfoNCE considers single positive
and negative examples, here we improve it to mul-
tiple positive and negative examples to achieve
better results. Suppose given M paired event ex-
amples D = {(xi,x

+
i )}Mi=1, where x+

i is a positive
instance for xi, also they are semantically related.
We follow the contrastive framework in (Gao et al.,
2022), and the training objective for (xi,x

+
i ) is pre-

sented in a softmax form with mini-batch negatives.

L = − log
g(ci, c

+
i )

g(ci, c
+
i ) +

∑
k∈M(i) g(ci, ck)

, (4)

where ci and c+i denote the representation of xi

and x+
i , respectively. k ∈ M(i) is the index of

mini-batch negatives.
The function g(α, β) in Formula 4 calculates the

similarity between α and β. The numerator part rep-
resents the similarity between positive examples,
and the denominator represents the similarity be-
tween positive and negative examples. Therefore,
the greater the similarity of the same category, the
smaller the similarity of different categories, and
the smaller the loss. The formula of the function g
is

g(ci, ck) = exp(
cTi ck
τ

), (5)

where τ is the temperature coefficient. τ is used to
control the model’s discrimination against negative
samples. We determine the value of this hyperpa-
rameter after specific experiments.

2.3. Mixture of Experts

Since MoE (Mixture of Experts) was first proposed
in Jacobs et al. (1991); Jordan and Jacobs (1994),
it has been the subject of much research (Jacobs
et al., 1991; Shazeer et al., 2017; Lepikhin et al.,
2021; Fedus et al., 2021; Du et al., 2022; Xue
et al., 2022). As a combined model, MoE is dif-
ferent from general neural networks in that it sep-
arates and trains multiple models (experts) based
on data. MoE as a layer rather than a whole
model, it consists a set of n "expert networks"
(EN = {E1, E2 · · · , En}) and a "gating network"
(G) whose output is a n − dimension vector. As-
suming given an input x, we denote Gi(x) and Ei(x)
as the output of the gating network and the output
of the i-th expert network. We also add gating loss
(LG) and expert loss (LE) to the final loss function.

2.4. Data Augmentation
For NLP tasks, the data augmentation methods
for language representation usually have the fol-
lowing types: synonym replacement, random in-
sertion, random deletion, random swap, and ran-
dom perturbation. However, some studies in re-
cent years (Gao et al., 2022, 2021) have used
dropout noise as a data enhancement method and
have also proved the effectiveness of this method
through experiments. Suppose given xi, we input
the same xi to the encoder with the parametric
weights θ twice. Thus we get two embeddings with
different dropout masks (ci and c+i ).

ci = fθ(xi, ω), (6)

c+i = fθ(xi, ω
∗) (7)

where ω and ω∗ are two different random masks
for dropout.

3. Our Approach

In this section, we will introduce our approach in de-
tail. Figure 2 presents an overview of our proposed
approach.

3.1. Multi-Grained Contrastive Learning
Following Gao et al. (2022), we build our approach
on the weakly supervised contrastive framework
with the InfoNCE objective. Considering that the
previous studies have paid more attention to how
the positive examples affect each other, and im-
proved the impact of the number of positive ex-
amples on the final model. In order to obtain
more information about relationships within and be-
tween events, we focus on token-level knowledge.
Therefore, we add the objective of multi-granularity
masked language modeling (MLM) (Devlin et al.,
2019) on the original basis.

For the selection of mask marks, most of the
studies generally choose random marks (Zhang
et al., 2021; Gao et al., 2022, 2021), that is to say,
the knowledge of the token level is not considered
for the input text data. We use three granular mask
labeling methods to mine deeper event information,
namely random labeling, subject-predicate label-
ing, and predicate-object labeling. We give several
concrete examples in Table 1. Random granular-
ity (x+

R) means that we randomly sample a word
as a mask token, which is what most work does.
Subject-predicate (x+

S_P ) labeling and predicate-
object (x+

P_O) labeling means that we mark the sub-
ject and predicate, predicate and object in the event
as masks respectively.

As mentioned in Section 2.2, M(i) is the index
of mini-batch negatives. How the method differs
from InfoNCE is in the construction of the positive
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x He returns to home.
xtokens [CLS] He returns to home [SEP]
x+

R [CLS] He returns [MASK] home [SEP]
x+

S_P [CLS] [MASK] [MASK] [MASK] home [SEP]
x+

P_O [CLS] He [MASK] [MASK] [MASK] [SEP]

Table 1: Demonstration of multi-grained labeling
on concrete examples, where x+

R, x+
S_P and x+

P_O
represent random labeling, subject-predicate label-
ing and predicate-object labeling, respectively.

set M(i) for xi. We improve InfoNCE objective
based on our method. The difference from InfoNCE
is that we have added three different granularity
calculations to the processing of positive examples,
taking token-level knowledge into account. In our
method, we generalize Equation 4 to support multi-
grained positives learning:

L =
∑3

j
− log

g(ci, c
+
ij
)

g(ci, c
+
ij
) +

∑
k∈M(i) g(ci, ck)

, (8)

where j denotes three different grain sizes. We
calculate the similarity with the anchor points (ci)
from these three perspectives and learn the rep-
resentation of the event. Moreover, k ∈ M(i) is
the index of mini-batch negatives (x−). During the
experiment, we found that we could not observe
the impact of each granularity on the final result.
Therefore, we introduce MoE to solve the problem.

3.2. Combination with MoE
In this subsection, we give a schematic diagram of
the specific model (Figure 2) and explain the details
of our method.

The experts themselves are neural networks,
each with their own parameters. In our initial investi-
gations for this paper, we limit them to feed-forward
networks with identical architectures but separate
parameters. We define each expert as an MLP:

MLP = {Linear,ReLu, Softmax}, (9)

where the input and output specifications of the
Linear layer are the same as those in MoE.

The n experts in the figure are divided into three
parts, and each part calculates the weight of differ-
ent granularity. For example, from 1 to r to calculate
the first granularity, each expert will output a weight,
and finally the weight of the entire first granularity
will be calculated. We will focus on the calculation
process of weights and functions in our model.

We define G(x) and Ei(x) as the output of the
gating network and the output of the i-th expert
network for given input x. Therefore, the outputs of
the three parts above-mentioned can be calculated
respectively as follows:

E(x)R =
∑r

α=1
Wα ·O(α, x), (10)
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Figure 2: The architecture of the proposed frame-
work. Given an input event xi, we get c+R, c+S_P ,
and c+P_O through three different granularity marks,
and then enter n experts (E1 . . . En), and finally
get the weights assigned by the model to differ-
ent granularities. Moreover, c+R = fθ(R(xi), ω

∗),
where R(x) represents random granularity marking
of the original event.

E(x)S_P =
∑h

α=r+1
Wα ·O(α, x), (11)

E(x)P_O =
∑n

α=h+1
Wα ·O(α, x), (12)

where α is the serial number of the experts partici-
pating in the operation, the output of each expert α
is O(α, x), and Wα is trainable weight matric.

Instead of the simple selection used by non-
sparse gating functions (Jordan and Jacobs, 1994),
we add sparsity and noise to the softmax gating
network. Specifically, we introduce the Noisy Top-K
Gating mechanism, by sampling and sorting the
weights of each expert, and then selecting the top
k models with higher weights to participate in the
calculation (while the rest will be set to −∞). In this
way, the experts who are most useful to the input
samples can be reserved as much as possible to
participate in the calculation while maintaining the
saving of computing resources.

G(x) = Softmax(GetTop(Q(x), k)) (13)

Qi(x) = (x ·Wg)i + stdnorm() · softplus(x ·Wq)
(14)

Both Wg and Wq in Equation 14 are trainable
weight matrices, and we use a standard Gaussian
distribution stdnorm() to format the non-linear acti-
vation function.

3.3. Training
The final training goal of the model is as follows:

LFinal = φ(Linfo + Lmlm) + γLE , (15)
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where φ and γ are editable hyperparameters. Linfo

is the modified InfoNCE loss, Lmlm is the masked
language model loss. Based on the original In-
foNCE, we added the parameter ε of each positive
example learning. Finally, LE is the expert loss
we get from the MoE layer. Below we give some
specific calculation procedures.

When we train multi-granularity label comparison
learning, the space occupied by the loss function
introduced at the beginning is too high, and we
could not clarify the impact of each granularity on
the model, so we make modifications here.

Linfo =
∑3

j=1
− log

εjg(ci, c
+
ij
)

g(ci, c
+
ij
) +

∑
k∈M(i) g(ci, ck)

(16)
where εj represents the importance weights of

each granularity, and these three parameters are
automatically obtained during the training process
of the model. For example, the weight calculation
of the three granularities are as follows:

ε1 =
∑r

i=1
Qi (x) (17)

ε2 =
∑k

i=r+1
Qi (x) (18)

ε3 =
∑n

i=k+1
Qi (x) (19)

Moreover, the MLM loss Lmlm is obtained by cal-
culating the cross entropy separately at three dif-
ferent granularities and adding them together. We
show Equation 20 below, LR_mlm, LS_P_mlm and
LP_O_mlm represent random granularity, subject-
predicate granularity and predicate-object granular-
ity respectively.

Lmlm = LR_mlm + LS_P_mlm + LP_O_mlm (20)

In addition, in the experiment, we have found that
the gating network tends to converge to a certain
state where it always produces large weights for the
same few experts. We analyze that the reason for
this problem is that the favored experts are trained
faster, which leads to more selection of such ex-
perts by the gating network. So we introduce a loss
LI for encouraging all experts to have equal im-
portance and another loss LL to ensure balanced
loads.

LI(X) = ωI · CV (
∑

x∈X
G(x))2, (21)

LL(X) = ωL · CV (
∑

x∈X
P (x, i))2, (22)

LE = LI(X) + LL(X), (23)

where CV (X) is the Coefficient of Variation, which
is used to measure the degree of dispersion be-
tween samples.

4. Experimental Settings

Following previous studies (Ding et al., 2019; Li
et al., 2018a; Lee and Goldwasser, 2019), we eval-
uate the event representation learning models on
two event similarity tasks, a transfer task and a
script event prediction downstream task (Lee and
Goldwasser, 2019).

The event triples we use for the training data are
extracted from the New York Times Gigaword Cor-
pus using the Open Information Extraction system
Ollie (Mausam et al., 2012). Our training dataset
consists of an extensive collection of 4,029,877
event triplets. As for downstream tasks, we use
the MCNC dataset adopted in Lee and Goldwasser
(2019)1 for the downstream task.

We use the Texar-Pytorch package (Hu et al.,
2019) to build the model and take BERT (Devlin
et al., 2019) as the backbone model. We train our
model with a batch size of 256 using an Adam
optimizer. The learning rate is set as 2e-7 for the
event representation model. The training epochs
are set as 3. Some other hyperparameter settings:
The number of experts is set as 9 and K is set as
2. In Eq.15: φ is set to 0.48 and γ is set to 0.52. In
Eq.21 and Eq.22, ωI is set to 0.01 and ωL is set to
0.1, respectively.

4.1. Event Similarity Tasks
Similarity tasks are often a general measure of
how good a vector representation is. (Weber et al.,
2018) introduce two event related similarity tasks,
respectively Hard Similarity Task and Transitive
Sentence Similarity.

Hard Similarity Task The task aims to measure
the similarity between two text fragments. Each
event pair in the test set contains two groups of
events, one group of events has little overlap in vo-
cabulary, but they are similar in semantics, and the
other group has a lot of overlap in vocabulary, but
the semantics they express are quite different. This
dataset contains a total of 115 event groups and
230 pairs of events (Weber et al., 2018) (denoted
as "Original Hard Similarity Task").

To evaluate the robustness of event representa-
tion, (Ding et al., 2019) extend the above dataset
to 1000 event pairs (similar and dissimilar events
each account for 50%) (denoted as "Extend Hard
Similarity Task"). We use Accuracy as the evalu-
ation metric, which measures the percentage of
cases where the similar pair receives a higher co-
sine value than the dissimilar pair.

Transitive Sentence Similarity We also test
the effectiveness of our method on the transitive
sentence similarity task (Kartsaklis and Sadrzadeh,

1https://github.com/doug919/multi_
relational_script_learning

https://github.com/doug919/multi_relational_script_learning
https://github.com/doug919/multi_relational_script_learning
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Model Original hard Sim.(%) Extend hard Sim.(%) Transitive sentence Sim.(ρ)
Predicate Tensor (Weber et al., 2018) 41.0 25.6 0.63
Role-factor Tensor (Weber et al., 2018) 43.5 20.7 0.64
SAM-Net (Lv et al., 2019) 51.3 45.2 0.59
KGEB (Ding et al., 2016) 52.6 49.8 0.61
FEEL (Lee and Goldwasser, 2019) 58.7 50.7 0.67
NTN-IntSent (Ding et al., 2019) 77.4 62.8 0.74
UniFA-S (Zheng et al., 2020) 78.3 64.1 0.75
SWCC (Gao et al., 2022) 80.9 72.1 0.82
MCTM (ours) 81.7 75.2 0.85

Table 2: The overall performance on the event similarity task. The best results are bolded. Sim. denotes
similarity.

2014), which contains 108 pairs of transitive sen-
tences: short phrases containing a single subject,
object and verb (e.g., agent sell property). Every
pair is annotated by a human with a similarity score
from 1 to 7, and a higher score indicates that the two
events are more similar. A larger score indicates
that the two events are more similar. Following pre-
vious work (Weber et al., 2018; Ding et al., 2019;
Gao et al., 2022), we evaluate using Spearman’s
correlation of the cosine similarity predicted by each
method and the annotated similarity score.

4.2. Downstream Task
We also validate the effectiveness of our method on
downstream tasks. The Multiple Choice Narrative
Cloze (MCNC) task (Granroth-Wilding and Clark,
2016) is a machine reading comprehension task
designed to evaluate the model’s ability to solve
cloze problems. In the MCNC task, given the con-
text of a story or narrative text, the model needs to
select the most appropriate option from multiple al-
ternatives to fill in the blanks in the text, making the
whole story or text more coherent and complete.

4.3. Comparison methods
We compare our method with some baselines, and
we briefly introduce these baseline methods below.

Predicate Tensor (Weber et al., 2018) and Role-
factor Tensor (Weber et al., 2018) are models that
use tensors to learn the interactions between the
predicate and its arguments and are trained using
co-occurring events as supervision. SAM-Net (Lv
et al., 2019) tries to simulate the process that hu-
man beings tend to choose limited key information
for memorizing and extracting answers selectively.
KGEB (Ding et al., 2016) incorporates knowledge
graph information. FEEL (Lee and Goldwasser,
2018) and UniFA-S (Zheng et al., 2020) adopt dis-
course relations. NTN-IntSent (Ding et al., 2019)
takes intent and sentiment into event representa-
tion learning as external knowledge. SWCC (Gao
et al., 2022) learns representations using weakly
supervised contrastive learning and clustering al-
gorithms. For downstream tasks, we compare the

following methods. We do not compare supervised
representation learning (Bai et al., 2021; Lv et al.,
2020), because we believe that purer event repre-
sentations are more valuable, and we tend to dis-
cover internal feature information from the events
themselves. Random picks a candidate at random
uniformly. PPMI (Chambers and Jurafsky, 2008)
uses co-occurrence information and calculates Pos-
itive PMI for event pairs. BiGram (Jans et al., 2012)
calculates bi-gram conditional probabilities based
on event term frequencies. Word2Vec (Mikolov
et al., 2013) uses the word embeddings trained
by the Skipgram algorithm and event representa-
tions are the summation of word embeddings of
predicates and arguments.

5. Experiment Results

Table 2 shows the performance of different model
methods on the event similarity task. The results
show that our proposed MCTM model offers the
best performance among the comparison meth-
ods on two hard similarity tasks. And there is
also a certain improvement in the task of transfer-
ring events. It outperforms the Role-factor Tensor
method based on co-occurrence information and
methods trained with additional annotations and
commonsense knowledge, such as NTN-IntSent
and UniFA-S. Compared with SWCC, which also
uses the contrastive learning method, the perfor-
mance of MCTM is also greatly improved, which
proves the superiority of the multi-granularity label-
ing method. Table 3 reports the performance of
different methods on the MCNC task. The table
shows that MCTM achieves the best accuracy on
the MCNC task under the zero-shot transfer setting,
indicating that the proposed MCTM generalizes
better to downstream tasks than other comparison
methods.

6. Ablation Study

To explore the influence of different methods in
the model on the model, we conduct an ablation
experiment, as shown in Table 4. We remove a
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Model Accuracy (%)
Random 20.00
PPMI 30.52
BiGram 29.67
Word2Vec 37.39
SWCC 44.50
MCTM 46.15

Table 3: The performance on the MCNC task. The
best results are bolded.

Model OHS (%) EHS (%) TSS(ρ)
MCTM 81.7 75.2 0.85
Single Fine-grained 80.9 (↓0.8) 72.1 (↓3.1) 0.81 (↓0.04)
Single Coarse-grained 79.1 (↓2.6) 70.6 (↓4.6) 0.82 (↓0.03)
w/o MoE Layer 79.9 (↓1.8) 73.9 (↓1.3) 0.84 (↓0.01)

Table 4: Ablation experiments of different methods
on the event similarity task. OHS: original hard sim-
ilarity. EHS: extend hard similarity. TSS: transitive
sentence similarity.

certain component in the model and examined
the corresponding performance of the incomplete
MCTM on the event similarity task. Since the multi-
grained labeling shows the distinction between fine-
grained and multi-granularized, we first test the
performance of different scales of granularity sepa-
rately, and the results show that the coarse-grained
labeling method has a more significant impact on
the extended event similarity task. Second, we test
the MoE layer and showed that removing this mod-
ule would produce a drop of around 1 point on the
hard similarity task.

Next, we designed ablation experiments to dis-
cuss the impact of the sparsity of MoE on model
performance. The sparsity of MoE in our model is
reflected in the selection of experts. The sparse
gating mechanism helps to reduce computational
complexity so that only a few expert groups will
be activated, thereby improving the efficiency of
the model. For this part of the ablation experiment,
we used several methods: 1). Close the gating
mechanism: so that all experts are always active.
2). Reduce the sparsity of the gating mechanism:
Gradually reduce the sparsity of the gating mecha-
nism, that is, increase the probability of selecting
multiple experts. 3). Randomly select expert group:
At each time step or sample, experts are randomly
selected to process the input data, instead of being
selected according to our proposed top k mecha-
nism. Table 5 presents the experimental results.
We can see that sparsity has a greater impact on
model performance, but has a smaller impact on
the TSS task. We consider that it may be because
the evaluation criteria of TSS are not similar.

We also conducted corresponding ablation exper-
iments on Equation 21 and Equation 22. Here we
consider separately: 1) Remove the LI loss, that
is, do not consider the same importance weight of

Model OHS (%) EHS (%) TSS(ρ)
MCTM 81.7 75.2 0.85
Active all experts 80.2(↓1.5) 73.8(↓1.4) 0.84(↓0.01)
Multiple experts 79.9(↓1.8) 73.5(↓1.7) 0.84(↓0.01)
Random experts 80.1(↓1.6) 72.9(↓2.3) 0.83(↓0.02)

Table 5: Ablation experiment to verify the impact of
MoE sparsity on model performance.

Model OHS (%) EHS (%) TSS(ρ)
MCTM 81.7 75.2 0.85

w/o LI 76.7(↓5) 70.3(↓4.9) 0.79(↓0.06)
w/o LL 77.4(↓4.3) 72.2(↓3) 0.79(↓0.06)

Table 6: Ablation experiments to verify the impact
of the losses in Equations 21 and 22 on model
performance.

each expert, which may cause the model to deviate
when considering each granularity 2) Remove the
LL loss, that is, do not consider the model Load
balancing. The following table shows our current
experimental results. It can be seen in Table 6that
the loss of these two parts has a greater impact on
the performance of the model.

7. Analysis

In this section, we further analyze the fit of MoE
and the idea of multi-granularity.

Number of experts. Figure 7 shows the overall
performance of the model when we set different
numbers of experts. We can only use no more
than 15 experts due to the limitations of graphics
card equipment. It can be concluded from the ex-
periment that when the number of experts is less
than 9, the overall performance is improved, but
when the number of experts is more than 9, the
performance of the model is improved little or even
has a downward trend. We analyze that it may be
because when too many experts are assigned, the
calculation of weight distribution may lead to devia-
tions in the calculation of features.

Importance weights at different granularities.
We have generated importance weights at differ-
ent granularities during the training process, as
illustrated in a, b and c in Figure 4. Figure d in 4
shows a pie chart of the weight distribution for each
granularity. We can see that the Pre-obj Labeling
particle has the highest weight of the three grains
(37%). The importance weight associated with
the predicate-object labeling granularity exhibits
a consistent upward trend throughout the training,
eventually stabilizing at approximately 37%. In con-
trast, the weight for random labeling granularity
consistently decreases and remains stable at 30%.
The subject-predicate labeling weight, on the other
hand, fluctuates between 33% and 33.4% overall.
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Figure 3: Effect of different numbers of experts on
model performance.

Our analysis suggests that as the model learns the
semantic features of simple events, there is a strong
connection between the predicate and the object.
Many events exhibit distributed similarities within
these two grammatical structures. This observation
could explain the increasing weight assigned to the
predicate-object labeling granularity over time.

8. Related Work

Event representation learning. Event represen-
tation learning plays a crucial role in understanding
the relationships between events (Wadden et al.,
2019; Gao et al., 2019; Yu et al., 2020). For in-
stance, the script event prediction task relies on
event relationships (temporal, causal, and other
complex relationships) to explore the connection
between preceding events and predict the most
likely subsequent event (Zhou et al., 2022; Ding
et al., 2019; Li et al., 2018a). Furthermore, event
schema induction (Li et al., 2020) and event nar-
rative modeling (Li et al., 2018a; Xu et al., 2022;
Lee and Goldwasser, 2019) are additional down-
stream tasks that are currently under investigation.
The incorporation of external knowledge also en-
hances event feature representation. Examples
include the utilization of external commonsense
knowledge (Ding et al., 2019) as well as human
action intentions and sentiments (Sap et al., 2019).

Contrastive learning. The method of contrastive
learning has applications in many tasks in several
fields (Khosla et al., 2020; Xiao et al., 2021; Chen
and He, 2021). Building upon prior research in con-
trastive learning (Xiao et al., 2021; Zimmermann
et al., 2021; ?), we observe that negative examples
hold greater significance than positive examples in
the context of contrastive learning. Therefore, our
work focuses on negative examples and incorpo-
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Figure 4: Figures a, b and c show the changes in
the importance weights of three different granulari-
ties during training. Figure d shows the weight ratio
of the final three granularities.

rates multi-granularity labeling to facilitate learning
in conjunction with positive examples. This ap-
proach is motivated by the achievements of multi-
grained pre-trained language models (Joshi et al.,
2020; Diao et al., 2020; Zhang et al., 2021), which
have demonstrated success in a range of applica-
tions.

Mixture of Experts. Mixture of Experts (MoE)
has witnessed significant advancements in recent
years, with researchers introducing various mod-
ifications to its structure. The work by (Lepikhin
et al., 2021) was the first to extend the concept
of MoE to Transformer models. The specific ap-
proach involves replacing every other position-wise
Feed-Forward Network (FFN) layer in both the en-
coder and decoder of the Transformer with an MoE
layer. Switch Transformer (Fedus et al., 2021) in-
troduces a gating network that routes to only one
expert at a time, thus achieving higher computa-
tional efficiency for the MoE layer alone. Google’s
super-large model, introduced in 2021 (Du et al.,
2022), surpasses GPT-3 (Brown et al., 2020) in
performance on 29 NLP tasks, despite being three
times larger. This accomplishment is attributed to
the design of the Sparse MoE, which reduces the
training cost to only one-third of GPT-3.

9. Conclusion

In our work, we introduce MCTM, a method that
incorporates multi-granularity labeling of positive
examples to enhance token-level knowledge in con-
trastive learning. Specifically, we utilize the Mixture
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of Experts Layers to learn distinct parameters for
different granularities, allowing for a more effective
understanding of event characteristics. Experimen-
tal results demonstrate that our model outperforms
other baselines in the event similarity task. Addition-
ally, the results showcase the ability of our model to
learn implicit relationships between different events
through downstream tasks.
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