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Abstract
We propose a method to combine the hybrid Kaldi-based Automatic Speech Recognition (ASR) system with the
end-to-end wav2vec 2.0 XLS-R ASR using confidence measures. Our research is focused on the low-resource Irish
language. Given the limited available open-source resources, neither the standalone hybrid ASR nor the end-to-end
ASR system can achieve optimal performance. By applying the Recognizer Output Voting Error Reduction (ROVER)
technique, we illustrate how ensemble learning could facilitate mutual error correction between both ASR systems.
This paper outlines the strategies for merging the hybrid Kaldi ASR model and the end-to-end XLS-R model with
the help of confidence scores. Although contemporary state-of-the-art end-to-end ASR models face challenges
related to prediction overconfidence, we utilize Renyi’s entropy-based confidence approach, tuned with temperature
scaling, to align it with the Kaldi ASR confidence. Although there was no significant difference in the Word Error Rate
(WER) between the hybrid and end-to-end ASR, we could achieve a notable reduction in WER after ensembling
through ROVER. This resulted in an almost 14% Word Error Rate Reduction (WERR) on our primary test set and an
approximately 20% WERR on other noisy and imbalanced test data.
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1. Introduction

In machine learning, combining multiple models
is a common technique used to improve accu-
racy, robustness, and overall performance of pre-
dictive models – this approach is known as en-
semble learning. There are several ensemble
techniques like bagging (Opitz and Maclin, 1997),
boosting (Schwenk and Bengio, 2000), stacking
(Pavlyshenko, 2018) and voting (Fiscus, 1997)
each with its own advantages and use cases. Sys-
tem combination is a widespread practice in ASR.
The fused ensemble system typically yields lower
WER compared to individual systems and demon-
strates improved generalization to unseen data.

In ASR, the ROVER technique minimizes WER
by harnessing distinct error patterns from multiple
ASR systems (Fiscus, 1997). The ROVER algo-
rithm first aligns the hypotheses and then chooses
the hypotheses based on weighted word level confi-
dence scores. Such ROVER ensemble techniques
in ASR have been applied in various contexts,
such as language identification (LID), dialectal and
accented ASR, and commercial ASRs. (Metze
et al., 2000) demonstrates that confidence-based
LID outperformed traditional score-based meth-
ods, employing confidence scores from multiple
monolingual Hidden Markov Model (HMM)-based
ASR models. Moreover, hybrid Kaldi ASR models
have been combined with ROVER to enhance ASR
performance and robustness in (Audhkhasi et al.,
2013; Jalalvand et al., 2015; Gebauer et al., 2023;
Yamini and Ingo, 2021). Valente (2010) explored

the use of the Dempster–Shafer (DS) combination
rule for multi-stream ASR, boosting recognition ac-
curacy and resilience in adverse acoustic condi-
tions.

Since 2021, end-to-end architecture-based ASR
systems gained traction with substantial success
in terms of WER. However, the computation of
word-level confidence in end-to-end Connectionist
Temporal Classification (CTC)(Graves et al., 2006)
based models is a challenge compared to the com-
putation in hybrid ASR systems. End-to-end ASR
systems determine confidence in predictions by an-
alyzing softmax probabilities of output vocabulary
units (logits), with the highest probability indicating
confidence (Hendrycks and Gimpel, 2017). How-
ever, this approach is problematic due to "prediction
overconfidence", in which the probability distribu-
tion heavily favors the most supported hypothesis
(which may be incorrect). In the case of CTC based
end-to-end ASR, this "prediction overconfidence" is
observed when an incorrect prediction is assigned
a probability higher than 0.9 (Laptev and Ginsburg,
2023). Another issue is the prediction granularity,
where speech applications typically demand confi-
dence assessments at the word level, while end-to-
end ASR systems produce outputs per time frame.
This granularity issue is why finding an aggregation
method for lifting, e.g., frame or grapheme level
scores to word-level scores is important as well.

Valente (2010) describes the use of inverse-
entropy to combine multiple multi layer perceptron
(MLP) classifiers trained on different representa-
tions of the speech signal, and recently Laptev
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and Ginsburg (2023) employed advanced entropy-
based methods to measure confidence scores and
reduce the risk of overconfidence in conformer CTC
(Gulati et al., 2020) and recurrent neural network
transducer (RNN-T) models. A recent study by Git-
man et al. (2023) used confidence measures based
on entropy to combine multiple conformer CTC and
RNN-T models. As far as we know, there is no
study where entropy-based confidence scores are
used to combine HMM-DMM based hybrid ASR
models with end-to-end ASR models. In this paper,
we try to narrow this gap by investigating an en-
semble model by combining CTC based wav2vec
2.0 (Baevski et al., 2020) XLS-R (Babu et al., 2022)
model with HMM-DNN Kaldi (Povey et al., 2011)
using ROVER.

2. Data

2.1. Audio Data

We employed the same audio data set for train-
ing the Kaldi-based hybrid ASR models and for
fine-tuning the CTC-based end-to-end wav2vec 2.0
XLS-R model. To that end we combined three
small open-source Irish datasets: (1) the Com-
mon Voice (CV) Irish dataset (Ardila et al., 2020)
served as primary source. To ensure data quality,
we exclusively utilized validated utterances from
CV dataset, excluding those earmarked for the test
set. (2) The "Living Audio" (LA) dataset (Braude
et al., 2019), which contributed an additional hour of
Irish speech data. (3) All Irish utterances available
from the "Google Fleurs" (GF) dataset (Conneau
et al., 2023). By combining these three datasets,
we compiled a audio training dataset comprising
9,274 utterances (13.5 h).

For testing purposes, we used two sets: (1)
the CV Irish ’Test’ set, containing 513 utterances
(0.5 hours of speech), and (2) the ’Invalidated’ CV
Irish utterances, encompassing 282 utterances (0.3
hours of speech) after filtering out samples with
very high background noise or without any speech.
The ’Invalidated’ clips in the CV Irish dataset are
those with more downvotes than upvotes, implying
they may contain significant background noise, in-
correct utterances spoken compared to the original
transcript, resulting in a higher WER compared to
the CV Test set. The reference transcripts in train
and test set consist of total 33 tokens, including 18
from the Irish original alphabet, 6 from the English
alphabet for foreign words, and 5 accented vowels
apart from that, there is <pad>, <unk>, aphostro-
phe and a <blank> token. An overview of the Irish
speech data sets is provided in Table 1.

Dataset #Utterances Duration #Word
Tokens

#Word
Types

CV Train 4097 4.1h 27880 2341
LA Irish 1122 1h 11360 3542
GF Irish 1947 8.4h 48929 9866
CV Test 513 0.5h 3423 1109

CV Invalidated 282 0.3h 2230 707

Table 1: Overview of the Irish datasets used. The abbre-
viations CV, LA and GF denote Common Voice, Living
Audio and Google Fleurs, respectively.

2.2. Text Data and Pronunciation
Lexicons

For the language model (LM), we used the CC-
100 Monolingual datasets sourced from Web Crawl
Data (Conneau et al., 2020). This extensive re-
source covers over 100 languages, including Irish,
and comprises a total of 84 million word tokens
and 0.12 million word types, each with a frequency
higher than 10. For our experiments with Kaldi
ASR, we trained a Grapheme-to-Phoneme (G2P)
model based on Joint-sequence models, by using
13,300 seed Irish pronunciations extracted from
Wikipron (Lee et al., 2020).

3. Methodology

To train the (lattice based) hybrid ASR we used
Kaldi ASR toolkit’s mini-librispeech recipe1. The
acoustic model (AM) is a combination of a Time-
Delayed Neural Network (TDNN) and a Convolu-
tional Neural Network (CNN). Next, a 4-gram sta-
tistical LM for Irish was generated using the SRILM
tool (Stolcke, 2002), based on the text resources
mentioned in section 2.2. Finally, the pronunci-
ation lexicons were created using a data-driven
approach for Irish as explain in the section 2.2. For
decoding with Kaldi we used Minimum Bayes Risk
(MBR) decoding to select the most likely candidate
hypothesis with the lowest expected loss under a
probability model. It does so by minimizing the
expected classification error, effectively incorpo-
rating the loss function into the decision-making
process. MBR decoding is typically implemented
by re-ranking a list of N-best transcriptions gen-
erated by an initial decoder. In order to do so we
used the lattice-to-ctm-conf script2 with the

--decode-mbr flag set to true. The MBR method
derives the most probable transcript w∗ by optimiz-
ing a function of the following form:

w∗ = argmin
w

∑
w′

p(w′|x)L(w,w′)

1github.com/kaldi-asr/kaldi/blob/
master/egs/mini_librispeech/

2github.com/kaldi-asr/kaldi/blob/
master/src/latbin/lattice-to-ctm-conf.cc

github.com/kaldi-asr/kaldi/blob/master/egs/mini_librispeech/
github.com/kaldi-asr/kaldi/blob/master/egs/mini_librispeech/
github.com/kaldi-asr/kaldi/blob/master/src/latbin/lattice-to-ctm-conf.cc
github.com/kaldi-asr/kaldi/blob/master/src/latbin/lattice-to-ctm-conf.cc
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Figure 1: Representation of the two approaches for estimating confidence scores for CTC based end-to-end ASR.
From CTC output, we obtain the probability distribution of each token vocabulary for each time-frame. Based on
mentioned two approaches we extract confidence score at token level and finally aggregate to obtain scores at word
level using word boundaries. The size of the token vocabulary is denoted by V, the number of tokens is denoted by T.

In the above equation, p(w′|x) represents the prob-
ability of the word sequence w′ given the audio
signal x, and L(w,w′) denotes the Levenshtein dis-
tance between the two word sequences w and w′.

We finetuned an end-to-end CTC based model
on the training audio dataset (section 2.1). We uti-
lized the publicly released pre-trained wav2vec 2.0
model, XLS-R, which was trained on 436K hours of
publicly available speech audio and is available on
HuggingFace3. We used the 300 million-parameter
version of XLS-R4, which is among the smaller ver-
sions (models range from 300 million to two billion
parameters). The fine-tuning was performed on an
NVIDIA Tesla T4 GPU using the Adam optimizer,
with a learning rate starting with a warm-up for 500
steps, peaked at 3e−4 for all global steps, and then
decayed exponentially. The total number of global
steps for fine-tuning to Irish was 7180. We em-
ployed greedy decoding, and simply picked up the
best hypothesis at each time step.

To compute the confidence scores for the end-to-
end CTC based wav2vec 2.0 model, we used two
approaches mentioned in the figure 1. In the first ap-
proach, we determine the maximum probability for
each token and aggregate the word-level probability
based on a word’s onset and offset. The maximum
probability (henceforth noted as max prob) is calcu-
lated using the log_softmax function with a tem-
perature scaling factor of 1. When the temperature
is set to one, scaling is not applied to max prob, and
any entropy type behaves like the Shannon entropy.
In the second approach, we first converted logits
to log_softmax, assigned an entropy value to
each predicted token (here: grapheme), and used
the inverse entropy as a ’confidence’ value. We
then aggregated the token-level confidence scores
to word-level scores based on onsets and offsets
of each hypothesized word. In this entropy-based

3huggingface.co/docs/transformers/
model_doc/wav2vec2

4huggingface.co/facebook/
wav2vec2-xls-r-300m

approach, we followed the method described by
Laptev and Ginsburg (2023). For each token’s prob-
ability distribution pv, vocabulary size V and at time
frame ti, we computed the confidence score C(ti)
based on exponentially normalized Renyi’s entropy
via:

C(ti) =
(
∑

epv·τ )
1

τ−1 · V − 1

V − 1

In this formula, τ denotes a temperature scaling
factor. Temperature scaling involves the multipli-
cation of log-softmax values by τ (τ between 0
and 1). We tuned Renyi’s entropy based confi-
dence by adjusting τ (Hinton et al., 2015). While
this approach is often employed to recalibrate raw
prediction probabilities, it doesn’t result in a sig-
nificant improvement in confidence itself (Wang
et al., 2020). However, this adjustment makes the
resulting confidence score more compatible with
other confidence scores such as the ones used
in the Kaldi-based (lattice) methods, and thereby
enhances the robustness of entropy-based confi-
dence measures in ensemble classification.

To convert token-level confidence to word level
confidence score we used three aggregation meth-
ods, here denoted mean, minimum and product
referring to the math operation involved. In CTC
ASR models a special blank token <blank> is
used. In our aggregation approaches, we excluded
<blank> tokens prior to the aggregation of the
token-level confidence scores.

We computed mean and standard deviation (SD)
of confidence scores of both Kaldi and the end-to-
end ASR. For the end-to-end ASR, we computed
token probabilities, and tuned the Renyi’s entropy
confidence with different aggregation methods.

3.1. ROVER
After computing the confidence scores for both
systems, we merged the hypotheses from both
ASRs using ROVER (Fiscus, 1997; Yamini and
Ingo, 2021). ROVER combines transcriptions from

huggingface.co/docs/transformers/model_doc/wav2vec2
huggingface.co/docs/transformers/model_doc/wav2vec2
huggingface.co/facebook/wav2vec2-xls-r-300m
huggingface.co/facebook/wav2vec2-xls-r-300m
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multiple ASR systems by selecting the best word
hypothesis for each word through a voting process.
This process has two phases. In the first phase,
ROVER aligns the hypotheses by minimizing the to-
tal cost of word insertion, deletion, and substitution
to make all hypotheses identical. Alignments are
done iteratively, and if a word is missing in the align-
ment, it’s replaced with a null word transition. In the
second phase, it uses a voting mechanism to cal-
culate a word-level score. This score is determined
by a weighted sum of the word-level confidence
C(wi) and the number of times the word occurs
normalized by total number of hypothesis. In the
equation below, word occurrence is represented
as N(wi) and total hypothesis is represented as
Ns. In our case it is 2 (One from Kaldi and another
from wav2vec 2.0). α ∈ [0, 1] is the weight given to
the word occurrence. In our experiments, we gave
less weight to word occurrence (0.3) and more to
confidence scores (0.7).

Score(wi) = α(
N(wi)

Ns
) + (1− α)C(wi)

The performance of the ASR models and ROVER
is expressed in terms of the traditional WER.

4. Results

Table 2 shows confidence scores in various condi-
tions, while Table 3 presents WER scores.

In Table 2, the Kaldi-based confidence scores
vary on the Irish Test set with a mean of 0.9435
(SD 0.1479); on the Invalidated test set the mean
is 0.8850 (SD 0.2030). Softmax probability of CTC
based end-to-end model reflects "over-confidence"
by showing mean of approximately 0.999 (SD
0.0132) for both the Irish Test and Invalidated.
While using entropy based confidence score in
wav2vec 2.0 and tuning it by temperature scale
τ , we were able to achieve a mean and SD com-
parable to Kaldi’s confidence with mean-based ag-
gregation.

Table 3 shows that Kaldi-based ASR yielded a
WER of 26.71% on the Irish Testset and approxi-
mately 39% WER on the Irish Invalidated set. When
fine-tuned using similar audio data, the wav2vec
2.0 XLS-R model showed a slight enhancement
in performance, achieving a WER of 25.81% on
the Irish Testset and a roughly 3% reduction in
WER on the Irish Invalidated set. Ensembling Kaldi
ASR with the softmax probability-based confidence
scores from the wav2vec 2.0 XLS-R model did not
result in a significant improvement in performance
on both test datasets. However, when combining
Kaldi’s confidence score with the entropy-based
mean and minimum aggregated confidence score
of the end-to-end wav2vec 2.0 model using ROVER,
a significant enhancement was observed, resulting

Confidence Test Invalidated
Mean SD Mean SD

Kaldi 0.9435 0.1479 0.8850 0.2030
CTC max prob 0.9990 0.0132 0.9998 0.0141
CTC tuned Renyi’s entropy (Exponentially Normalized)
Mean 0.9329 0.0351 0.8821 0.0480
Min 0.9165 0.0862 0.8586 0.1021
Prod 0.6937 0.1749 0.5304 0.2237

Table 2: This table compares different confidence meth-
ods used for ensemble by ROVER. Mean and SD are
provided for different combinations. CTC max prob is the
softmax of probability distribution over the labels in the
output of wav2vec 2.0. In the CTC tuned Renyi’s entropy
based confidence, the temperature τ was set to 0.40 and
0.36 for the Test set and Invalidated set, respectively.

Model Test Invalidated
Kaldi base 26.71 38.98
Wav2vec 2.0 base 25.81 35.69
ROVER with max prob 25.60 38.95

ROVER with tuned entropy
Mean 22.94 31.01
Min 22.97 31.06
Prod 23.21 31.43

Table 3: Comparing WER for Kaldi ASR, fine-tuned
wav2vec 2.0 model, and ROVER on Irish Test and Inval-
idated sets. The last three rows depict WER improve-
ments through the combination of Kaldi’s confidence
score and wav2vec 2.0’s confidence scores using tuned
Renyi’s entropy with the three aggregation methods.

in a substantial 14% WERR achieved on the Irish
Testset and approximately 20% WERR on the Irish
Invalidated set compared to the Kaldi base model.
This improvement also outperformed the fine-tuned
wav2vec 2.0 model by 11% and 13% WERR on
the Irish Testset and Invalidated set, respectively.
Notably, the product aggregation method yielded
less improvement in comparison to other two on
both test datasets.

5. Discussion and Conclusion

We present an approach to ensemble the hybrid
Kaldi based model with the end-to-end wav2vec
2.0 XLS-R model and demonstrate the significant
effect of ROVER in terms of performance for the
under-resourced language Irish. This significant
improvement can only be achieved by using appro-
priate methods for combining confidence measures.
One major challenge in combining hypotheses lies
in calibrating confidence scores by adjustment of
the temperature parameter τ . The determination
of the optimal value of τ for all datasets is crucial
to ensure that the resulting confidence scores can
be compared in terms of their mean and SD.
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This ensemble approach offers another substan-
tial advantage, namely for mitigating the problems
related to the generation of non-lexical words and
hallucinations within the end-to-end ASR method.
The Kaldi-based hybrid ASR, owing to its restricted
lexicon search space based on the pronunciation
lexicons employed during training, effectively con-
fines output word prediction. This restriction leads
to more precise and customized results, reducing
inaccuracies. A drawback of the ensemble method
is that it is not suitable in applications where close
to real-time responses are crucial. By combining
hybrid model with end-to-end model, the compu-
tational resource required for decoding will also
increase. However we believe, that this approach
has the potential to facilitate the development of
diverse and specialized ASR systems tailored for
specific use cases.
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