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Abstract

Recent studies have demonstrated that the ability of dense retrieval models to generalize to target domains with
different distributions is limited, which contrasts with the results obtained with interaction-based models. Prior
attempts to mitigate this challenge involved leveraging adversarial learning and query generation approaches,
but both approaches nevertheless resulted in limited improvements. In this paper, we propose to combine the
query-generation approach with a self-supervision approach in which pseudo-relevance labels are automatically
generated on the target domain. To accomplish this, a T5-3B model is utilized for pseudo-positive labeling, and
meticulous hard negatives are chosen. We also apply this strategy on conversational dense retrieval model for
conversational search. A similar pseudo-labeling approach is used, but with the addition of a query-rewriting module
to rewrite conversational queries for subsequent labeling. This proposed approach enables a model’s domain
adaptation with real queries and documents from the target dataset. Experiments on standard dense retrieval and
conversational dense retrieval models both demonstrate improvements on baseline models when they are fine-tuned
on the pseudo-relevance labeled data. Source code is available at https://github.com/1mh0921/DoDress.
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1. Introduction

Neural information retrieval (IR) has significantly im-
proved IR systems through deep neural networks.
It can be classified into two categories: interaction-
based and representation-based (dense retrieval)
approaches (Guo et al., 2020). While interaction-
based models generally outperform dense retrieval
models, the latter are preferred if one needs to
deploy a model at large scale due to their speed
advantage. However, recent studies, such as BEIR
(Thakur et al., 2021), have shown that dense re-
trieval (DR) models trained on a source domain gen-
eralize less well than traditional models as BM25
and interaction-based models on out-of-distribution
(OOD) data sets. Training on target datasets with
gold labels requires expensive annotations, posing
limitations in real-world scenarios. Thus, address-
ing OOD scenarios for dense retrieval is crucial.
Domain adaptation aims to enable a model
trained on a source domain to perform well on a
target domain without using human labels (Wang
and Deng, 2018; Wang et al., 2022a). Several do-
main adaptation techniques have been proposed
for dense retrieval. One approach is through data
generation, as demonstrated by QGen (Ma et al.,
2021), which generates queries for the target do-
main using a query generator. However, the syn-

* Most of the work was done while the author was
at Univ. Grenoble Alpes.

thetic queries may not resemble real target queries.
Another approach is domain adversarial learning
(Wang et al., 2022a), exemplified by MoDIR (Xin
et al., 2022), which adversarially trains a dense
retrieval encoder to learn domain-invariant repre-
sentations. However, such a learning objective
may result in poor embedding spaces and unstable
performance (Wang et al., 2022b).

In this paper, we address domain generaliza-
tion for dense retrieval through self-supervision
by pseudo-relevance labeling (in short, DoDress).
We aim to build pseudo-relevance labels on the tar-
get domain using interaction-based models solely
trained on the source domain, such as T5-3B
(Nogueira et al., 2020), acting as re-rankers. This
method eliminates the need for human annotations
and allows the model to use genuine queries and
documents from the target domain. Additionally,
we investigate different negative sampling strate-
gies (Zhou et al., 2022) to further enhance the final
dense retrieval model on the target domain.

Conversational search has become a prominent
research area within information retrieval, involving
natural conversations for information retrieval pur-
poses (Zamani et al., 2023; Culpepper et al., 2018).
Conversations exhibit contextualization, concise-
ness, and reliance on prior knowledge, presenting
challenges for search systems in accurately un-
derstanding information needs. Figure 1 shows
an example of conversational search’s query for-
mat: given a query, for example the third one, the
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Q1: what about the moon? |
query encode and search 2 million documents in:595.4 milliseconds
Answer: 'moon' in Other Languages. British English: moon
/mu:n/ NOUN. The moon is the object in the sky that goes round
the Earth once every four weeks and that you can often see at
night as a circle or part of a circle. ...the light of a full moon.
American English: moon

I Q2: what's the distance to earth? |
query encode and search 2 million documents in:559.4 milliseconds

Answer: At apogee — the farthest away it gets — the moon is
252,088 miles (405,696 km) from Earth. On average, the
distance from Earth to the moon is about 238,855 miles (384,400
km). However, the moon is moving away from Earth at a rate of
about 1.5 inches (4 cm) per year.

I Q3: what's the distance to earth? |
query encode and search 2 million documents in:526.9 milliseconds

Answer: Neil Armstrong: First Man on the Moon. Neil Armstrong
sits in the lunar module after a historic moonwalk. Neil A.
Armstrong was a NASA astronaut and the first man on the moon
or, more accurately, the first man to set foot on the moon.

Figure 1: An example of conversational search
(with our model deployed, top 1 as answer).

system needs to understand the omission or user
intention, by taking account into previous queries.
Conversational dense retrieval (CDR) models have
been developed to address this problem. However,
CDR models require a large amount of training data
and annotating relevance labels for target conver-
sational search datasets is expensive.

To overcome these challenges, researchers have
proposed approaches that leverage source domain
data to mitigate data scarcity, such as (Yu et al.,
2021; Lin et al., 2021). However, these approaches
do not utilize queries and documents from the tar-
get domain, leaving space for improvement when
adapting to target domain data. In this paper, we
propose a method that combines a query rewriting
module with the pseudo-relevance approach for
CDR models to alleviate the data and label scarcity
issue of the target domain. This enables CDR mod-
els that are trained on a source domain like CA-
NARD (Elgohary et al., 2019) to better adaptation
on the target domain using pseudo-relevance la-
bels.

Our contributions are threefold: First, we propose
a pseudo-relevance labeling approach for a target
IR dataset, which can be used to fine-tune a model
to adapt better on the target domain. Second, we
adopt the effective interaction-based model T5-3B
trained on the source domain to generate pseudo-
positive labels for the target domain. Besides, we
explore different negative sampling strategies to
enhance the final DR model. To the best of our
knowledge, this is the first attempt to combine and
investigate the two strategies. Third, we further
apply the pseudo-relevance labeling approach to
CDR models for conversational search by incor-
porating a query rewriting module, which is natu-
rally a further step to apply the proposed pseudo-
relevance labeling strategy. This pseudo-relevance

data complements CDR models and enables do-
main adaptation on the target dataset. Experimen-
tal results demonstrate the effectiveness of our ap-
proach, showing that fine-tuning DR models on the
target pseudo-labeled data improves their perfor-
mance, particularly benefiting the state-of-the-art
approach GPL. Furthermore, further training CDR
models on the generated training data from the
target dataset leads to improved effectiveness (Yu
et al., 2021; Lin et al., 2021).

2. Related Work

2.1. Pseudo-Quesries and
Pseudo-Labeling for DR or IR

QGen (Ma et al., 2021) proposes a generation ap-
proach for zero-shot learning in dense passage re-
trieval, using synthetic query generation. Similarly,
Liang et al. (2020) suggests using synthetic queries
for unsupervised domain adaptation in dense pas-
sage retrieval. These papers highlight the effec-
tiveness of query generation, which is also utilized
in the GPL model (Wang et al., 2022b), leverag-
ing a pre-trained T5 encoder-decoder (Raffel et al.,
2020). (lzacard et al., 2021) build positive pairs
from a single document, with inverse cloze task,
independent cropping and contrastive learning for
unsupervised dense information retrieval. Recently,
Dai et al. (2022) prompt large language models
(LLM) to create queries and train task-specific re-
trievers. However, they focus on the few-shot set-
ting where a few annotated examples are required
and do not focus on domain adaptation. Sun et al.
(2021) generate discriminative queries based on
contrastive documents. Their approach also focus
on the few-shot setting where a small volume of
target data is required.

Dehghani et al. (2017) suggest training a neu-
ral ranking model with weak supervision, wherein
labels are automatically acquired without human
annotators. This is achieved by employing the out-
put of an unsupervised ranking model, such as
BM25, as a signal for weak supervision. Mokrii
et al. (2021) evaluate the transfer ability of BERT-
based neural ranking models and use BM25 to
generate pseudo-relevance labels. However, these
two approaches don’t focus on DR models and us-
ing only BM25 for pseudo-relevance labels may not
be sufficient. Hashemi et al. (2023) assume that IR
models have access to a brief textual description
that explains the target domain, and produce a syn-
thetic document collection, query set. They then
generate a synthetic document collection, query
set, and pseudo-relevance labels based on this tex-
tual domain description. Qu et al. (2021) propose
RocketQA which uses pseudo-labels for data aug-
mentation, but this approach needs human label
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and does not focus on the domain adaptation of
DR models.

2.2. Conversational Dense Retrieval

Conversational search presents unique challenges
(see Section 1). Two commonly proposed ap-
proaches for addressing these challenges are
query rewriting and conversational dense retrieval
(CDR). The query rewriting approach involves a
module that rewrites conversational queries into a
standard format for better handling by existing in-
formation retrieval systems (Mele et al., 2020; Ren
et al., 2018; Vakulenko et al., 2021). The second
approach is CDR with a query encoder to under-
stand the conversational queries directly. Mao et al.
(2022) propose ConvTrans, that transforms web
search sessions into conversational search ses-
sions to address data scarcity of CDR. Yu et al.
(2021) introduce ConvDR, a teacher-student frame-
work that improves the few-shot ability of CDR by
learning from a well-trained ad hoc dense retriever.
CQE (Lin et al., 2021) uses annotated queries of
the conversational query reformulation dataset CA-
NARD (Elgohary et al., 2019) for the target datasets
to train CDR. While these approaches still face do-
main gaps in the training data.

Another approach is CoOSPLADE (Hai Le et al.,
2023). The authors train a first-stage ranker based
on SPLADE (Formal et al., 2022) model. They
leverages the gold queries in CANARD dataset to
learn to generate SPLADE representations using
previous queries and answers, which is a strategy
similar to CQE. CoSPLADE performs reranking
using T5Mono and finetunes T5Mono with gold
queries (human reformulated query) in the target
domain. This differs from our approach which does
not require gold queries.

3. Background

Dense retrieval DR seeks to encode both
queries and documents into a low-dimensional
space with an encoder g, typically a BERT-like
model Karpukhin et al. (2020); Xin et al. (2022).
The retrieval status value (RSV) of a query and a
document is then calculated:

RSV (q,d)pr = g(q) - 9(d)
(or RSV (q,d)pr = cos(g(q),9(d))),

where g(q) (resp. g(d)) denotes the encoding of
the query (resp. document). This enables a fast re-
trieval through a nearest neighbour search strategy
(Xiong et al., 2020).

BM25 BM25 (Robertson and Zaragoza, 2009) is
a widely used standard IR algorithm based on term

matching, without requiring to be trained. The RSV
of a document with respect to a query is given by:

RSV (q,d)Bama2s =

tfw
2 IDF(w)'kl-(l—berW—d)thfw’

wegNd lavg

where IDF(w) is the inverse document frequency,
lq is the length of document d, I,., the average
length of the documents in the data set, and k; and
b two hyper-parameters.

T53B By establishing a uniform framework that
transforms all text-based language problems into a
text-to-text format, T5 (Raffel et al., 2020) explores
the landscape of transfer learning for NLP and
achieves state-of-the-art results on many bench-
marks. Nogueira et al. (2020) proposed to use T5
(Raffel et al., 2020) as an interaction-based model
for IR by learning:

Query: [q] Document: [d] Relevant: true or false

where [¢] and [d] are replaced with the query and
document texts. During training, the T5 model
learns to generate the word “true” when the docu-
ment is relevant to the query, and the word “false”
when it is not. The relevance score for inference is
then determined by the likelihood of producing “true”
(Nogueira et al., 2020). The RSV is determined by:

Ztrue

RSV(Q; d)T5 = 462“%6 T ezfalsc )
where Z,,,. and Z;,;;. are the logits of output to-
kens.

Conversational Dense Retrieval The conversa-
tional dense retrieval (CDR) is similar to dense re-
trieval (DR), except the query format. A CDR archi-
tecture with pairwise learning is shown in Figure 4,
where the query encoder accepts the concatena-
tion of conversational queries, to understand the
user intention.

4. Pseudo-Relevance Labeling for
Dense Retrieval

To enhance the domain generalization ability of DR
models, we employ the pseudo-relevance labeling
strategy. This involves finding pseudo-positive and
pseudo-negative documents for a target dataset’s
queries, which are used to fine-tune the DR mod-
els. Our approach includes BM25 hard negative
sampling (Figure 2) and our best approach using
SimANS hard negative sampling (Figure 3). We
will discuss them further below.
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Obtain final Triplet pseudo positive
—— Data generation Hard documents
[C] Final Triplet Negative
Top k
BM25 re-ranked
BM25 |— ranked documents
Start: documents f
| query | | documents | T5-3B
MS MARCO

Figure 2: The overall pipeline with BM25 hard neg-
ative sampling for pseudo-relevance labeling.

Obtain final Triplet Hard
— Data generation Negative T5d'3B tOE:‘
) ) SimANS| PSeudo positive
[] Final Triplet Sample documents
Current Dense
Dense |[—> retrieved top
Model n documents \ Top k
co-occurrence dre-ranked
start: | query | | VTS | filter ocuments
= BM25 T5-3B
BM25 ranked R o
documents

Figure 3: The overall pipeline of generating self-
supervised data with meticulous pseudo-relevance
labeling using SIMANS hard negative sampling.

4.1. Pseudo-Positive Sampling

We propose here to consider, for each query, the
top k£ documents obtained with the combination
BM25&T53B, in which T5-3B serves as a re-ranker,
as relevant (or positive). k is a hyper-parameter
which can be set according to different information,
as, e.g., the number of available queries and docu-
ments. T5-3B, which has been shown to be a good
zero-shot IR model in (Nogueira et al., 2020), is
fine-tuned on MS MARCO collection.

4.2. Pseudo-Negative Sampling

Furthermore, for each relevant query-document
pair, we sample m documents and consider them
as non-relevant (or negative). Different negative
mining strategies can be used, as described be-
low. For each query, k& x m query-document triplets
(query, positive document, negative document) can
be formed. The green blocks in Figure 2 and Fig-
ure 3 represent the elements constituting these
triplets, the training data for domain adaptation.

Global and BM25 Hard Negative Sampling A
simple negative mining strategy is global random
negative sampling which consists in sampling, from
all non-positive documents in the dataset, m docu-
ments which are considered as negative.

A key challenge in DR is to construct proper
negative instances for learning its representations
(Karpukhin et al., 2020). Previous global random
negative instances might be too simple for the DR
models. So, for each query, we further propose
to use the BM25 top ranking documents, again ex-
cluding the positive documents, as hard negative
instances for training the DR models. The architec-
ture is shown in Figure 2.

Meticulous Hard Negative Sampling Recently,
SimANS (Zhou et al., 2022) shows existing neg-
ative sampling strategies (Karpukhin et al., 2020;
Xiong et al., 2020) suffer from the uninformative or
false negative problem, and the authors show that
the negatives ranked around the positives are gen-
erally more informative and less likely to be false
negatives. They propose SimANS approach and
this leads to a sampling probability distribution of
the form (Zhou et al., 2022):

pi o< exp (—a(s(q, di) — s(q,d") — b)),V di € D™, (1)

where a controls the density of the distribution, b
controls the peak of the distribution, d* € D+ is
a randomly sampled positive, and D~ is the top-k
ranked negatives.

In this paper, we use this SImANS approach with
the positive documents obtained in Section 4.1.
The architecture is shown in Figure 3: we se-
lect hard negatives that are around the positive
instances in the top ranking of current DR models
(i.e., D-BERT and GPL respectively), thus more
ambiguous and informative negatives can be sam-
pled. The green blocks in Figure 3 correspond to
the queries and the associated positive and hard
negative documents.

4.3. Improving GPL: Combining
Pseudo-Relevance Labels and

Pseudo-Queries

To enhance both the QGen and GPL approaches
which rely on pseudo-queries, we suggest further
training such models like GPL using the proposed
pseudo-relevance triplets. We believe one can gain
from this additional training on the target collection
as pseudo-queries and pseudo-relevance labels
rely on different sources of information and are
complementary to each other. In our experiments,
we demonstrate that this combination significantly
improves the pseudo-query generation approach.

5. Pseudo-Relevance Labeling for
Conversational Dense Retrieval

The architecture for training the CDR model with
pairwise loss is shown in Figure 4, which is similar
to the DR model except with a different query format.
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Figure 4: CDR architecture with training.

CDR models face data scarcity issues and have po-
tential for improvement through domain adaptation.
Naturally, the pseudo-relevance labeling approach
can be used to help the CDR models by modifying
the previous section slightly.

To train the CDR model, we concatenate the his-
tory and current queries, aiming to teach the query
encoder to generate a de-contextualized query rep-
resentation. Additionally, we need annotations for
positive and negative documents. Our solution
is pseudo-relevance labeling with conversational
queries.

To achieve this, we train a T5-Large sequence-
to-sequence model on CANARD (Elgohary et al.,
2019), which is a dataset for learning to rewrite
conversational queries. The overall architecture for
the proposed approach in this section is shown in
Figure 5 and the detailed procedures are outlined
below.

Obtain final Triplet Hal’(.i
Negative

— Data generation

[C]  Final Triplet SimANS Sample T5-3B top_
Current Dense pseudo positive
T5-Large Dense (—>| retrieved top documents
Rewriter Model n documents
CANARD.
ReWritten Co-occurrence Top k
m filter re-ranked
Current History quel documents
query queries
BM25
[Cur l</s> (Hisq <ls>| ] ranked > MgafR%O
documents

Figure 5: Overall pipeline of generating pseudo-
data for conversational dense retrieval.

5.1.

This module is shown in the left part of Figure 5.
We utilize the T5 model’s special token "</s>" to
concatenate the current query and history queries.
The current query is placed at the beginning, fol-
lowed by the recent history queries (with farther
history queries located towards the end), follow-
ing a similar approach as described in (Mao et al.,
2022):

< /s>cur< /s> his_1 < /s> his_s...

The T5-Large model is trained using CANARD (EI-
gohary et al., 2019) with ground-truth human rewrit-

T5-Large Query Rewriter Module

ten queries serving as labels, to generate rewritten
queries that comprehensively capture the user in-
tentions. The T5-Large query rewritten model can
effectively rewrite conversational queries for target
datasets into the desired de-contextualized queries.
Then with them, we can sample pseudo-positive
and pseudo-negative documents for them, as illus-
trated in Figure 5.

5.2. Pseudo-Data Format of
Conversational Dense Retrieval
Model

The sampling step is similar to the approach shown
in Section 4: with T5-3B and SimANS for the gener-
ation of pseudo-labels given the rewritten queries.

Consequently, for training a CDR model as
shown in Figure 4, each line of the training triplet
file can be presented in the following format:

ConcatenateQ \t Texts of a Pseudo-Positive Doc
\t Texts of a Pseudo-Negative Doc

where Concatenate@ follows the format in (Lin
et al., 2021):

hisQ1|hisQa|...|cur@

The triplet training file can serve as training data
for finetuning a CDR model from a source domain.
If the generated data is large enough, it even may
be used to train a query encoder from scratch.

6. Experiments

We conducted experiments on both DR and CDR
models for domain adaptation based on the ap-
proaches described in the previous sections. In
the remainder of this section, we first describe the
setup of DR experiments and analyze their results;
we then detail the CDR experiments.

6.1. Domain Adaptation for Dense
Retrieval Experimental Setup

Datasets The MS MARCO passage ranking data
set (Nguyen et al., 2016) is used as the source
domain data. We want to experiment in an extreme
scenario where no test queries can be seen dur-
ing training even without human labels. This is to
say, we need to generate the pseudo training data
with the training queries which is not in the test
set. To do so, we experiment on 3 target domain
data sets from the BEIR benchmark (Thakur et al.,
2021). They are FiQA, finance question answering
(Maia et al., 2018) which contains 6000 training
queries, BioASQ biomedical question answering
(Tsatsaronis et al., 2015) (following (Wang et al.,
2022b), irrelevant documents are randomly elimi-
nated, leaving 1M documents) which contains 3243
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training queries from original collection’, and Ro-
bust04, news documents (Voorhees, 2005) which
contains 250 queries. Different topics and tasks
are covered by these chosen data sets. For Ro-
bust04, we select the first 100 queries as training
and development set, and the last 150 queries are
used as test set.

Experimental Setting The DR model, called D-
BERT, is based on the DistiBERT (Sanh et al.,
2019) with 6 layers. D-BERT is initially trained on
the source domain. Two groups of experiments are
conducted: one with D-BERT alone and the other
with the GPL model (Wang et al., 2022b) as start
points. Both models are trained using the RankNet
pairwise loss (Burges, 2010; Li and Gaussier, 2022)
on the generated triplets.

Table 1 provides details on the number of queries,
the selected value of k (top documents as relevant),
and the number m of non-relevant documents per
relevant document for each dataset. A develop-
ment set is created to select hyperparameters, con-
sisting of 10 relevant documents and 90 randomly
selected non-relevant documents per query. The
best model is saved based on the NDCG@10 score
on the development set.

A maximum sequence length of 350 with mean
pooling and dot-product similarity is used. A batch
size of 8 and a learning rate of 2e-6 with Adam
optimizer are employed for 10,000 training steps.
Cosine learning rate decay (Loshchilov and Hutter,
2017b) is utilized. For SImANS, the hyperparam-
eters a and b are set to 0.5 and 0, respectively.
Experiments are done on a server with a RTX 6000
GPU, Intel Xeon E5-2623 v4 @ 2.60GHz CPU, and
148 GB memory (also for Section 6.2).

Table 1: The top k selected as positive and m as
negative for each data set. The number in parenthe-
ses is used for generating training data, remaining

for dev set.
data set | #queries (exclude test) | #docs | k m
FiQA 6000 (5960) 57K 1 10
BioASQ 3243 (3193) M 2 | 15
Robust04 100 (90) 528K | 15 | 67
CAsT-19 269 (219) 2M 5 | 100

Baselines We compare our proposed ap-
proaches with various existing methods in the field,
including:

» Zero-shot models: BM25 based on Anserini
(Yang et al., 2018) and D-BERT trained solely
on the source collection.

1http: //participants—-area.biocasqg.org/
Tasks/8b/trainingDataset/

+ Pre-training based models: we use three state-
of-the-art models, namely SimCSE (Gao et al.,
2021), ICT (Lee et al., 2019), and TSDAE
(Wang et al., 2021).

» Domain adaptation approaches: MoDIR (Xin
et al., 2022), UDALM (Karouzos et al., 2021),
QGen (Ma et al., 2021), and GPL (Wang et al.,
2022b). The combination of GPL with TSDAE
is currently considered as the best approach.

Furthermore, we include interaction-based mod-
els BM25+CE and BM25+T53B as strong base-
lines, which re-rank the top 100 BM25 ranked list
using ms-marco-MiniLM-L-6-v2 and T5-3B cross
encoders?, Cross encoders are viewed as upper
bound baselines compared with dense retrieval
models because they are known as interaction-
based models for re-ranking and perform better.
In this paper, this T5-3B model is also used for
pseudo-positive labeling. These models are known
for their good performance in out-of-domain set-
tings (Thakur et al., 2021).

Results and Analysis Table 2 displays the
results obtained with different models and ap-
proaches. The results reported for BM25+CE,
UDALM, MoDIR, SimCSE, ICT, TDSAE, QGen
and TSDAE+GPL are from (Wang et al., 2022b).
Since we test the Robust04 on the last 150 queries,
for BM25+CE, GPL and TSDAE+GPL, we load
the trained checkpoints of D-BERT from (Wang
et al., 2022b)3, and evaluate them on the last 150
queries. The notation “DoDress-T53B (D-BERT)”
corresponds to the D-BERT dense retrieval model
pre-trained on MS MARCO and fine-tuned on
the target data using the pseudo-relevance labels
generated with BM25+T53B. The notation (GPL)
means the same for GPL, which is first trained on
the target pseudo queries it generates and asso-
ciated documents prior to be trained on the target
triplets.

We address three main research questions, de-
noted as RQ.

RQ1 Do BM25+T53B top positives help domain gen-
eralization for dense retrieval models?

The results in Table 2 shows that DoDress-T53B
(D-BERT) and DoDress-T53B (GPL) outperform D-
BERT and GPL, respectively, on the FiQA and Ro-
bust04 datasets using different negative sampling
strategies. Notably, DoDress-T53B (D-BERT) with
the SImANS negative mining strategy achieves an
11.5% improvement over D-BERT, while DoDress-
T53B (GPL) shows an 8.6% improvement over GPL.

thtps ://huggingface.co/castorini/
monot 5-3b-msmarco which is trained on MS MARCO
for 100K steps.

Shttps://huggingface.co/GPL
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On the BioASQ dataset, the approach with global
random negative sampling fails, but the proposed
approach with the other two negative sampling
strategies improves D-BERT and GPL, respectively.
The reasons of this success can be explained by
the fact that the proposed pseudo-relevance label-
ing approach enables the DR models to see and
be trained with real queries and documents of the
target dataset. This labeling approach is further
improved when combined with query generation
approach of GPL. These results demonstrate that
the proposed pseudo-relevance labeling approach
helps dense retrieval models generalize to hew do-
mains. As the reader may have noticed, the choice
of the negative sampling strategy is crucial for its
effectiveness.

RQ2 What is the best negative sampling strategy?

From Table 2, we observe an overall ascending
trend in performance with the three different nega-
tive sampling strategies. The global random neg-
ative method shows improvements on FiQA and
Robust04 but fails on the BioASQ dataset. This
may be due to uninformative negatives that are
too easy for the dense retrieval models on the tar-
get domain. In contrast, the BM25 hard negative
and SimANS negative sampling strategies outper-
form the global random negative strategy, improv-
ing D-BERT and GPL on all three datasets. This
highlights the importance of sampling hard nega-
tives in the proposed pseudo-relevance labeling
data generation approach. Among the three strate-
gies, SIMANS hard negative sampling consistently
performs the best on all datasets, surpassing the
global random negative and BM25 hard negative
strategies.

RQ3 What is the best overall approach?

As one can note from Table 2, the DoDress-T53B
models outperform all other models on all collec-
tions but BM25 on BioASQ and of course the mod-
els consisting in re-ranking BM25 results with cross-
encoders, which constitute an upper bound and
are too costly to be used in practice. In addition, if
BM25 is a strong competitor for domain adaptation,
as reported in (Thakur et al., 2021), its performance
vary significantly from one collection to the other
(very good on BioASQ, very poor on FiQA). Lastly, it
is interesting to note that DoDress-T53B (GPL) out-
performs the previous state-of-the-art model (TD-
SAE+GPL) by a large margin on BioASQ and Ro-
bust04, showing the effectiveness of the proposed
approach.

6.2. Conversational Dense Retrieval
Experimental Setup

Dataset Used We utilize the TREC CAsT 2019
(CAsT-19) dataset (Dalton et al., 2020). CAsT-19

Table 2: Domain adaptation result of FiQA, BioASQ
and Robust04 (during training only use train

queries).
Method | FiQA | BioASQ | Robust04 | Avg.
Zero-Shot Models
D-BERT 26.7 53.6 39.1 39.8
BM25 (Anserini) 23.6 73.0 44.4 ‘ 47.0
Re-Ranking with Cross-Encoders (Upper Bound)
BM25 + CE 33.1 72.8 45.8 50.6
BM25 + T53B 39.2 ‘ 76.1 51.8 ‘ 55.7
Previous Domain Adaptation Methods
UDALM 23.3 33.1 -
MoDIR (ANCE) ‘296 47.9 ‘ - ‘
Pre-Training based: Target — D-BERT
SimCSE 26.7 53.2
ICT 27.0 55.3
TSDAE 29.3 55.5
Generation-based (Previous SOTA)
QGen 28.7 56.5 - -
GPL 32.8 62.8 41.9 45.8
TSDAE + GPL 34.4 61.6 40.7 45.6
Proposed: T53B, Global Random Neg
DoDress-T53B (D-BERT) | 27.3 52.9 40.5 40.2
DoDress-T53B (GPL) %D‘ 62.0 ‘ 43.2 ‘%J
Proposed: T53B, BM25 Hard Neg
DoDress-T53B (D-BERT) | 30.4 58.6 41.6 435
DoDress-T53B (GPL) 34.2 ‘ 64.7 ‘ 43.3 ‘ 47.4
Proposed: T53B, SIimANS Hard Neg
DoDress-T53B (D-BERT) | 31.0 60.6 43.6 451
DoDress-T53B (GPL) ‘ 34.9 ‘ 65.3 ‘ 45.5 ‘ 48.6

comprises 30 training topics and 20 test topics, with
each topic representing a conversational search
session consisting of queries from multiple turns.
The dataset contains a total of 269 training queries.
Notably, in this paper, we investigate an extreme
scenario in which we do not have access to human
rewritten queries and relevance labels for CAsT-19,
resulting in an almost zero-shot scenario.

For efficient experiments, we furthermore follow
the experimental protocol defined in (Wang et al.,
2022b): we randomly remove irrelevant passages
from the whole 38M TREC CAsT-19 corpus to ob-
tain a smaller corpus consisting of 2M passages.

T5 Rewriter The conversational rewriter used is
the T5-Large version*. We train the model on CA-
NARD dataset (Elgohary et al., 2019) which con-
tains 31526 training instances repeatedly for 80K
instances, and evaluate the T5-Large model on de-
velopment set for every 20000 instances and save
the best model. The learning rate is 5e-5 and batch
size is 4 using AdamW optimizer (Loshchilov and
Hutter, 2017a). The BLEU (Papineni et al., 2002)
results of the final T5-Large model on CANARD
are presented in Table 3. We can see the T5-Large
model can obtain near human accuracy for rewrit-
ing conversational queries on CANARD dataset.
Besides, we have computed its BLEU score on
TREC CAsT-19, obtaining 64.35 , which indicates
a favorable outcome.

Baselines

4https ://huggingface.co/t5-large
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Table 3: BLEU scores of different approaches
for rewriting conversational queries on CANARD
dataset. The first four methods are baseline ap-
proaches used in (Elgohary et al., 2019).

Method Dev Test
Copy 33.84 36.25
Pronoun Sub 47.72 47.44
Seq2Seq 51.37 49.67
Human Rewrites 59.92
T5-Large 595 579

+ Zero-Shot baselines: The BERT-dot-v5°
model trained on MS MARCO is used as zero-
shot baselines. We experiment with four meth-
ods: (1) using only the current query, (2) con-
catenating the history and current queries (it
should be noted that the query encoder is not
specifically trained to handle this format), (3)
using T5-Large rewritten queries for retrieval
(may not be efficient in real-world scenarios),
and (4) the upper bound method with human
rewritten queries from the dataset. In addition,
we also include BM25 using Anserini (Yang
et al., 2018) with official rewritten queries and
T5-Large rewritten queries as baselines.

 Cross-Encoder: We adopt T5-3B model which
is trained on MS MARCO (same version as be-
fore) to rerank the BM25 list from T5 Rewritten
queries.

* Related work: ConvDR (Yu et al., 2021) and
CQE (Lin et al., 2021) are compared, which
are CDR models aiming to address the data
scarcity issue. They are trained from the BERT-
dot-v5 checkpoint. We train ConvDR for 40k
steps with the batch size of 8. We observed
that the performance remained similar across
different training intervals, namely 10k, 40k,
and 80k steps. Following (Lin et al., 2021), we
train CQE for 120k steps with a batch size of
8, which is comparable to their original paper’s
training process of 20k steps with a batch size
of 96. The learning rate used in our training
process is set to 2e-6.

CDR Training We further conduct experiments
based on the learned checkpoints of baseline mod-
els ConvDR and CQE to deal with the few-shot
learning scenario. We fine-tune them with our gen-
erated pseudo-labels. Following (Yu et al., 2021;
Lin et al., 2021), the passage encoder is fixed and
the query encoder is trained. All history turns are
used since they are short. The parameters for gen-
erating pseudo-relevance labels are the same as

5https ://huggingface.
co/sentence-transformers/
msmarco-bert-base-dot-v5

before (Table 1). Our fine-tuning strategy is similar
to the previous DR experiments, using the RankNet
pairwise loss with a batch size of 8 and learning rate
of 2e-6. We train on our (few shot) pseudo-target
data for 2000 steps and evaluate on the develop-
ment set every 500 steps, saving the best models.
Finally, we report the results of the trained models
using NDCG@3, which is consistent with previous
research (Yu et al., 2021; Lin et al., 2021).

Experiment Result Experiment results are pre-
sented in Table 4. Besides, we also show the de-
ployed demo of our best trained CDR model (58.0)
dealing with real world conversational queries in Ta-
ble 1 (deployed on a RTX 6000 GPU). We address

Table 4: Domain adaptation result of CAsT-19.

model | nDCG@3 (%)
Zero-Shot Models

BERT-dot-v5(current) 33.4
BERT-dot-v5(concatenation) 27.2
BERT-dot-v5(T5Rewrite) 53.2
BERT-dot-v5(Human) (Upper Bound) 58.9
BM25(Human) 37.0
BM25(T5Rewrite) 31.2

Re-Ranking with Cross-Encoders

T5-3B rerank T5Rewrite \ 56.7
Related Work

ConvDR (BERT-dot-v5) 55.4

CQE (BERT-dot-v5) 53.7

Proposed Approach
T53B, SimANS Neg, based on ConvDR
DoDress-T53B (BERT-dot-v5) \ 58.0
T53B, SimANS Neg, based on CQE
DoDress-T53B (BERT-dot-v5) \ 57.6

here two main research questions.

RQ1 Inthe context of conversational search, how do
IR models exclusively trained on MS MARCO
perform as zero-shot models?

The best baseline among zero-shot models is
BERT-dot-v5(Human), which constitutes an upper
bound as it uses human rewritten queries on the
target dataset. This model largely outperforms
BM25(Human). In comparison, using the current
query or the concatenation of queries with the
BERT-dot-v5 model yields lower results than the hu-
man rewritten queries, respectively 33.4 and 27.2
compared to 58.9. This means that, for this dataset,
although DR models can successfully retrieve docu-
ments when given real human rewritten queries and
outperform BM25 approach, they do not perform
well when they are not specifically fine-tuned to un-
derstand the conversational queries or when they
are not given good rewritten queries. When using
T5 rewritten queries, the performance becomes
closer to the one obtained with human rewritten
queries. In addition, using T5-3B with the T5 rewrit-
ten queries as a reranking model yields very good
results, close to the upper bound.
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RQ2 Does the proposed in-domain pseudo-
relevance data generation approach effec-
tively enhance the performance of CDR
models?

Firstly, let’'s discuss related works on CDR. Con-
vDR and CQE achieve scores of 55.4 and 53.7,
respectively, outperforming standard zero-shot DR
model baselines except the upper bound using hu-
man rewritten queries. These models benefit from
the CANARD dataset, which enables effective rep-
resentations for conversational queries. However,
as the queries in CANARD differ from the ones in
the target dataset, training with in-domain queries
becomes crucial. The proposed models based on
ConvDR and CQE achieve scores of 58.0 and 57.6,
respectively, representing improvements of 4.7%
and 7.3% over ConvDR and CQE. This is due to
the fact that the proposed pseudo-relevance label-
ing approach enables the CDR models to see real
queries and respective documents on the target
domain, resulting in better adaptation. Overall, our
proposed approach achieves comparable perfor-
mance to the one obtained by the BERT-dot-v5
model with real human rewritten queries, without
requiring human annotations on the target dataset.

Explainability of the Models Let’s explore the
explainability of the models and their efficacy on
unlabeled datasets. A significant factor contribut-
ing to their success is the adoption of the pseudo-
relevance labeling approach. The T53B, a large
cross-encoder model, demonstrates good perfor-
mance across both familiar and unfamiliar domains.
Acting as expert annotators for previously unseen
domain data, it also serves as a teacher, distilling
its knowledge to the student DR models through
knowledge distillation like ways. Through mining
hard negatives, the models undergo more effec-
tive training, thereby enhancing their capacity to
generate representations. Additionally, through the
utilization of the T5 large rewriter module, the con-
versational search dataset is transformed to a stan-
dard IR dataset and same strategy can be used
and can also be explained.

7. Conclusion

This paper first studied whether one can ben-
efit from existing re-ranking based IR models,
pre-trained on MS MARCO, to generate pseudo-
relevance labels for an unannotated, target collec-
tion. These labels, along with sampled positives
and negatives, are used to fine-tune dense retrieval
models on the target collection. The experiments
revealed that carefully generating pseudo-labels
improves the generalization results of DR models
and that additional improvements can be obtained

with the query generation approach of GPL. We
also investigated several negative sampling strate-
gies, based on BM25 and SimANS, and confirmed
the importance of identifying useful hard negative
documents. The proposed pseudo-relevance la-
beling approach has also been applied to CDR
models for conversational search. In particular, we
incorporated a query rewritten module that utilizes
T5-Large to deal with conversational queries and
relied on pseudo-relevance labels generated us-
ing T5-3B and SimANS on the rewritten queries.
The experiments revealed that this approach yields
state-of-the-art CDR models for domain adaptation.
Overall, by making use of real queries and doc-
uments of the target domain, the simple labeling
approach we have followed, combined with query
generation or query rewriting, has proved to be very
effective for adapting or further improving a DR or
CDR model to new domains.
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