CORI: CJKV Benchmark with Romanization Integration - A step
towards Cross-lingual Transfer Beyond Textual Scripts

Hoang H. Nguyen'!, Chenwei Zhang?, Ye Liu?,
Natalie Parde!, Eugene Rohrbaugh®, Philip S. Yu!
! Department of Computer Science, University of lllinois at Chicago, Chicago, IL, USA
2 Amazon, Seattle, WA, USA 3 Salesforce Research, Palo Alto, CA, USA
4 Harrisburg University of Science and Technology , Harrisburg, PA, USA

{hnguy7, parde, psyu}@uic.edu,
gene.rohrbaugh@gmail.com

yeliul@salesforce.com,

cwzhang@amazon.com

Abstract
Naively assuming English as a source language may hinder cross-lingual transfer for many languages by failing to
consider the importance of language contact. Some languages are more well-connected than others, and target
languages can benefit from transferring from closely related languages; for many languages, the set of closely
related languages does not include English. In this work, we study the impact of source language for cross-lingual
transfer, demonstrating the importance of selecting source languages that have high contact with the target
language. We also construct a novel benchmark dataset for close contact Chinese-Japanese-Korean-Vietnamese
(CJKV) languages to further encourage in-depth studies of language contact. To comprehensively capture contact
between these languages, we propose to integrate Romanized transcription beyond textual scripts via Contrastive
Learning objectives, leading to enhanced cross-lingual representations and effective zero-shot cross-lingual transfer.

Keywords: Cross-lingual Transfer, Low-resource Languages, Orthographic and Phonemic Transcription

1. Introduction

Language is fluid and ever-evolving, with specific
languages often borrowing terms and even gram-
matical structure from one another as a byprod-
uct of voluntary or forced interaction. Language
contact defines the emerging connections among
languages throughout the course of history, ge-
ography, and social development (Matras, 2020;
Mufwene and Escobar, 2022). For example, mod-
ern English (EN) is a Germanic language, yet it
contains many Latinate and Greek terms that en-
tered the vernacular via religious missionaries or
war and conquest, as well as other terms that later
entered the lexicon via colonization (van Gelderen,
2014). Likewise, Japanese (JA), Korean (KO)
and Vietnamese (VI) share a large number of cog-
nates with Chinese (ZH) due to influence through
colonization, trading throughout history (Li, 2019;
Hickey, 2020). This influence is best reflected
through the Kaniji characters in JA writing system,
which significantly overlaps with ZH character writ-
ing systems. As observed in Table 1, both ZH and
JA writing systems utilize 3*# and %% to denote
words scholar and classical respectively.

Despite recent advances in the study of cross-
lingual transfer, most cross-lingual works to date
have restricted themselves to two major assump-
tions: (1) English (EN) is considered the single
source language, despite its oftentimes limited or
absent contact with the target language(s) (Muller
et al., 2021; Fujinuma et al., 2022); and (2) cross-
lingual transfer remains restricted to orthographic

language contact (Nguyen and Rohrbaugh, 2019;
Yang et al., 2022). As language acquisition nat-
urally benefits from various linguistic modalities,
including the textual writing scripts and aural sig-
nals, which can be conveyed through orthographic
and phonemic transcription respectively (Volterra
and lverson; Goswami, 2022), the aforementioned
constraint hinders progress in the cross-lingual
field, by minimizing the amount of relevant informa-
tion that models may be able to access (Fujinuma
et al., 2022; Nguyen et al., 2023c).

Because of language contact, there are many
lexical items shared among CJKV languages.
However, these similarities may be obscured by
the different writing systems used across the lan-
guages. Borrowed words that may sound very
similar in spoken form may nevertheless be repre-
sented in the writing systems with completely dif-
ferent symbols. As observed in Table 1, the or-
thographic term 4 in ZH shares little similarity
with VI counterpart. However, the corresponding
phonemic transcription represented via Romaniza-
tion (gudian) is more similar to the corresponding
VI (C6 dién). The same phenomenon can also
be observed in JA-KO pair (& # (koten) vs 117
(gojeon)) and VI-KO pair (Khoa hoc (Khoa hoc)
vs 2}38} (gwahak)). Moreover, Table 1 reveals
the shared properties of CJKV languages in which
meaningful words are formed by combining sur-
rounding tokens. For instance, four characters J¥
ifi k%% are combined together to form the mean-
ingful word “Metaphysical”’. The same behavior
can be observed in the corresponding VI (Siéu
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hinh) and KO (& ©]/}8h). Although the current
multiilngual benchmark dataset such as XTREME
(Hu et al., 2020) offers extensive language cover-
age, the aforementioned shared properties among
CJKV are often overlooked during preprocessing.

We address these limitations through the follow-
ing contributions:

» We study the impact of source language selec-
tion in zero-shot cross-lingual transfer among
languages with historical language contact.

* We construct a comprehensive set of lan-
guage understanding (NLU) tasks for CJKV
languages that (1) better presents the shared
characteristics of CJKV languages than the
existing multilingual XTREME benchmark, (2)
provides additional phonemic signals cap-
tured through Romanized transcriptions be-
yond orthographic textual scripts.

» We integrate phonemic information from Ro-
manization with Orthographic texts via Con-
trastive Learning to enhance textual repre-
sentation across CJKV languages, leading
to improved cross-lingual representation and
downstream task performance.’

2. Related Work

Cross-lingual Transfer. Recent works on cross-
lingual transfer have focused on generating mul-
tilingual contextualized representations for differ-
ent languages via Pre-trained Language Models
(PLMs) trained using multilingual dictionaries (Qin
et al., 2021; Winata et al., 2023) and/or machine
translation approaches (Fang et al., 2021; Liu
et al., 2021c; Reid and Artetxe, 2023). Qin et al.
(2021) proposed a comprehensive code-switching
technique via random selection of languages, sen-
tences, and tokens to enhance multilingual repre-
sentations, leading to improved downstream task
performance on target languages. On the other
hand, other approaches have leveraged machine-
translated parallel corpora to (1) distill knowledge
from source languages to target languages (Fang
et al., 2021) or (2) augment source language data
with target language knowledge during training
(Yang et al., 2022; Zheng et al., 2021).

However, current cross-lingual efforts concen-
trate on transferring from a single source language
(EN) to multiple target languages (Hu et al., 2020;
Yang et al.,, 2022). Under parameter capacity
constraints, cross-lingual transfer has been shown
to be biased towards high-resourced languages
which share similar scripts and possess larger

'Our code and datasets are publicly available at
https://github.com/nhhoang96/benchmark_cjkv

corpora of unlabeled data during pre-training (Fu-
jinuma et al., 2022). Recent works (Adams et al.,
2017; Nguyen et al., 2023c) attempt to bridge the
gap between languages across different scripts
by introducing phonemic transcription. However,
the introduction of the International Phonetic Al-
phabet (IPA) to this process requires additional
pre-training objectives to effectively unify the two
modalities.  Unlike previous works, we lever-
age natural Romanized transcriptions to capture
phonemic properties.

Contrastive Learning. Contrastive Learning
(CL) has been widely leveraged as an effective
representation learning mechanism (Oord et al.,
2018; Chen et al., 2020). The goal of CL is to learn
the discriminative features of instances via differ-
ent augmentation methods. In Natural Language
Processing (NLP), CL has been adopted in vari-
ous contexts ranging from text classification (Wei
and Zou, 2019) and representation learning (Gao
et al.,, 2021; Nguyen et al., 2023b) to question
answering (Xiong et al., 2020; Liu et al., 2021b).
Unlike previous works, we leverage two language
modalities (orthographic and Romanized tran-
scriptions) to generate multi-view augmentations
as effective mechanisms to improve cross-lingual
representations.

3. Problem Formulation

We study the problem of cross-lingual transfer in
a multilingual setting where there exists annotated
data D collected from a high-resource language S,
such that Dfrain — {(X*) v *))} N where N, de-
notes the sample size of the source language train-
ing data. Likewise, there exists unlabeled data
collected from a set of low-resource target lan-
guages T = {Ti,...,T,}, denoted as Dr,'**" =
{(X](.T))};y:til where N;, denotes the sample size
of the i-th target language inference dataset. De-
pending on the downstream tasks, Y; can be ei-
ther a single utterance label (Sentence-level task),
a sequence of token labels (Token-level Task), or
extracted span labels (Question Answering (QA)).
Our work encompasses a comprehensive set
of Natural Language Understanding (NLU) tasks
among CJKV languages as briefly summarized be-
low. For further details of individual task objectives
and metrics, we refer readers to (Hu et al., 2020).

Sentence-level Task (PAWSX, XNLI) concen-
trates on overall sentence-level semantic under-
standing of the given input paired utterance. The
two covered tasks are multilingual Paraphrase
Identification (PAWSX) and Natural Language In-
ference (XNLI).

Token-level Task (UDPOS, PANX) requires
deeper understanding on token-level which re-
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Table 1: Orthographic and Romanized representations (abbreviated as Ortho and Roman) of a sample
sentence across CJKV languages where colored segments denote the corresponding semantic words
defined in Section 5. (.) denotes the specific name of Romanization system of the respective language.
The first sentence for each language denotes the currently preprocessed XTREME benchmark dataset.

‘ Language Input Type Sample input sentence

EN Ortho He was a scholar in Metaphysical | Literature , Theology and Classical sciences .
”””””” Otho | MU Laescsy, mhepmssbgppmmys,
ZH (source) Ortho (seg) LLN/ESY/AS A e AN /AR = AV WAt SR 2= a0 /R S A = A

Roman (Pinyin) | ta// shi// xingérshangxué // wénxué //. // shénxué // hé // gudian // kéxué //fangmian // de // xuézhé // .
”””””” Ortho | Onglamét hocgié vé Vanhoo Sieuhinh, [ThaARGE va Khoahoc Cédién.
VI (target) Ortho (seg) Ong //1a// mét// hoc gia //v& // Van hoc // Siéu hinh //,// |Thanhee // va// Khoa hoc // C& dién // .

Roman Ong //1a// mét// hoc gia //v& // Van hoc // Siéu hinh //,// |Thanhee // va// Khoa hoc // C& dién // .
”””””” Otho | Wil baescss, g, dBlo%EcLL,
JA (target) Ortho (seg) W& 1 T 2 1385 1), (e . /R R IO TU I T .

Roman (Romaiji) | kare // ha// keiji ue gaku // ‘bungaku //, // [shingaku |/, // koten // kagaku //no// gakusha //deshi//ta//.
777777777777 Otho | 2Edolystes), Asuuanstelstoligyect.
KO (target) Ortho (seg) /= ol /=8 i, 0 ARk gy 3 ) 33} QgL Jr o) i1 i EUTH .

Roman (Romaja) | eu// neun// hyeongisanghak // munhak //, // [sinhak’ // mit// gojeon // gwahak // uihakja //i// eot// seupnida// .

Table 2: Preliminary study on the impact of source language (ZH) on target JKV languages. Standard
deviation denotes the performance variation across 3 target JKV languages. Performance of individual

JKV language is reported in Table 7 in the Appendix.

Source Sentence-level Token-level Question Answering
PAWSX XNLI UDPOS PANX XQuAD MLQA
Metric Acc Acc F1 F1 EM EM

EN 73.53 +6.86 68.35+ 2.05
ZH 79.61 +£5.24 70.39 + 1.60

40.09 +10.32 30.36 + 19.09
47.82 + 1.98

28.38 £ 18.00 22.11 £8.76
33.95 + 14.73 29.95 + 5.88

37.29 + 9.18

quires additional grammatical structural knowl-
edge beyond overall semantics. Representa-
tive tasks include Part-of-speech (POS) Tagging
through UDPOS dataset and Named Entity Recog-
nition (NER) via PANX dataset.

Question Answering Task (XQuAD, MLQA)
extracts the answer spans existent in the given
Context when provided with input corresponding
Question. The task assumes the answers are ex-
istent in the given Context; therefore, within the
scope of our study, any samples without existent
answers in the contexts are removed from both
training and evaluation. Unlike (Hu et al., 2020),
we only report Exact Match (EM) for QA task since
it is considered a stricter evaluation measure and
requires models to extract truly meaningful an-
swers.

4. Preliminary Study

We conduct a preliminary study to examine the ef-
fects of source language selection on target lan-
guages. In our case, we compare using EN
against ZH as the source language to transfer
knowledge towards other languages among the
CJKV group. ZH is considered the common
source language for CJKV due to its historical
longevity and significant impact on the develop-
ment of the remaining languages (Li, 2019; Hickey,

2020). We fine-tune a backbone XLM-R-base
PLM (Conneau et al., 2020) with downstream task
objectives for each source-target JKV language
pair and report average performance together with
standard deviation across the three target lan-
guages JA, KO, VI.

Overall, based on our preliminary study reported
in Table 2, we observe the following:

» Average zero-shot cross-lingual transfer per-
formance for target languages across all tasks
increases significantly when ZH is leveraged
as the source language. On UDPOS task,
the average performance of JKV languages
reaches F1 of 47.82 as compared to 40.09
when EN is considered source language.

» When ZH is leveraged as source language in-
stead of EN, the performance standard devia-
tions across target JKV languages diminished
(19.09 for EN source vs 9.18 when ZH source
on PANX task), implying that appropriately se-
lected source languages can reduce the per-
formance gap across target languages.

Our observations are consistent with prior study
(Fujinuma et al., 2022; Yang et al., 2022) demon-
strating that PLMs when trained on only EN can
be biased towards Latin-based languages, re-
sulting in poor performance for non-Latin based
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Figure 1: Representation visualization of parallel sentences between source language and target lan-
guage (EN-JA (left) and ZH-JA (right)) of the fine-tuned XLM-R model on parallel PAWSX test set. The
significant overlapping representation of ZH-JA demonstrates the lower representation discrepancy and
higher language contact between source and target language.

Table 3: Average CKA Score (Kornblith et al., 2019) Comparison between selected source languages
(EN vs ZH) across 3 target JKV languages on parallel PAWSX test set. O,R denote Orthographic and
Romanized transcription input respectively. The higher CKA score demonstrates the lower representa-

tion discrepancy and implies the higher language contact.

Source | EN (O) | EN (O+R) | ZH (O) | ZH (O+R)
JA 0.0095 | 0.0638 0.0830 | 0.1428
KO 0.0175 | 0.0571 0.0120 | 0.1184
VI 0.0407 | 0.0572 0.0270 | 0.1200
Average | 0.0225 | 0.0594 | 0.0403 | 0.1271

languages and significant gaps in performance
between Latin-based and non-Latin-based lan-
guages as demonstrated in higher performance
standard deviations (10.32 on UDPOS for EN)
when compared to ZH (1.98 on UDPOS for ZH).
Figure 1 further demonstrates the represen-
tation discrepancy between EN-JA in compari-
son with ZH-JA. Following Conneau and Lample
(2019); Yang et al. (2022), we adopt the Centered
Kernel Alignment (CKA) (Kornblith et al., 2019) as
a quantitative measure of representation discrep-
ancy among evaluated languages. The significant
higher CKA score for ZH-JA representation pair
(0.0830) as compared to EN-JA pair (0.0095) pre-
sented in Table 3 validates the representation gap
existent from model trained purely on EN, prompt-
ing for careful consideration of source language
in zero-shot cross-lingual transfer. Based on Ta-
ble 3, we also observe the average CKA score
between ZH and target JKV languages is signifi-
cantly higher than the EN source (0.0403>0.0255).
As Romanization is introduced in conjunction with
orthographic transcription as further detailed in
Section 5.3 and 6, the average CKA score be-
tween ZH and target JKV languages further im-
proves and widens the gap with EN counterpart
(0.1271>0.0594). These observations confirm our
intuition that ZH serves as a more representative
source language for CJKV languages when com-

pared to EN and the selection of ZH as source lan-
guage can further enhance downstream task per-
formance on target JKV languages. These bene-
fits underscore the necessity of a dataset tailored
specifically for CJKV.

5. Dataset Construction

XTREME Dataset (Hu et al., 2020) provides a
comprehensive multilingual benchmark for multi-
ple NLU tasks across languages from diverse ty-
pology. However, when it comes to the study of
CJKV languages on the existing XTREME, there
exist three major challenges: language availability,
pre-segmentation, and orthographic contact limita-
tion. We elaborate on each of those below.

XTREME CORI
Nissan motors
JA{EI HE I BI 8 E BEIBRIE

League Challenge

2(3 / ™EX|9
B-ORG I-ORG

2|3 j/ ™EIX[9|

B-ORG I-ORG

Ko{

Figure 2: Example of label inconsistency be-
tween JA and KO languages on PANX dataset of
XTREME and the alleviation provided in CORI.
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Table 4: Details of CORI benchmark dataset. (X) and (v)) denote unavailable and available data ex-
istent in XTREME benchmark respectively . MT, SEG, ROM correspond to Machine Translation, Pre-
segmentation, Romanization processing respectively as described in Section 5. Y, N denote if the corre-
sponding preprocessing is conducted for the dataset or not.

MT SEG ROM ZH JA KO Vi
Train Dev Test Test Test

Sent.level PAWSX [ Y Y VY 494K (X) 2k (V) 2k (X) 2k (V) 2k (X)

XNLI |Y Y Y 392.7k (v) 249K (v) | 5.01k (X)  5.01k (X)  5.01k ()
Token-level UDPOS [N N VY 10k (/) 16k (/) | 25k (/)  4.7K() 0.8k (V)

PANX [N Y Y 20k (v) 10k (v) | 10k (v) 10k (v) 10k (v)

. — XQuAD | Y Y Y 801K (X) 887k (X) | 1.19k (X)  T.19k (X)  1.19K (V

Question Answering \\ 0p” |y y vy 80.1k§x§ 8.87k gx; 11.24&2)() 11.24k( (3() 11.24k( (})

Language Availability. Despite the multilingual
coverage of XTREME, the language support for
each task is not equal. For instance, while JA
has train, dev, and test sets for token-level part-
of-speech (POS) tasks, there exists no JA test set
for sentence-level PAWSX task evaluation. There-
fore, the evaluation of existing works does not fully
facilitate deep understanding of source and target
language connections.

Pre-segmentation. The important shared char-
acteristics of segmentations among CJKV lan-
guages are inherently ignored and can be lost dur-
ing multilingual pre-processing and translations.
For consistency purposes, in our work, we de-
fine the terms word and token across CJKV lan-
guages and cohere to these definitions through-
out the manuscript. For CJK, we define each
character as a token and the combination of to-
kens after segmentation as a word. For VI, we re-
fer to whitespace-separated terms as tokens and
the combination of tokens after segmentation as
a word. Each word carries a complete semantic
meaning and can be formed by a single token or
multiple tokens.

For CJK, there exist no consistent rules of using
whitespace delimiters to differentiate tokens from
words. On the other hand, VI is written in Latin
script but still whitespace does not separate mean-
ingful units of the sentence as it does in EN. For all
of our languages of interest (CJKV), instead mean-
ingful word units are formed by combining individ-
ual tokens (Choi et al., 2009; Nguyen and Nguyen,
2020; Sun et al., 2021).

Additionally, as entries from bilingual dictionar-
ies are stored in terms of semantic words, pre-
segmented words allow for efficient lookups when
generating code-switched language. The issue
of pre-segmentation leads to inconsistent annota-
tions across languages. Specifically, within the
XTREME benchmark, on PANX datasets for NER
task, annotations for KO are generated at the word
level (2] 1 meaning League) while JA labels are
generated at the token level (H as a part of H2E
word denoting Nissan meaning), as demonstrated
in Figure 2. Through additional pre-segmentation

procedures, our CORI dataset provides more con-
sistent word-level annotations across CJKV.

Orthographic Contact Limitation. Prior works
assume language contact is limited to ortho-
graphic textual scripts (Zheng et al., 2021; Yang
etal., 2022). However, languages can interact with
one another via other language modalities. In fact,
as observed in Table 1, while ZH and JA share
orthographic contacts (shared i k%~ word in
textual scripts (meaning Metaphysical)), ZH and VI
contain subtle phonemic contacts captured via Ro-
manization such as gtidin (ZH) vs C dién (VI),
denoting "Classical’(EN) meaning.

Our presented CJKV Benchmark with Roman-
ization Integration, namely CORI, aims to address
the aforementioned shortcomings and allows for
in-depth study on the connections of CJKV lan-
guages across multi-level understanding tasks.
CORI contains 6 sub-datasets across different
NLU tasks mentioned in Section 3 in which train-
ing and validation sets for ZH (source language)
and testing set for 3 target JKV languages are pro-
vided. Additional detailed summary statistics re-
garding this dataset are provided in Table 4.

5.1. Language Availability

As token-level data for CJKV languages are all pro-
vided in XTREME benchmark datasets, we focus
on generating translations for sentence-level and
question answering tasks. Since these two tasks
do not suffer dramatically from label projection
challenges as compared to token-level tasks (Agic¢
etal., 2016), we adopt the off-the-shelf Google API
Machine Translation (MT) Tool? to generate trans-
lations for target CJKV languages. The objective
is two-fold (1) MT tool provides an automatic and
human-free approach that can easily scale and be
applied towards other datasets to generate CJKV
equivalents, (2) Off-the-shelf MT tools decouple
MT errors from cross-lingual transfer learning, al-
lowing for direct evaluation of the studied cross-
lingual methods.

2https://pypi.org/project/googletrans-py/
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Sentence-Level Task. As both PAWSX and
XNLI require paired inputs, for each entry we sim-
ply translate each input separately while preserv-
ing the ground truth labels for the pairs.

Question Answering Task. We adopt a
template-based machine translation approach
(Liu et al., 2021a) to generate QA datasets for
CJKV languages. Specifically, given individual
Context, Answer and Question ftriplets from the
source EN input, we mask out the ground truth
Answer within the Context using a special token.
The masked Context and the ground truth Answer
are then translated into the target languages sep-
arately. Eventually, we replace the special mask
token with the translated Answer to construct
the translated Context. As Question does not
involve the ground truth Answer, we translate it
independently similarly to the process used for
sentence-level task preprocessing.

5.2. Pre-segmentation

Generating pre-segmentation on the word-level se-
mantics requires in-deptth knowledge of specific
target languages. For this reason, we leverage
language-specific segmentation tools to provide
an automatic alternative to human-dependent ap-
proaches. Despite imperfections, produced seg-
mentations from these tools provide transparent
word-level semantic boundaries for multilingual
PLM tokenizer (Conneau et al., 2020), which facili-
tates the vocabulary knowledge acquisition for indi-
vidual target languages (Nakata and Suzuki, 2019;
Choi et al., 2021). Moreover, pre-segmentation
allows for effective aggregation of Orthographic
and Romanized transcription inputs that are differ-
ently tokenized by PLMs. We leverage pykakasi®,
konlpy*, jieba® and pyvi® for JA, KO, ZH, VI for pre-
segmentation process respectively. As UDPOS
dataset has already been pre-segmented, we skip
processing for this task as displayed in Table 5.

5.3. Articulatory Signals

Language contact is not necessarily restricted to
orthographic textual scripts, especially in cases
when most contact occurred before the present
writing system was established or popularized;
a textbook example of this would be Hindi and
Urdu, which are highly mutually intelligible but use
completely different orthographic scripts (Ahmad,
2011). Thus, it is also beneficial to capture linguis-
tic connections via other modalities of languages.
For instance, the orthographic representation of

Shttps://pypi.org/project/pykakasi/
“https://konlpy.org/en/latest/
Shttps://pypi.org/project/jieba/
Bhttps://pypi.org/project/pyvi/

the term “classical” in ZH (& #) and VI share lit-
tle similarity with one another. However, on the
phonemic level represented via Romanized tran-
scription, gudian in ZH is more similar to the corre-
sponding VI (C4 dién).

Articulatory signals can be extracted from mul-
tiple potential sources such as audio wave sig-
nals, IPA transcription, or simple Romanization.
While audio signals can capture a wide range of
aspects regarding speech, they also contain addi-
tional noise from human accents and background
noise (Wang et al., 2022; Hu et al., 2023). IPA
provides a unified system for phonemic transcrip-
tion, but it is unnatural and generally unsupported
for CJKV languages (Mortensen et al., 2016) and
necessitates additional pre-training for PLMs due
to the introduction of additional special tokens
(Nguyen et al., 2023c). Given the shortcomings of
audio signals and IPA for capturing articulatory sig-
nals, we proceed with a simple Romanization that
captures articulatory signals while maintaining the
simplicity of phonemic transcription.

To Romanize text, we leverage language-
specific  Romanization tools nagisa’, ko-
rean_romanizer®, pypinyin® , resulting in Hepburn
Romanization for JA, and Romaji for KO, Pinyin
for ZH respectively. As VI is already written in
Latin script, we consider the original orthographic
scripts as its own Romanized version. The
sample outcomes of both Pre-segmentation and
Romanization are displayed in Table 1.

6. Proposed Framework

In this section, we introduce a simple proposed
framework to integrate textual scripts with Roman-
ized transcriptions via Contrastive Learning (CL)
objectives as depicted in Figure 3.

Phonemic-Orthographic Integration Depend-
ing on the tokenizer of PLM, Romanized and Ortho-
graphic transcriptions might be tokenized into un-
equal number of sub-tokens. Therefore, we align
the semantics of these corresponding representa-
tions on the preprocessed word-level semantics in-
troduced in Section 5. Formally, given an i-th input
source language utterance with the length of M
orthographic tokens xES) = [xgi),xgi)...,xl(.i}] and

the corresponding phonemic transcriptions zi(s) =
[Z(S) Z(S) Z(S)]'
i,1 1%0,2 25 M
[V = [F(as), F(zs)] (1)

where F(-) denotes the Transformer Encoder lay-
ers of PLM and [-] represents function to unify the

"https://pypi.org/project/nagisa/
8https://github.com/osori/korean-romanizer
®https://pypi.org/project/pypinyin/
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Romanized Zhé kuailé de ganjué hé wénnuan
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% | Anchor ] Pos1
N

‘ Word Embeddings ‘

0

\
[ [E][#% ] [#r ][ & | e [ me] |

L
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Zhe dailai kuaile de ganjué hé wénnuan

Figure 3: lllustration of the Proposed Model Overview. The sample utterance means “This brought a

MLy

feeling of joy and warmth” in EN. “B&%t” and “cam_gidc” (equivalent to “feeling” in EN) are semantically
similar words in multilingual dictionaries. Pos1, Pos2 represent two augmented views of the original
Anchor sample via code-switching on Orthographic and Romanized transcriptions respectively. Neg
denotes in-batch negative samples similarly defined in (Chen et al., 2020).

two representations produced by the Transform-
ers. As our major objective is to verify the benefits
of joint representation, we leverage a simple con-
catenation operation.

Multi-view Augmentation An essential compo-
nent of CL is data augmentation. Previously, due
to constraints from the single orthographic repre-
sentation, augmentations are restricted to textual
scripts. Taking advantage of the existence of par-
allel Romanized and Orthographic transcriptions,
we propose a simple and parallel code-switching
augmentations on each linguistic modality sepa-
rately to generate multi-view augmentations of the
language input as presented in Equation 2 and 3.

Ii1 = [F(CS(x:)), F(2)]

- 2

Lip = [F(x;), F(CS(2))]
where CS(.) denotes code-switching operations
on the corresponding input. We adopt the similar
code-switching procedures proposed in (Qin et al.,
2021) under multilingual settings with ratio of 0.5.
Then, we apply the average pooling operation to
obtain the sentence-level representation of each
augmented view. Following (Chen et al., 2020),
we define the Multi-layer Perceptron (MLP) as pro-
jection head (g(-)) while our Transformer Layers
(F'()) represents the encoder function:

I = g(MeanPooling([1;1,...., Lim
M

t

! 1)

. - 3
I, = g(MeanPooling([L; 2, ..., I; m])) @)

CL objective is leveraged to encourage agreement
of different augmented views of the original anchor

input as formulated in Equation 4:

exp(cos(Iy, 1) /)
exp(cos(I,, I,)/T) +exp(I1,I_)/T
(4)
where 7 denotes the soft temperature hyperparam-
eter and I_ denote in-batch negative samples.

,ch = —lo

Task Objective Depending on the downstream
task, the exact output labels and learning objec-
tives can be different. Without loss of generality,
we define Y7 as the downstream task label for j-
th sample in the source language. Therefore, the
task objective can be defined as:
1 & :
Liask = A Z CrossEntropy((5([IZ{17 .

551

'Iij,JV[])vyj)

(5)
where §(-) is the projection layer for target down-
stream tasks. The overall learning objective (£) is
summarized as: £ = Liqsr + Loi-

7. Experiment

Benchmark Baseline We compare our pro-
posed method with the current relevant state-of-
the-art multilingual approaches under zero-shot
cross-lingual transfer settings. Parallel corpora
created using machine translation are expensive
to obtain, prone to errors across languages from
diverse typology, and require language-specific
pairs for individual tasks. Therefore, we assume
that translations are unavailable under zero-shot
cross-lingual transfer settings. For baselines lever-
aging machine translation data under zero-shot
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Table 5: Experimental results across multiple-level NLU tasks on XTREME and CORI benchmark test
datasets with standard deviations across 3 target JKV languages when trained on source language ZH.
Reported performance for each target language is averaged over 3 runs. Bold and T denote the best
and second-to-best reported average performance respectively for each task/ column.

Model Sentence-level Token-level Question Answering
PAWSX XNLI UDPOS PANX XQuAD MLQA
Acc Acc F1 F1 EM EM
XLM-R (raw XTREME) || 76.13 +10.59 | 59.18 + 19.89 - 26.89 + 10.29 30.31 £17.18 25.87 £ 14.18
XLM-R 79.61 £ 5.24 70.39 £ 1.60 47.82 + 1.98 37.29 £ 9.18 33.95 £ 14.73 29.95 + 5.88
Ours 81.38+4.487 | 7145+ 2557 | 51.75+1.49 | 44.01 +12.96 || 39.77+10.50 T | 35.83 +5.92
CoSDA-ML - - 50.48 £3.60 | 29.73 + 13.91 - -
FILTER 79.66 £5.78 | 68.06 +1.09 || 42.27 +17.78 | 29.34 + 4.62 32.10 + 10.14 28.06 + 6.89
xTune 81.72 + 4.91 72.25 + 1.31 50.75 £ 1.16 | 40.53 + 18.17 42,07 +11.25 | 33.13 £ 10.06 f
X-MIXUP 80.41+6.43 | 71.20+2.98 | 50.84 +£0.827 | 40.71 +3.62T || 32.69 +17.10 28.24 +7.46
PhoneXL - - 49.45 £ 1.77 | 38.26 +17.19 - -

(a) Without Romanized transcriptions
(CKA Score=0.0012)

(b) With Romanized transcriptions
(CKA Score=0.2024)

Figure 4: Repesentation visualization of semantically-aligned bilingual dictionaries in the case without
Romanization (left) and with Romanization (right) between ZH (source) and VI (target) languages. Rep-
resentations of source and target language are more aligned when Romanized transcriptions are intro-
duced beyond the orthographic scripts. It is best to be viewed in colors.

cross-lingual settings, we replace the translated in-
put with generated code-switched input from mul-
tilingual dictionaries; unlike machine translations,
this code-switched input can be efficiently gener-
ated. We adopt the remaining training details, in-
cluding hyperparameters, training schedules and
evaluation metrics for downstream tasks, similarly
to (Hu et al., 2020). We compare our framework to
the following approaches:

e XLM-R : Fine-tuning the backbone XLM-R-base
on source language ZH training data.

e CoSDA-ML (Qin et al., 2021): Multi-level code-
switching augmentation for cross-lingual transfer.
e FILTER (Fang et al., 2021): Cross-lingual trans-
fer via intermediate architecture disentanglement,
with knowledge distillation objectives from source
to target languages.

e XTune (Zheng et al., 2021): Two-stage aug-
mentation mechanisms with four exhaustive
augmentation methods for cross-lingual transfer.
e X-MIXUP (Yang et al.,, 2022): Cross-lingual
transfer via manifold mixup augmentation and
machine translation alignment between source
and target languages.

e PhoneXL (Nguyen et al., 2023c): Cross-lingual
transfer via additional IPA pre-training unsuper-
vised alignment objectives to enhance token-level
(NER and POS) task performance.

Due to space limitations, we present the concise
average performance of JKV languages across
multiple NLU tasks in Table 5. For individual lan-
guage’s performance for Sentence-level, Token-
level and Question Answering tasks, we refer read-
ers to Table 8, 9, 10 respectively in the Appendix.

8. Resuults

Impact of Pre-segmentation Processing As
observed in Table 5, our proposed pre-processing
provides tremendous benefits in target JKV lan-
guages’ performance across multiple downstream
tasks. For instance, fine-tuning XLM-R on our
CORI benchmark, instead of raw XTREME, re-
sults in performance gain of 11.21% accuracy on
Sentence-level XNLI tasks, 10.40 F1 points on
Token-level PANX tasks and 4.08 points of EM on
MLQA task. The gain is mainly due to the pre-
segmentation processing as the backbone XLM-R
fine-tuning only leverages orthographic scripts.

Impact of Romanization Integration Figure 4
demonstrates the effectiveness of Romanized
transcription integration in which the represen-
tation discrepancy of 5000 randomly sampled
semantically-aligned word entries in the bilingual
dictionary between ZH and VI is reduced as com-
pared to the orthographic-based representations.
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Table 6: Ablation study on the impact of Romanization on representative multi-level NLU tasks.

Source PAWSX PANX XQuAD
Acc F1 EM
XLM-R (only Ortho) 79.61 £524 | 37.29 £9.18 | 33.95 £+ 14.73
XLM-R (only Roman) | 60.23 +2.05 | 11.22 +3.17 | 22.77 + 8.04
Ours (both) 81.38 +-4.48 | 44.01 +-12.96 | 39.77 = 10.50
-CL 80.07 = 5.75 | 40.02 - 15.64 | 35.21 = 15.89

Additionally, we observe the consistent improve-
ments in our orthographic-phonemic integration
framework (Ours(both)) when compared to other
variants in Table 6. This implies that the enhanced
representation produced from our framework con-
tributes to the improvements on zero-shot trans-
fer performance across downstream tasks for JKV
target languages. Despite the positive impact of
Romanization integration, we observe that naive
aggregation of Romanized transcription with ortho-
graphic counterpart without additional learning ob-
jectives is insufficient to enhance cross-lingual rep-
resentation effectively. More importantly, as there
exists a significant performance gap between XLM-
R (only Ortho) and XLM-R (only Roman), phone-
mic representation is not a direct substitute for or-
thographic counterpart, but a complimentary sig-
nal instead. We hypothesize the empirical results
might be due to the impact of extensive exposure
to orthographic textual scripts of PLMs during pre-
training, leading to substantial gaps when training
with only orthographic representation as compared
to only Romanized transcription.

9. Conclusion

In our work, we conduct a preliminary study on
the effect of source language selection in cross-
lingual transfer for target languages, demonstrat-
ing the necessity of careful source language se-
lection. The study prompts our effort to construct
CORI, a CJKV Benchmark dataset, which not only
covers diverse NLU tasks for CJKV languages but
also captures the shared properties of word-level
semantics and phonemic-orthographic language
contact. We further conduct empirical studies and
design a simple framework to demonstrate the
essence of these properties in enhancing cross-
lingual representation, leading to competitive zero-
shot cross-lingual transfer performance across dif-
ferent downstream NLU tasks.

10. Limitations

As an attempt to provide an automatically gen-
erated CJKV dataset across various downstream
tasks, we rely on the heuristics and translation
quality from easily accessible off-the-shelf MT
tools. Despite imperfections, the generated trans-
lations shed lights on our pilot study on the impor-

tance of source language selection and intercon-
nections of CJKV languages beyond orthographic
textual scripts.

Secondly, as our dataset is constructed from
XTREME, CORI does not contain domain-specific
datasets for CJKV languages such as dialogue
domains (Xia et al., 2020; Nguyen et al., 2020,
2023a). By open-source our processing scripts,
we seek to enable the potentials of generating
domain-specific CJKV datasets in future works.

Lastly, our phonemic-orthographic aggregation
remains simplistic and only achieves competitive
performance on downstream tasks when com-
pared to other cross-lingual methods. However,
it is sufficient to demonstrate the contribution of
integrating Romanized transcriptions with ortho-
graphic textual scripts for enhanced cross-lingual
representations. As each language representation
might benefit differently from each modality, we
leave explorations of more dynamic aggregation
mechanisms such as Mixture-of-Experts (Shazeer
et al., 2017) for future work, which can result in the
new state-of-the-art for cross-lingual transfer per-
formance on target JKV languages.
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Table 7: Detailed preliminary study on the impact of source language on individual target JKV languages
on individual tasks. Bold denote the average performance (Avg) together with standard deviation
(Std) across 3 target JKV languages reported in Table 2.

Source | Target PAWSX XNLI UDPOS PANX XQuAD MLQA
JA 70.70 69.72 28.70 17.98 13.86 14.35

EN KO 68.53 69.13 42.76 20.77 22.77 20.37
W 81.35 66.19 48.52 52.34 48.52 31.61
Avg 73.53 68.35 40.09 30.36 28.38 22.11
Std 6.86 2.05 10.32 19.09 18.00 8.76
JA 76.98 73.18 46.24 4750 23.92 24.12

ZH KO 76.20 71.02 47.19 29.70 27.07 29.84
Vi 85.65 66.93 50.04 34.67 50.87 35.89
Avg 79.61 70.39 47.82 37.29 33.95 29.95
Std 5.24 1.60 1.98 9.18 14.73 5.88

Table 8: Individual Language Performance results on Sentence-level task (XNLI and PAWSX). Bold
denotes the average performance with standard deviation across 3 target languages reported in Table 5.

Model PAWSX XNLI
JA KO \ Avg JA KO \ Avg
XLM-R (raw XTREME) | 64.82 | 77.75 | 85.81 | 76.13 + 10.59 | 36.47 | 67.55 | 73.50 | 59.18 + 19.89
XLM-R 76.98 | 76.20 | 85.65 | 79.61 +£5.24 || 73.18 | 71.02 | 66.93 | 70.39 + 1.60
Ours 78.35 | 79.10 | 86.45 | 81.38 -4.48 || 74.05 | 71.36 | 68.95 | 71.45 £+ 2.55
CoSDA-ML - - - - - - - -
FILTER 76.85 | 75.82 | 86.30 | 79.66 +5.78 || 69.22 | 68.25 | 66.72 | 68.06 + 1.09
xTune 78.65 | 79.12 | 87.38 | 81.72 + 4.91 73.67 | 71.09 | 71.98 | 72.25 + 1.31
X-MIXUP 76.98 | 76.43 | 87.81 | 80.41 £6.43 || 73.71 | 71.99 | 67.91 | 71.20 + 2.98
PhoneXL - - - - - - - -

Table 9: Individual Language Performance results on Token-level task (UDPOS and PANX). Bold de-
notes the average performance with standard deviation across 3 target languages reported in Table 5.

Model UDPOS PANX
JA | KO | VI Avg JA [ KO | VI Avg

XLM-R (raw XTREME) || - - - - 3457 | 15.20 | 30.88 | 26.89 + 10.29
XLM-R 46.24 | 47.19 | 50.04 | 47.82+1.98 | 47.50 | 29.70 | 34.67 | 37.29 +9.18
Ours 50.77 | 51.01 | 53.47 | 51.75 = 1.49 || 58.70 | 39.12 | 34.21 | 44.01 - 12.96
CoSDA-ML 4633 | 52.38 | 52.73 | 50.48 £3.60 | 40.76 | 14.10 | 34.35 | 29.73 + 13.91
FILTER 2250 | 47.36 | 56.95 | 42.27 + 17.78 || 28.33 | 25.31 | 34.38 | 29.34 + 4.62
xTune 49.42 | 5153 | 51.29 | 50.75+1.16 || 60.70 | 25.54 | 35.34 | 40.53 + 18.17
X-MIXUP 49.89 | 51.27 | 51.35 | 50.84 +0.82 | 44.62 | 37.47 | 40.06 | 40.71 + 3.62
PhoneXL 47.76 | 49.30 | 51.30 | 49.45+1.77 | 53.85 | 19.83 | 41.10 | 38.26 + 17.19

Table 10: Individual Language Performance results on Question Answering task (XQuAD and MLQA).
Bold denotes the average performance with standard deviation across 3 target languages reported in

Table 5.
Model XQuAD MLQA
JA KO Vi Avg JA KO Vi Avg

XLM-R (raw XTREME) || 17.60 | 23.48 | 49.86 | 30.31 +17.18 | 12.86 | 23.77 | 40.99 | 25.87 + 14.18
XLM-R 23.92 | 27.07 | 50.87 | 33.95 + 14.73 | 24.12 | 29.84 | 35.89 | 29.95 + 5.88
Ours 31.92 | 35.68 | 51.70 | 39.77 +-10.50 | 35.45 | 30.11 | 41.94 | 35.83 4+ 5.92

CoSDA-ML - - - - - - - -
FILTER 31.09 | 2252 | 42.72 | 32.10 +-10.14 | 34.01 | 29.66 | 20.52 | 28.06 + 6.89
xTune 31.02 | 41.68 | 53.50 | 42.07 + 11.25 || 40.82 | 21.75 | 36.82 | 33.13 + 10.06
X-MIXUP 30.67 | 16.69 | 50.72 | 32.69 4+ 17.10 | 24.23 | 23.64 | 36.85 | 28.24 1 7.46

PhoneXL - - - - - - - -
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