
LREC-COLING 2024, pages 4185–4197
20-25 May, 2024. © 2024 ELRA Language Resource Association: CC BY-NC 4.0

4185

CrossTune: Black-Box Few-Shot Classification with Label
Enhancement

Danqing Luo1⋆, Chen Zhang1⋆, Yan Zhang1, Haizhou Li1,2†
1 National University of Singapore

2 School of Data Science, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), China
chen_zhang@u.nus.edu, {danqing, eleyanz, haizhou.li}@nus.edu.sg

Abstract
Training or finetuning large-scale language models (LLMs) requires substantial computation resources, motivating
recent efforts to explore parameter-efficient adaptation to downstream tasks. One approach is to treat these models
as black boxes and use forward passes (Inference APIs) to interact with them. Current research focuses on adapting
these black-box models to downstream tasks using gradient-free prompt optimization, but this often involves an
expensive process of searching task-specific prompts. Therefore, we are motivated to study black-box language
model adaptation without prompt search. Specifically, we introduce a label-enhanced cross-attention network
called CrossTune, which models the semantic relatedness between the input text sequence and task-specific label
descriptions. Its effectiveness is examined in the context of few-shot text classification. To improve the generalization
of CrossTune, we utilize ChatGPT to generate additional training data through in-context learning. A switch
mechanism is implemented to exclude low-quality ChatGPT-generated data. Through extensive experiments on
seven benchmark text classification datasets, we demonstrate that our proposed approach outperforms the previous
state-of-the-art gradient-free black-box tuning method by 5.7% on average. Even without using ChatGPT-augmented
data, CrossTune performs better or comparably than previous black-box tuning methods, suggesting the effectiveness
of our approach.
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1. Introduction

In the past few years, significant progress has
been made in research on large-scale language
models (LLMs) (Devlin et al., 2019; Liu et al.,
2019; Ouyang and et al., 2022; Chowdhery et al.,
2022). Scaling up language models has been
demonstrated to boost performance and sam-
ple efficiency on a great variety of downstream
tasks (Raffel et al., 2020; Brown et al., 2020b, inter
alia). However, training such LLMs is not practi-
cal with typical research hardware. Even finetun-
ing them on task-specific data is extremely chal-
lenging. Many research efforts have been de-
voted to more parameter-efficient adaptation ap-
proaches, including (1) parameter-efficient fine-
tuning (PEFT) (Lester et al., 2021; Li and Liang,
2021; Houlsby et al., 2019; Hu et al., 2022), which
optimizes a small portion of task-specific parame-
ters, while keeping the language model intact; (2)
prompt-based learning, where a carefully-designed
task-specific sequence, known as a prompt, is
added to the input text sequence of a pre-trained
language model (LM). The LM is repurposed to
adapt to the downstream tasks without additional
training.

Due to commercial reasons, powerful LLMs are
provided as a service in the cloud, and end users
can only interact with them through inference APIs.

⋆Equal contribution.
†Corresponding author.

This setup is referred to as Language-Model-as-a-
Service (LMaaS) Sun et al. (2022b). Popular PEFT
approaches are impractical in this context since
they require access to model gradients. To address
this challenge, an emerging line of prompt-based
learning research focuses on gradient-free prompt
optimization techniques (Brown et al., 2020b; Sun
et al., 2022b,a; Deng et al., 2022; Prasad et al.,
2023; Hou et al., 2023). However, these meth-
ods are also problematic because (1) prompt opti-
mization is highly sensitive to the template design
and demonstration selection (Gao et al., 2021a;
Zhao et al., 2021) leading to unstable performance
and poor generalization. (2) The prompt search
process, either manual or automatic, is also time-
consuming. For example, the covariance matrix
adaptation evolution strategy (CMA-ES) adopted
by Sun et al. (2022b) requires tens of thousands
of forward passes through the LLMs to achieve
satisfactory performance even in few-shot text clas-
sification scenarios.

To this end, we propose CrossTune, a label-
enhanced black-box few-shot learner for the adap-
tation of the black-box LMs without prompt search.
Following existing works, we assume the inference
APIs provide forward-pass LM outputs and study
our approach in the context of few-shot text clas-
sification. In CrossTune, the black-box model is
treated as a feature extractor where hidden states
of the input text sequence are derived. Besides,
the original label words are expanded to long text
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descriptions. A cross-attention network is trained
to align the input text sequence with its associated
label. In this way, we can steer the model to fo-
cus on specific aspects of the input text data that
are semantically related to the label descriptions,
which act as a form of contextual input and provide
additional semantic guidance to the model about
what each label means.

In the few-shot scenarios, the model can easily
overfit the training data resulting in poor general-
ization to unseen test data. Existing works mainly
rely on semi-supervised and weakly-supervised
methods to boost the generalization of the text clas-
sifiers. Both assume the presence of abundant
in-distribution unlabeled data (Schick and Schütze,
2021; Chen et al., 2021; Fei et al., 2022; Du et al.,
2021; Cho et al., 2023)1. Contrary to prior works,
we do not make such an assumption. Instead, we
harness the strong instruction-following capability
of ChatGPT2 to generate data conditioned on the
labels through in-context learning (Brown et al.,
2020b). To filter out low-quality generation, we
implement an additional switch mechanism as de-
scribed in §3.4.

In summary, our contributions are as follows:

• We introduce CrossTune, a new approach
for the few-shot adaptation of black-box lan-
guage models. Different from existing meth-
ods, CrossTune does not rely on the expen-
sive prompt search process. Additionally,
CrossTune leverages the rich semantic infor-
mation in label descriptions to perform the clas-
sification task.

• Instead of relying on in-distribution unlabeled
training data, which are rarely available in
real-life scenarios, we harness the power of
a strong instruction-following text generator,
ChatGPT, to generate data conditioned on the
labels through in-context learning. A pipeline
is designed to generate and clean the data.
Our experiments demonstrate that the quality
of data generated by ChatGPT is on par with
the original training data.

• Extensive experiments are performed on 7 few-
shot text classification datasets and CrossTune
significantly outperforms previous the state-of-
the-art gradient-free prompt optimization ap-
proach with an absolute improvement of 5.7%
on average.

1The unlabeled data are either the original training
set with their ground-truth labels removed or retrieved
sentences from a sentence bank based on their similarity
to the few-shot training examples.

2https://openai.com/chatgpt

2. Related Work

Gradient-Free Black-Box Tuning The success
of prompt-based learning with GPT-3 (Brown et al.,
2020b) has inspired fruitful research in NLP com-
munity. A typical line is to optimize the prompts
for downstream tasks based on the gradients of
pretrained language models such that the output
can align closely with the desired results (Gao et al.,
2021a; Chen et al., 2021; Li and Liang, 2021; Liu
et al., 2021). However, many practical applications
involve models where internal parameters or gradi-
ents are obscured or inaccessible, leading to a so-
called "black-box" tuning setting (Sun et al., 2022b;
Diao et al., 2023).

Several studies have ventured into black-box
tuning challenges. BBT (Sun et al., 2022b) and
BBTv2 (Sun et al., 2022a) utilize the CMA evo-
lution strategy to optimize prompts but face chal-
lenges in efficiency and flexibility. RLPrompt (Deng
et al., 2022) and Black-box Discrete Prompt Learn-
ing (BDPL) (Diao et al., 2023) both use reinforce-
ment learning to fine-tune discrete prompts, with
BDPL featuring a streamlined search approach.
TEMPERA (Zhang et al., 2023) expands optimiza-
tion components, while GrIPS (Prasad et al., 2023)
focuses on phrase-level editing. However, many
of these black-box tuning methods suffer from effi-
ciency issues and may not always deliver optimal re-
sults. Recently, PromptBoosting (Hou et al., 2023)
adapts the ensembling idea of AdaBoost to black-
box tuning and achieves state-of-art performance
in multiple black-box few-shot classification tasks.
Different from the existing approaches, CrossTune
does not require the expensive prompt search and
offers a much simpler and more effective adaption
of the black-box language models.

Few-shot Text Classification with Augmented
Data Popular research directions for enhancing
the generalization of few-shot text classifier in-
clude semi-supervised learning (Xie et al., 2020;
Sohn et al., 2020; Zoph et al., 2020) and weakly-
supervised learning (Meng et al., 2020; Zhang et al.,
2021; Fei et al., 2022; Cho et al., 2023). Both
line of works assume the presence of a substantial
amount of unlabeled data. Common techniques to
obtain unlabeled text data include (1) removing the
gold labels of the original full training data for a spe-
cific task (Chen et al., 2021; Schick and Schütze,
2021), (2) applying a retriever to retrieve sentences
from a large-scale sentence bank that are semanti-
cally similar to the few-shot training data (Du et al.,
2021), and (3) text data augmentation, such as
paraphrasing and back-translation (Bayer et al.,
2022). However, these techniques have several
limitations: Using the full training data as an un-
labeled source is often impractical because sub-

https://openai.com/chatgpt
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   0: description
   1: entity
   2: abbreviation
   3: human
   4: number
   5: location

(a) Template For Question Type Classification

(b) Template For Natural Language Inference

 0: Entailment

 1: Neutral

 2: Contradiction

<s> A female spins in a white dress. ?               , 

A female is wearing a dress. </s>

[MASK]

<s>              question: Who are the presidents of

 Mexico and Indonesia? </s>

[MASK]

Figure 1: Input template examples. The blue boxes
contain the labels for the corresponding classifica-
tion tasks.

stantial in-distribution unlabeled data is not always
available in real-life scenarios. Moreover, retrieval
and text augmentation tend to produce similar un-
labeled data to the few-shot training set, limiting
the diversity of the augmented data. Furthermore,
both semi- and weakly-supervised learning rely on
potentially inaccurate pseudo-labeling of the unla-
beled data.

Motivated by the recent imitation learning re-
search on distilling high-quality training data from
strong LLMs, like ChatGPT and GPT-4 (Wang et al.,
2023; Xu et al., 2023; Mukherjee et al., 2023), we
tackle the above limitations by prompting Chat-
GPT to generate high-quality training data through
in-context learning. With its strong instruction-
following and text-generation capabilities, ChatGPT
serves as a powerful tool for text data augmenta-
tion.

3. Methodology

3.1. Problem Formulation
In a few-shot text classification task T with a label
space Y, we assume there are K labeled training
examples per class in the training set, DT

train. The
training data size, |DT

train| = K × |Y|. We also as-
sume an development set, DT

dev, which is of equal
data size as DT

train. Both DT
train and DT

dev consist
of data instances (Xi, yi) where yi ∈ Y and Xi

denotes the input text sequence, which contains n
tokens, i.e., Xi = {x1

i , x
2
i , . . . , x

n
i }. Assume that we

have task-specific template mapping function FT ,
which maps Xi to a specific input format FT (Xi).
Figure 1 shows two examples of FT (Xi). The un-
derlined texts in the boxes are the original input
texts, Xi. Note that no additional prompt token is
prepended to the transformed input. Moreover, as-
sume a black-box language model denoted as M,
which is for inference only. Through its API, we can
obtain the logits of “[MASK]" tokens and the hidden
states of the input text sequences. Our goal is to
develop a model that generalizes well to an unseen

test set DT
test.

3.2. CrossTune Architecture
Figure 2 presents the model architecture of
CrossTune. Using the frozen black-box language
modelM, we derive a sequence of hidden states af-
ter each layer l with respect to the reformatted input
text FT (Xi). As we are interested in the hidden vec-
tors of the “[MASK]" token that is {hmask

i,l ∈ Rd}Ll=1,
we perform max pooling on {hmask

i,l }Ll=L−3 to derive
a single vector representation, hmask

i ∈ Rd. This
operation is motivated by previous works on sen-
tence representation learning (Ethayarajh, 2019; Li
et al., 2020; Hosseini et al., 2023) which state that
combining embeddings from multiple layers leads
to better semantic representation than using only
the last-layer embedding.

Furthermore, each label in the space Y is con-
verted into its corresponding label text description,
which is either the definitions specified in the orig-
inal datasets or from Wikipedia. Using the same
model M, we obtain the single-vector label embed-
dings hyi for each yi in Y . The hyi embeddings are
obtained by applying the same max pooling proce-
dure described above on the hidden states of the
label description and then followed by a token-level
mean pooling operation.

A multi-head cross-attention module is imple-
mented such that hmask

Xi
can attend to each hyi

in Y. More specifically, hmask
Xi

and all label embed-
dings, HY , are first linearly transformed into query
vector and key matrix for each head:

qk = W k
Qh

mask
Xi

Kk = W k
KHY

where k denotes the k-th head. W k
Q ∈ Rd×d,W k

K ∈
Rd×d are the k-th head weight matrices for the query
and key respectively. The cross attention is then
computed as:

CrossAttnk(qk,Kk) = softmax
(
qk(Kk)T√

d

)
where d is the dimensionality of the weight matrices.
To obtain the final attention scores, we average
the scores from each head. These resulting atten-
tion scores indicate the significance of each label
description in relation to the input text sequence.
Finally, cross entropy loss is chosen as the training
objective:

L =
∑

(Xi,yi)∈DT
train

−yi log ŷi

where yi is converted to one-hot vector while ŷi
is the final attention score vector, i.e., probability
distribution across the labels in the label space Y.
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Black-box

definition of something, description of something..

[label descriptions]

[input]

[embeddings]

[attention score]

P1,  P2, P3 , P4 , P5, P6

<description> 

<entity> 

<abbr> 

<number> 

<human> 

<location> 

loss

multi-head attention

animal, organ of body, color, Invention, book …

a shortened form of a word or phrase that is used ..

number of something, Date, Distance, Price, …

individual, title of a person, description of person …

City, Country, Mountain, State, Other location …

[MASK] question: Why do leaves 
change color in autumn?

[MASK] 

Figure 2: System Overview of CrossTune.

### Instruction:
{Label} is defined as {Label Definition}.

Follow the below examples and generate 10 di-
verse questions of {Label} type and output one
question at a line.

### Examples:
{Here are the in-context exemplars}

### Your Output:
{Here are the ChatGPT-generated texts}

(a) Question Type Classification

### Instruction:
{Label} is defined as {Label Definition}.

Generate 10 diverse {Label} sentence pairs in
the following format: [Premise | Hypothesis] and
output one pair at a line.

### Examples:
{Here are the in-context exemplars}

### Your Output:
{ChatGPT Generated Text}

(b) Natural Language Inference

Table 1: Example instruction templates for prompting ChatGPT to generate task-specific data conditioned
on a specific label. In “Label Definition", we provide the meaning of the label. For instance, “Entailment
is defined as when the hypothesis can be logically inferred or implied from the premise" in the case of
natural language inference.

3.3. ChatGPT for Data Generation

We propose to generate task-specific data with
ChatGPT (gpt-3.5-turbo). Task-specific instruction
templates are designed to prompt ChatGPT to gen-
erate relevant text data belonging to a specific class.
ChatGPT offers richer data variations, and through
in-context learning, it can be prompted for task- and
context-specific text generation, ensuring more pre-
cise and natural outputs. Table 1 presents two
examples of how we prompt ChatGPT to generate
training data. The in-context exemplars are the task-
and seed-specific few-shot training data associated
with a particular class for which we aim to perform
data augmentation with ChatGPT. For selecting the
in-context exemplars, we follow the most common
setup, which is random sampling, i.e., to generate
samples of a particular class, we random sample
8 training samples of that class. When calling the
inference API of ChatGPT, we set the temperature,
top_p, frequency_penalty, and presence_penalty
to 0.8, 0.95, 0.8, and 1.4 respectively. For each
class, we iteratively call the inference API until a
sufficient amount of training data is obtained.

3.4. The Switch Mechanism

Even though ChatGPT is a strong instruction-
following text generator, it does not always guar-
antee the production of high-quality labeled data.
Therefore, we utilize the text-understanding capabil-
ity of another teacher model. We select DeBERTa-
base as the teacher model due to its manageable
size (suitable for a standard research GPU) and
its superior performance on popular text classifica-
tion benchmarks (Wang et al., 2019) compared
to similar sized models, such as BERT (Devlin
et al., 2019), RoBERTa (Liu et al., 2019), and ELEC-
TRA (Clark et al., 2020). A switch mechanism is
introduced such that both ChatGPT and DeBERTa
teachers can complement each other and collabo-
ratively determine the labels of the augmented data.
Let Achagpt and Adeberta denote the ChatGPT and
DeBERTa teachers respectively. Motivated by the
findings in previous works (Gao et al., 2021a; Chen
et al., 2021) that prompt-based finetuning of the
language model with demonstrations can drasti-
cally outperform standard fine-tuning procedures
in the low resource setting, we apply prompt-based
finetuning for adapting Adeberta to task T . The pa-



4189

rameter size of Adeberta is significantly smaller than
black-box LM, thus it can be viewed as a readily ac-
cessible auxiliary model designed to enhance the
quality of the augmented data. Our experimental
results reveal that incorporating a switch mecha-
nism with Adeberta enhances the performance of
CrossTune.

    <s> a comedy that swings and jostles to the rhythms of life. It was                . </s> 

    The worst film a man has made. It was terrible . </s> 

     A poem to the enduring strengths of women. It was great . </s>

[MASK]

MLM Head of 
   great (label:positive)
   terrible (label:negative)

Verbalizer

Figure 3: Prompt-based finetuning of Adeberta.
The underlined text is the prompt template. In
the bottom box, the first, second, and third lines
are the input text sequence, the demonstration
for label:negative, and the demonstration for la-
bel:positive respectively. The verbalizer maps the
labels to the corresponding words.

Prompt-based Finetuning of Adeberta Figure 3 il-
lustrates how we finetuneAdeberta. Given (Xi, yi) ∈
DT

train, the Xi is first transformed into FT (Xi) ac-
cording to the task-specific templates3. The verbal-
izer converts yi to the corresponding word in the
vocabulary of Adeberta. To fill in the “[MASK]" posi-
tion in FT (Xi), Adeberta learns to assign a higher
probability to the word mapped to yi than other
label words. For example, Adeberta should pre-
dict a higher probability of “great" than “terrible"
for the example input in Figure 3. To further en-
hance the prompt-based finetuning process, we
append demonstrations after FT (Xi). A demon-
stration is an input text example. For each category,
one demonstration is added. Adeberta is finetuned
with the standard MLM loss on DT

train. In addition,
for model selection, we perform the grid search
procedure on different training hyperparameters.
The checkpoint with the best performance on DT

dev

is used as the teacher model.

Switch Rule The data generated by Achagpt is
equipped with pseudo labels that it deems correct.
To validate these labels, we implement a rule to
decide if Adeberta should annotate the data. The
decision is based on the classification performance
of both Achagpt and Adeberta on DT

dev. If Achagpt

outperforms Adeberta, we retain the pseudo labels.
Otherwise, we employ Adeberta for further annota-
tions, discarding any data on which Adeberta and

3In our experiments, we use the same set of task-
specific manual templates for both prompt-based finetun-
ing of Adeberta and the training of CrossTune.

Achagpt disagree and keeping those Adeberta is con-
fident about.

4. Experiment Setup

Datasets CrossTune is evaluated on 7 text classi-
fication datasets, including 3 single-sentence and 4
sentence-pair classification datasets. Among them,
AGNews (Zhang et al., 2015) is for topic classifi-
cation. SST-2 (Wang et al., 2019) is for sentiment
analysis. TREC (Hovy et al., 2001) is for ques-
tion classification. MRPC (Wang et al., 2019) and
QQP (Wang et al., 2019) are paraphrasing tasks.
QNLI (Wang et al., 2019) and MNLI (Bowman et al.,
2015) are for natural language inference. Follow-
ing Sun et al. (2022a), K samples are randomly
drawn from the original training set for each class
to construct the training set and another K samples
from the original training set for the development
set. For the test sets, we use the original develop-
ment set if it exists, otherwise, the original test set
is used. K is set to be 16 across all datasets.

Baselines We compare our approach with full-
model fine-tuning methods and state-of-the-art
black-box tuning methods described as follows: (1)
Finetuning, the standard way of finetuning a lan-
guage model for few-shot text classification. (2)
prompt-based fine-tuning as implemented by Gao
et al.(2021). The approach is referred to as LM-
BFF. Both (1) and (2) require updating the weights
of the LLM. Hence, they can be seen as white-box
methods. (3) ICL-RoBERTa, which applies the in-
context learning approach proposed in Brown et al.
(2020) (Brown et al., 2020b) with RoBERTa-large.
(4) Black-Box Tuning (BBT) (Sun et al., 2022b).
(5) BBTv2 (Sun et al., 2022a). (4) and (5) are
derivative-free optimization methods that are based
on the covariance matrix adaptation evolution strat-
egy to optimize the continuous prompt (Hansen
and Ostermeier, 2001). (6) RLPrompt (Deng et al.,
2022), which optimizes the discrete prompts with
reinforcement learning and adopts Q-learning to
find the best prompt. (7) Promptboosting (Hou
et al., 2023), which searches the verbalizer and
ensemble hundreds of verbalizers via AdaBoost to
weight different training samples. (8) To validate
the effectiveness of CrossTune, we consider an-
other feature-based variant, which is implemented
as an MLP classifier. Specifically, the MASK token
embedding is extracted from the frozen black-box
model and fed to a 2-layer MLP for classification.
We name the baseline MLP-Classifier.

Implementation Details To align with previous
studies on black-box tuning, we employ RoBERTa-
Large (Liu et al., 2019) (with 354 million parameters)
as our large-scale black-box language model. It is
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important to note that our methodology is model-
agnostic. This means that the black-box LLMs can
be any encoder-only or encoder-decoder models,
even those with billions of parameters.

Task Name Template
TREC [MASK] question: <X>
AGNews [MASK] News: <X>
SST-2 <X> . It was [MASK] .
MRPC <X1> ? [MASK] , <X2>
QQP <X1> ? [MASK] , <X2>
QNLI <X1> ? [MASK] , <X2>
MNLI <X1> ? [MASK] , <X2>

Table 2: Task-specific prompt templates and label
words.

For training the teacher model Adeberta, we set
the training batch size, the maximum sequence
length, and the maximum number of training steps
as 2, 128, and 2000 respectively. We perform grid
search on the learning rate of (1e-5, 2e-5) and gra-
dient accumulation steps (1, 2) respectively. The
DeBERTa finetuning is conducted on a Nvidia 1080
card, utilizing 5GB of GPU memory. The time cost
is quite light. The average hyperparameter search
time for a seed is about 30 minutes. When filtering
the ChatGPT-augmented data with the DeBERTa
teacher, we set the confidence threshold of the out-
put probability to 0.9 according to its distribution,
preserving up to M samples for each class. Empiri-
cally, 1000 <= M <= 1500. Table 3 presents the
statistics of the data used in our experiment. To en-
sure a fair comparison, the baseline MLP-Classifier
model is trained on the same data as CrossTune.

For training CrossTune, we set the train batch
size, the learning rate, the total number of train-
ing epochs, and the maximum sequence length as
32, 4e-5, 100, and 512 respectively. Grid search
is performed on the number of attention heads (1,
2, 4, 8). The model is evaluated with the devel-
opment set at the end of each epoch and if the
validation performance does not improve for con-
secutive 5 epochs, we early stop the training pro-
cess. Table 2 describes the templates we use for
training CrossTune. It is worth noting that we do
not need a verbalizer in our approach and no ad-
ditional prompt is prepended to the template. In
Figure 2, we present the label descriptions of TREC
and those of the remaining datasets will be included
in the Appendix of the final version.

5. Results & Analysis

5.1. Main Results
Table 4 summarizes the main results. We can
observe that on average, CrossTune outperforms

Task Name #classes #augmented data #filtered data
TREC 6 8400 5500
AGNews 4 7000 4540
SST-2 2 3700 2800
MRPC 2 4000 2000
QQP 2 2800 1900
QNLI 2 3000 2000
MNLI 3 10000 2500

Table 3: The amount of augmented data and filtered
data. The data quantity in the table represents the
total count across all categories.

BBTv2 by 9.4% on average. It also matches the per-
formance of LM-BFF, which is a strong white-box
adaptation method employing prompt-based tun-
ing. Compared to the current SoTA black-box tuning
approach, PromptBoosting, CrossTune achieves
significantly better results on MRPC, QNLI, and
MNLI. It outperforms PromptBoosting by an abso-
lute margin of 5.7% on average.

Compared to MLP-Classifier, which also does not
rely on the expensive prompt search process and
is trained on the same augmented data, CrossTune
achieves an improvement of 1.8% on average
across the seven datasets, underscoring that our
proposed label cross-attention network is more ef-
fective than using an MLP classifier. Furthermore,
CrossTune is more lightweight and efficient than
MLP-Classifier as their numbers of trainable param-
eters are 2.10M and 3.15M respectively.

Additionally, we can see that the performance
of CrossTune is more consistent with a smaller
standard deviation across different data splits com-
pared to prompt-based black-box methods, such as
BBTv2 and RLPrompt, suggesting that CrossTune
is less likely to overfit to specific data splits and
exhibits better generalization.

Impact of Augmented Data Amount We study
how the performance of CrossTune varies w.r.t. the
amount of augmented data. The results of MLP-
Classifier are also included in Table 5 for compari-
son. Specifically, we compare the cases when the
amount of augmented data for each class is 0, 300,
and full respectively. Full amount refers to the same
setting shown in Table 3.

When the quantity of augmented data is 0, i.e.,
only the original K-shot data is used, the perfor-
mance of both CrossTune and MLP-Classifier dras-
tically declines by around 10% on average. The
most pronounced performance drop is evident on
TREC and QNLI, which contain test cases with
diverse semantic and syntactic variations. This ob-
servation highlights the importance of boosting the
generalization of feature-based black-box tuning
approaches with data augmentation. Notably, even
without data augmentation, CrossTune performs
comparably or better than the prompt-based black-
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TREC AGNews SST-2 MRPC QQP QNLI MNLI Average
acc acc acc f1 f1 acc acc

Finetuning† 88.8 (2.1) 86.2 (1.4) 81.4 (3.8) 76.6 (2.5) 60.7 (4.3) 56.3 (1.5) 45.8 (6.4) 70.8
LM-BFF† 83.4 (2.7) 87.1 (1.2) 92.3 (1.5) 77.8 (2.0) 69.8 (1.8) 64.4 (4.6) 68.7 (2.0) 77.6
ICL-RoBERTa‡ 26.2 (2.4) 62.2 (13.5) 85.9 (0.7) 45.8 (6.7) 36.1 (5.2) 53.8 (0.4) 52.0 (0.7) 51.7
BBT‡ 39.3 (5.2) 81.2 (2.7) 88.2 (1.7) 61.6 (4.3) 48.6 (8.3) 56.8 (2.0) 42.3 (2.8) 59.7
BBTv2‡ 42.0 (4.5) 85.3 (0.5) 83.8 (0.8) 77.0 (4.7) 56.3 (3.9) 66.3 (2.3) 51.4 (3.3) 66.0
RLPrompt‡ 37.3 (3.5) 76.2 (2.7) 90.5 (1.2) 68.9 (2.1) 53.7 (2.2) 52.1 (2.9) 40.7 (4.7) 59.9
PromptBoosting‡ 81.6 (4.0) 85.2 (0.9) 87.6 (3.0) 70.5 (2.9) 64.8 (3.7) 58.0 (3.3) 52.5 (1.5) 71.5
MLP-Classifier‡ 80.8 (0.2) 85.9 (0.5) 89.1 (2.3) 80.4 (0.5) 64.8 (2.1) 70.4 (1.3) 56.7 (1.5) 75.4
CrossTune‡ 85.0 (1.8) 86.6 (1.1) 90.2 (2.5) 82.3 (0.6) 66.1 (1.8) 71.4 (0.8) 58.5 (1.8) 77.2

Table 4: Main experiment results. † refers to white-box methods while ‡ refers to black-box methods. In the
black-box category, the best score for each task is highlighted in bold and the second best is underlined.

#data model TREC AGNews SST-2 MRPC QQP QNLI MNLI Average
acc acc acc f1 f1 acc acc

0 MLP-Classifier 46.1 82.3 88.9 76.2 64.8 54.0 53.6 66.6
CrossTune 46.4 82.5 88.2 79.5 63.8 58.8 52.5 67.4

300 MLP-Classifier 73.9 85.8 88.9 78.9 67.0 67.3 54.2 73.7
CrossTune 78.6 85.1 88.6 81.8 65.7 69.1 54.7 74.8

full MLP-Classifier 80.8 85.9 89.1 80.4 64.8 70.4 56.7 75.4
CrossTune 85.0 86.6 90.2 82.3 66.1 71.4 58.5 77.2

Table 5: Impact analysis of the augmented data amount on the performance of MLP-Classifier and
CorssTune. “Full" refers to the same amount of data as that presented in Table 3.

box tuning methods on most datasets (Table 4)
while requiring no expensive prompt or verbalizer
search process.

After increasing the number of augmented data
to 300 per class, the performance on TREC and
QNLI improves drastically. The average perfor-
mance of both MLP-Classifier and CrossTune be-
comes almost on par with their respective vari-
ants trained on the full data, surpassing all the
prompt-based black-box methods like BBTv2 and
RLPrompt. This suggests that feature-based black-
box tuning methods exhibit high data efficiency.

Finally, regardless of the amount of augmented
data used, CrossTune consistently outperforms
MLP-Classifier. This further emphasizes the ef-
ficacy of utilizing the rich semantics of label de-
scriptions with a cross-attention network.

5.2. Ablation Analysis

In-Distribution vs ChatGPT-Augmented Data
To examine whether ChatGPT is effective in pro-
viding augmented data for enhancing the few-shot
learners, we compare the performance of learn-
ing with the in-distribution augmented data against
learning with our augmented data using ChatGPT.
The in-distribution augmented data are the orig-
inal task-specific training data with their ground-
truth labels removed and then pseudo-labeled with
the DeBERTa teacher model. In the case of us-

ing ChatGPT-augmented data, we also apply the
same DeBERTa teacher to pseudo-label and filter
the augmented data. Note that we keep the maxi-
mum amount of filtered data the same for both data
sources to ensure a fair comparison. Table 6 show-
cases the results of the MLP-Classifier trained on
the two data sources across six different datasets.
Except for QQP, training on ChatGPT-Augmented
data yields better or comparable results than when
trained on in-distribution augmented data. The ob-
servation implies that ChatGPT is capable of pro-
ducing high-quality task-specific data. In practical
scenarios, we often have access to limited labeled
data and lack in-distribution training data. In these
situations, using ChatGPT for data augmentation
is a viable option to improve the performance of
few-shot learners.

We further analyze the data distributions of
ChatGPT-augmented data, the original training
data, and the test data. We first encode the text
to high-dimensional embeddings with the SimCSE
sentence embedder4 (Gao et al., 2021b) and then
apply the T-SNE transformation. Figure 4 shows
the plots of TREC, QQP, and AGNews. We can
observe that for TREC and AGnews, ChatGPT-
augmented data is distributed relatively evenly
across the space of the in-distribution training data
and resemble a large portion of the test data.

4https://huggingface.co/princeton-nlp/

https://huggingface.co/princeton-nlp/


4192

Figure 4: T-SNE Plots of embeddings w.r.t. original training, test, and ChatGPT-augmented training data.
Note that we randomly sample the same amount of in-distribution training data as the ChatGPT-augmented
data from the original training set.
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Figure 5: The performance of ChatGPT vs DeBERTa on the development set, which helps determine when
to filter the ChatGPT-augmented data. A positive correlation can be observed between the performance
of the teacher model on the development set and that of CrossTune on the test set across most datasets.

Data Source TREC AGNews SST-2 MRPC QQP QNLI Avg
acc acc acc f1 f1 acc

I.I.D 78.4 86.1 88.5 75.3 77.8 66.6 78.8
ChatGPT 80.8 85.9 89.1 80.4 64.8 70.4 78.6

Table 6: Performance of MLP-Classifier trained on
in-distribution vs ChatGPT-Augmented Data.

However, for QQP, the distribution of ChatGPT-
augmented data does not overlap well with the orig-
inal training data. Besides, because the amount
of test data in QQP is much greater than that of
the augmented data (40400 ≫ 1900), most of the
test data are not covered. The observations are
in line with results in Table 6 that MLP-Classifier
trained on ChatGPT-augmented data performs on
par with that trained on the original training data
in TREC and AGNews, but worse in the case of
QQP. A possible solution is to optimize the prompts
input to ChatGPT such that more diverse data can
be generated. We leave such prompt engineering
efforts to future work.

Effectiveness of the Switch As introduced
in §3.4, a switch mechanism is implemented to de-
termine whether to filter the ChatGPT-augmented

data with an additional DeBERTa teacher. As de-
picted in Figure 5, there is a consistent positive cor-
relation between the teachers’ performance on the
few-shot development set and the final test perfor-
mance of CrossTune across all the tasks except for
SST-2. That is, when the switch is activated (indicat-
ing the DeBERTa teacher outperforms ChatGPT),
CrossTune, which is trained on data filtered by the
DeBERTa teacher, surpasses its variant trained on
the unfiltered augmented data, and vice versa. For
example, on TREC, AGNews, MRPC, QQP, and
MNLI, the test performance of CrossTune improves
with DeBERTa filter (as the DeBERTa teacher ex-
hibits superior performance to ChatGPT on the few-
shot development set) while on QNLI, the perfor-
mance of CrossTune is better without the DeBERTa
filter, given that the DeBERTa teacher underper-
forms compared to ChatGPT. These observations
confirm that our proposed switch mechanism is
reasonable.

Impact of label descriptions we further study
the effect of using different label descriptions. In
Table 7, we compare the performance of using
long and informative vs short and non-informative
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description type TREC AGNews QNLI
acc acc acc

Short 83.6 85.3 70.9
informative 85.0 86.6 71.4

Table 7: Effect of using informative vs non-
informative descriptions.

label descriptions. When the non-informative de-
scriptions are employed, CrossTune still works but
performs slightly worse than when using the long
and informative label descriptions. Hence, we can
conclude that informative label descriptions help to
improve CrossTune’s text classification capability.
The details of different label descriptions will be
presented in appendix in the final version.

Additionally, we examine whether label descrip-
tions also help improve other approaches. Ex-
periments are conducted on MRPC and SST-2
with the MLP-Classifier baseline. Specifically,
the input to the model is the concatenation of
{desc1, desc2, . . . , descc, xi} where descj is the la-
bel description of the j-th class and xi is the text
sequence to classify. We notice that the perfor-
mance of the MLP-classifier drops from 89.1% to
74.65% on SST-2 and 80.4% to 75.92% on MRPC,
suggesting a negative impact of label descriptions
on the MLP-classifier.

Impact of Augmented Data on Other Baselines
We further perform experiments with the base-
lines, BBTv2 and RLprompt on SST2, with the
same ChatGPT-augmented data as that used on
CrossTune. No significant improvement is ob-
served compared to training with the original 16-
shot data. BBTv2 achieves 83.8% vs 82.8% accu-
racy while RLPrompt achieves 90.5% vs 91.0% ac-
curacy before and after data augmentation respec-
tively. It shows these prompt-optimization-based
methods do not utilize the augmented data as ef-
fectively as CrossTune.

Impact of Other Augmentation Techniques Be-
sides ChatGPT augmentation, we explore whether
traditional data augmentation techniques, also en-
hance CrossTune. Experiments are conducted with
CrossTune on MRPC and SST2, using data aug-
mented from the EDA techniques (Wei and Zou,
2019), including random swap, deletion, and inser-
tion of the input text. Our findings indicate that with
300 EDA-augmented data points, CrossTune’s per-
formance matches models trained with ChatGPT-
augmented data. However, as we increase the
data augmentation to 2000, the performance us-
ing EDA augmentation deteriorates compared to
using no augmentation at all. This decline could be
because a significant volume of EDA-augmented

data introduces excessive noise into the language
model. The deletion, insertion, and swapping oper-
ations risk altering the original sentence’s semantic
meaning. Compared to EDA, ChatGPT-based aug-
mentation emerges as a more reliable method.

6. Conclusion

In summary, we propose CrossTune for few-shot
text classification under the black-box setting.
CrossTune treats the black-box LM as a feature
extractor and leverages label descriptions as ad-
ditional input semantic context. To boost the gen-
eralization of CrossTune, we avoid relying on in-
distribution unlabeled data, instead utilizing Chat-
GPT to generate pseudo-labeled training samples.
A switch mechanism is implemented to ensure the
quality of the generated data. Our extensive empiri-
cal assessments across seven benchmark datasets
reveal CrossTune’s effectiveness in black-box tun-
ing, outperforming existing state-of-the-art by an im-
pressive 5.7% score on average. Even without data
augmentation, CrossTune performs better or com-
parably than previous methods on most datasets.
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A. Addtional Dataset Details

Dataset Label Description

TREC

description Answer to the question is a description.
entity Answer to the question is an entity.
abbreviation Answer to the question is an abbreviation.
number Answer to the question is a number.
human Answer to the question is a human.
location Answer to the question is a location.

AGNews

tech It is a technology news.
world It is a world news.
sports It is a sports news.
business It is a business news.

QNLI entailment The statement contains the answer to the question.
non_entailment The statement contains no answer to the question.

Table 8: Short and Non-informative Label Descrip-
tions

Table 8 depicts the short and non-informative
label descriptions used in our ablation study (§5.2)
where we compare the effects of using informative
label descriptions against using non-informative
ones. Table 9 shows the label descriptions we use
in our main experiments.
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Dataset Label Description

TREC

description Definition of something, description of something, manner of an action, reason.

entity
Animal, Organ of body, Color, Invention, book and other creative piece, Currency name, Disease and medicine,
Event, Food, Musical instrument, Language, Letter like a-z, Other entity, Plant, Product, Religion, Sport, Element
and substance, Symbols and sign, Techniques and method, Equivalent term, Vehicle, Word with a special property.

abbreviation A shortened form of a word or phrase that is used to represent the full meaning.

number Number of something, Date, Distance, Price, Order, rank, Lasting time, Percent,
fraction, Speed, Temperature, Size, area and volume, Weight, Postcode or other code.

human Individual, Title of a person, Description of a person, Group or organization of persons.
location City, Country, Mountain, State, Other location.

AGNews

tech
The Sci/Tech category is designed to encompass articles related to science and technology. It might include news about
scientific discoveries or research breakthroughs, technology product launches, technology company updates, coverage of
scientific and technology conferences, interviews with scientists or tech leaders, articles on new theories or models
in various scientific disciplines, advancements in medical technology, and many more.

world
It’s a news article about international affairs, geopolitics, global events, or any topic that has a worldwide or international scope.
Examples may include news on international diplomacy, major global events like the United Nations General Assembly,
international conflicts or wars, significant elections or political events in different countries, global environmental issues, and more.

sports
Articles related to various sporting events, news, and updates. the Sports category could encompass
a wide range of topics such as game results, player transfers, injuries, interviews with athletes, coverage of international
sporting events like the Olympics, football (soccer) world cup, tennis grand slams, and more.

business
The Business category typically cover topics related to commerce, economics, and finance on a local, national, or international
scale. It may include news about company mergers, financial reports, stock market updates, changes in economic
policies, interviews with business leaders, innovation in business models, trends in various industry sectors, and so on.

QNLI entailment The given statement logically contains the answer to the associated question.
If the truth of the statement provides the answer to the question, it’s considered an entailment.

non_entaiment The given statement does not logically contain the answer to the associated question.
Even if the statement is true, it does not provide a valid answer to the question.

MNLI
entailment The hypothesis can be logically inferred or implied from the premise.

neutral The premise and the hypothesis do not have a clear logical relationship.

contradiction The hypothesis contradicts or conflicts with the information presented in the premise.

MRPC equivalent Two sentences in the pair are semantically equivalent - they express the same, or very similar, meaning.

non_equivalent Two sentences in the pair are not semantically equivalent - they do not convey the same meaning.

QQP equivalent That’s to say,

non_equivalent Another different questions is,

SST-2 positive
sentences from movie reviews that express favorable, complimentary, or praiseworthy viewpoints about a movie.
The concept of positive sentiment in this context typically includes feelings of enjoyment, admiration, appreciation,
or satisfaction with elements of a movie such as its plot, acting, direction, cinematography, or other aspects of its production.

negative
Sentences that express unfavorable, critical, or disparaging viewpoints about a movie. The concept of negative
sentiment here typically includes feelings of disappointment, dissatisfaction, frustration, or displeasure with elements
of a movie such as its plot, acting, direction, cinematography, or other aspects of its production.

Table 9: Label Descriptions used in main experiments
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