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Abstract
This paper presents a resource-centric study of link prediction approaches over French lexical-semantic graphs.
Our study incorporates two graphs, RezoJDM16k and RL-fr, and we evaluated seven link prediction models, with
CompGCN-ConvE emerging as the best performer. We also conducted a qualitative analysis of the predictions using
manual annotations. Based on this, we found that predictions with higher confidence scores were more valid for
inclusion. Our findings highlight different benefits for the dense graph RezoJDM16k compared to the sparser graph
RL-fr. While the addition of new triples to RezoJDM16k offers limited advantages, RL-fr can benefit substantially
from our approach.
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1. Introduction

Since the early days of Natural Language Process-
ing (NLP), lexical resources have been essential for
the development of NLP systems. However, with
the recent advancements in language models and
deep learning, there has been a gradual shift away
from these resources in favor of vast amounts of
web-derived text. Nevertheless, lexical resources
continue to hold value in related domains like lin-
guistics and language education. In these areas,
lexical resources are created manually by domain
experts, a process that produces high-quality re-
sources but is nevertheless time-consuming.

Creating machine-readable resources has been
a major challenge of the French community of NLP
in the last decades, resulting in a large number of
freely available resources made by various semi-
automatic techniques. For instance, the French
lexicon Lefff was created by merging existing re-
sources, automatically acquiring and manually vali-
dating corpus data and syntactic information (Clé-
ment et al., 2004; Sagot, 2010). Another example
is the RezoJDM lexical-semantic graph made by
crowdsourcing from GWAPs on the JeuxDeMots
platform (Lafourcade and Joubert, 2008; Lafour-
cade and Le Brun, 2020). This approach has en-
abled the graph to be expanded to several million
nodes and relations.

These lexical-semantic resources are often rep-
resented as a knowledge graph (KG), due to their
interconnected nature. In these graphs, real-world
entities are described from a linguistic point of view
by specifying the lexical and semantic relations be-
tween them. That is, a fact is represented as a
triple in the form (head, relation, tail) as

in (dog, hyponymy, puppy). However, KGs
and lexical-semantic graphs are almost always in-
complete due to the impossibility of describing the
world or a language exhaustively. This incomplete-
ness can be in the form of coverage i.e., not enough
entities or relation types exist in the graph, or com-
pleteness i.e, there are missing links between ex-
isting entities in the graph. The field of Knowledge
Graph Completion (see Sec. 3), which has seen
a lot of advancement in recent years, aims to re-
duce this incompleteness in automated or semi-
automated manner. It includes among others, the
sub-tasks of entity prediction, relation prediction,
and link prediction (Chen et al., 2020), the latter of
which is the focus of our work.

In this paper, we adopt a computational linguistic
point of view to approach the link prediction task.
Our primary emphasis lies in the extraction of po-
tential new triples from the model’s predictions, as
opposed to solely maximizing model performance.
Specifically, we focus our efforts improving the com-
pleteness of RL-fr (Lux-Pogodalla and Polguère,
2011), a relatively sparse lexical-semantic graph
created manually by lexicographers. To better con-
trast the effectiveness of our approach, we also
perform our experiments on the sub-graph of Rezo-
JDM, RezoJDM16k (Mirzapour et al., 2022), which
has significantly higher density than RL-fr.

The main contributions of our work can be sum-
marized as follows:

1. We studied the effectiveness of seven link pre-
diction models on two French lexical graphs,
and provide state-of-the art results.

2. We added a confidence score to the predic-
tions generated by CompGCN-ConvE model
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to extract potential new triples.

3. Finally, we conducted a qualitative analysis of
these predictions with manual annotations.

Our experiments provide encouraging results
and chart a new path towards semi-automated
lexical-semantic resource enrichment.

2. Link Prediction Task

The link prediction task consists of predicting miss-
ing triples in a graph. There are two primary vari-
ants of the task: transductive and inductive link pre-
diction. In transductive prediction, both training and
inference occur on the same graph. Conversely,
in inductive prediction, inference can take place
on a different graph, and the test set may include
unseen nodes (Galkin et al., 2022). This paper
focuses on transductive link prediction.

KGs can be described as a set of interconnected
triples, typically denoted as (h, r, t) for head, relation,
and tail. Given incomplete triples like (h, r, ?) or
(?, r, t), the model is required to predict the missing
entity. To achieve this, neural models are trained
to score true triples higher than false ones using
negative sampling (Bordes et al., 2013). It consists
of corrupting positive triples by replacing the head
or the tail entity by another randomly chosen entity.
The aforementioned scores are determined accord-
ing to the model’s score function, which depends on
the type of model. In this section, we provide broad
overview of some of these types. We refer inter-
ested readers to the comprehensive review of Chen
et al. (2020) for a more in-depth understanding of
neural approaches for link prediction.

Translation models These models use transla-
tion distance between node and relation embed-
dings as their score function. TransE (Bordes et al.,
2013) uses Euclidean distance, with subsequent
models like TransH (Wang et al., 2014), TransR (Lin
et al., 2015), and TransD (Ji et al., 2015) offering
various extensions. Some, like RotatE (Sun et al.,
2019), use complex vector spaces to represent enti-
ties, and define relations as rotations between them.
This enables them to model more complex relation
patterns like symmetry/asymmetry, inversions and
compositions.

Semantic-matching models These models use
a score function derived from semantic similar-
ity to discover potential semantic connections be-
tween entities and relations. Notable examples
include RESCAL (Nickel et al., 2011), which can
capture pairwise interactions between entities, Dist-
Mult (Yang et al., 2015) that reduces the compu-
tational overhead but is constrained to symmetri-
cal relations, and ComplEx (Trouillon et al., 2016),

which introduces complex vector space based em-
beddings for broader modeling capacity.

Deep Neural Architectures for Graphs The ap-
proaches introduced above are limited to using sim-
ple mathematical operations like inner products
or matrix multiplications, over entity and relation
embeddings. As a result, their modeling capacity
can only be increased by changing the embedding
dimensions. The application of deep neural net-
works however on these graphs is non trivial, and
was underexplored until the following two devel-
opments. First, Dettmers et al. (2018) proposed
ConvE which applies convolution layers over the
latent embedding space to model entity-relation
interactions and uses a dense layer to calculate
the score. In parallel, Graph Convolution Networks
(GCNs), proposed in Kipf and Welling (2017), en-
abled information from different nodes to be propa-
gated across paths in the graph, leading to neigh-
bourhood aware representations of entities and
relations. Models like R-GCN (Schlichtkrull et al.,
2018) and CompGCN (Vashishth et al., 2020) pro-
pose further modifications to handle multi-relational
graphs i.e., KGs. Note that GCNs themselves do
not solve the link prediction task but provide richer
ways to encode the graph. In this work, we also
include a CompGCN and ConvE based approach
for our context.

Metrics Inspired by information retrieval (IR), the
traditional metrics for the link prediction task are
based on the ranking of the scores of the correct
predictions among all the predictions generated:

• Mean Rank (MR): Given a set of predicted
triples, MR computes the average rank of the
true ones. Lower MR signifies better perfor-
mance.

• Mean Reciprocal Rank (MRR): MRR is the
average of the reciprocals of ranks of the true
triples. Higher MRR indicates better perfor-
mance.

• Hits@k: This metric computes the proportion
of true triples that appear in the top k of the
ranked list of predicted triples. A higher Hits@k
value denotes superior prediction accuracy for
the top k triples.

3. Related Work

While the task of lexical-semantic graph completion
remains under-explored, there is a vast literature
surrounding the enrichment of lexical graphs.

Broadly, these approaches aim to increase the
coverage of the underlying resource i.e., add new
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nodes to the graph. They rely on new or exist-
ing external resources and propose ways to do so.
One of the first approaches leveraged statistical co-
occurrences to bootstrap existing lexical-semantic
graphs (Biemann et al., 2004). These, and other
early approaches (Riloff and Shepherd, 1997) re-
quired significant manual intervention due to low
quality of predictions. Perhaps one of the most im-
portant advancement in the field came in the form
of BabelNet (Navigli and Ponzetto, 2012) which
extended WordNet (Miller, 1995) by cross refer-
encing word senses with Wikipedia articles, and
leveraging its multilingual nature. Machine transla-
tion models were further used by them, as well as
other approaches (Oliver and Climent, 2012; Lam
et al., 2014) in varying capacity. Another set of ap-
proaches (Taghizadeh and Faili, 2016; Arcan et al.,
2016) leverages advancements in Word Sense Dis-
ambiguation (WSD), and existence of parallel cor-
pora or dictionaries to enrich non-English Wordnets
from English WordNet.

On the other hand, approaches which aim to opti-
mize the completeness of these graphs rarely adopt
a resource-centric perspective. That is to say that
while there are countless approaches which per-
form transductive link prediction models on these
graphs (as Discussed in Sec. 2), very few of these
have led to concrete additions to the underlying
resource. One exception to this is the work of Fell-
baum (1998) on adding links between WordNet
nodes based on pattern mining from text corpora.

It is worth mentioning that this field has a signif-
icant bias towards English resources, as demon-
strated by the use of benchmark datasets such
as WN18RR (Dettmers et al., 2018) and FB15K-
237 (Toutanova and Chen, 2015). While most tech-
niques are in theory, transferable to any graph,
very few empirical efforts have been made. For
French resources, Mirzapour et al. (2022) study the
effectiveness of contemporary link prediction ap-
proaches on lexical-semantic graph, although they
focus on evaluating models on a French dataset
rather than enriching the resource.

This remains an important gap in the field since
the effectiveness of graph machine-learning algo-
rithms varies greatly based on the nature of graphs
(See Sec. 4.3).

4. French Lexical Graphs

4.1. RezoJDM and RezoJDM16k

RezoJDM is a French lexical-semantic network de-
veloped using various methods, including GWAPs
(Game With A Purpose), contributory approaches,
and inference mechanisms (Lafourcade and Jou-
bert, 2008; Lafourcade and Le Brun, 2020). The

platform called JeuxDeMots1 (Games of Words)
offers a variety of games with distinct objectives.
Some games are designed to expand the network
by adding new entries, while others are focused
on verifying the information within the network. For
instance, the main game in JeuxDeMots prompts
players to input terms within a specific time frame
based on a given term and relation type (cf. Fig-
ure 1). Using GWAPs and crowdsourcing for con-
struction has resulted in a highly dense directed
graph. Initiated in 2006, this resource has under-
gone consistent updates and presently includes
more than 537 million relations and six million
nodes2.

There are different types of nodes and rela-
tions in RezoJDM. Nodes mainly represent terms
(type n_term) but can also carry other information
such as part-of-speech tags (type n_pos) or in-
flected forms (type n_form). Relations are divided
into three categories: lexical relations (synonymy,
antonymy. . . ), ontological relations (hyperonymy,
meronymy. . . ) and predicative relations (agent,
consequences. . . ). Nodes and relations have the
particularity of being assigned weights based on
the dynamics of the game. For relations, a positive
weight codes a true relation and conversely a neg-
ative weight codes a false relation, which is rather
uncommon in KGs.

In the resource, the polysemy of a term is
expressed by distinguishing a generic node from
its refinement nodes. Figure 1 shows the various
refinements of the term accord (agreement) that
the player can choose. However, as the game
asks the player to enter as many terms as possible
in a limited time, players tend not to refine their
answers, which leads to a low density of refined
nodes. For instance, the generic node accord has
a degree of 10,549, while the degrees of refined
nodes accord>pacte (agreement>pact) and
accord>acceptation (agreement>acceptance)
are 194 and 123 respectively.

Mirzapour et al. (2022) created the sub-graph
RezoJDM16k to provide a dataset for the link pre-
diction task. It has been created by applying various
filters to the nodes and relations of RezoJDM. For
instance, only nodes of type n_term and weight
greater than 50 were retained. The same weight
filter was applied to the relations and some types
were also removed. Furthermore, relation types
occurring fewer than 100 times and nodes with a
degree less than 45 have been excluded to en-
hance a better efficiency of the models. At the end
of this process, the graph is composed of 15,746
nodes and 832,093 relations and is the one used
in the following experiments.

1https://www.jeuxdemots.org
2As of October 2023.

https://www.jeuxdemots.org
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Figure 1: Example of the game JeuxDeMots where the player has to enter terms associated with the
term consentement (consent). The last term entered is accord (agreement) and the game presents its
different meanings (refinements). The player can then refine his answer by choosing one of the meanings.

4.2. RL-fr

RL-fr (Réseau Lexical du Français) is a French
lexical-semantic network created by lexicogra-
phers, where nodes correspond to lexical units
and edges to semantic or combinatorial lexical
relations (Lux-Pogodalla and Polguère, 2011). The
resource is based on the principles of Explanatory
Combinatorial Lexicology, the lexical component
of the Meaning-Text Theory (Mel’čuk, 1996). In
this section, we present information regarding the
version 2.1 of RL-fr, the version used for our
experiments.

The lexical units in RL-fr are the fundamen-
tal entities for lexicographic description and can
be either a lexeme or an idiom. Lexemes are
monolexemic lexical units and correspond to word
senses. Therefore a polysemic word, called a vo-
cable, is represented as collections of lexical units
connected through a copolysemy relation. Version
2.1 of the RL-fr contains 29,220 lexical units and
18,625 vocables. Here are the lexemes for the
vocable jambe, leg as examples:

• Jambe I.1:
Marc attend patiemment, les jambes croisées.
Marc waits patiently, his legs crossed.

• Jambe I.2a:
Le cheval s’est blessé à la jambe.
The horse hurt its leg.

• Jambe I.2b:
Il y a de la jambe de porc au menu.
There is pork leg on the menu.

• Jambe II:
La jambe droite du pantalon est déchirée.
The right leg of the trouser is torn.

• Jambe III:
Une des jambes de suspension doit être
changée.
One of the suspension legs must be replaced.

Unlike conventional dictionaries, where the
senses of a word are generally only listed, RL-fr
represents the types of relation between the senses
with the notion of copolysemy, described as the re-
lation among various senses of a word, opposed
to polysemy which is the property of words to ex-
press several meanings (Polguère, 2018). There-
fore, several copolysemy relations exist, as shown
in Figure 2 for the vocable jambe.

Jambe I.1
part of the human body

Jambe I.2a
part of body (animal)

Extension

Jambe I.2b
meat

Metonymy

Jambe II
part of an object

Metonymy

Jambe III
part of an object

Metaphor/Form

Figure 2: Polysemy structure of the vocable jambe
(leg) in RL-fr.

Both paradigmatic and syntagmatic relations
are encoded with lexical functions (Mel’čuk, 1996).
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Some examples of paradigmatic lexical functions
are given below:

• Synonymy (Syn): vélo → bicyclette
bike → bicycle

• Antonymy (Anti): accord → désaccord
agreement → disagreement

• Hyperonymy (Gener): amour → sentiment
love → feeling

Syntagmatic relations include, among others, col-
locations and support verbs:

• Intensifier (Magn): boire → comme un
trou, drink → like a fish

• Support verb (Oper): danger → courir
danger → run, for the expression "courir un
danger" which means "take a risk".

Lexical functions can be used to represent sim-
ple and complex semantic relations, resulting in
689 different lexical functions, in RL-fr 2.1. For
our experiments, we used the families of lexical
functions to reduce the number of relation types,
corresponding to 95 types of lexical functions. For
copolysemy relations, we conserved the 11 exist-
ing relations. In total, there are 62,641 relations
encoded by lexical functions and 9,413 copolysemy
relations.

4.3. Different yet complementary graphs
Despite having a common network format, Rezo-
JDM16k and RL-fr exhibit significant differences
in terms of their creation, scope, and the way in
which they represent polysemy. Table 1 illustrates
the contrast in topology between these two graphs:
RezoJDM16k is very dense with an average node
degree of 105.7 and boasting over 10 times the
number of edges compared to RL-fr. On the
other hand, RL-fr presents more nodes, due to
the representation of word senses in distinct nodes.
Figure 3 shows an overview of the RL-fr network
around the vocable accord, represented with two
nodes accord 1 and accord 23. Notice the dif-
ference with RezoJDM16k, which has a central
generic node and refined nodes (cf. Figure 1).

The method of resource creation inherently im-
pacts the graph structure, with manual enrichment
being a time-consuming process. However, it en-
sures controlled, high-quality content verified by do-
main experts. Regarding RezoJDM16k, the quality
of the resource is not necessarily lower, as it is
contributed by volunteers who are driven by their
interest for the language (Lafourcade and Le Brun,
2020), but does present some noise despite the
semi-automatic checks.

3https://spiderlex.atilf.fr/fr/q/
*accord***

RezoJDM16k RL-fr

# nodes 15,746 29,220
# edges 832,093 72,054
# edge types 150 106
Mean node degree 105.7 5.2
Min node degree 2 1
Max node degree 10,403 187

Table 1: Statistics on RezoJDM16k and RL-fr.

Figure 3: Vocable accord (agreement) repre-
sented in RL-fr.

5. Experiments

5.1. Datasets pre-processing
Transductive link prediction implies that all the
nodes in the validation and test sets must be
present in the training set. To do so, Mirzapour
et al. (2022) checked whether the head and the tail
of each triple were involved in at least one other
triple. If so, the triple was placed in the valida-
tion set. Once the desired validation set size was
reached, the same process is repeated on the re-
maining triples to obtain the test and the training
sets.

Despite ensuring the inclusion of all nodes of the
graph in the training set, this method is not suit-
able for sparse graphs such as RL-fr. Hence,
we decided to split randomly the triples into train-
ing, validation and test sets (80%, 10%, 10%) and
check if all the nodes in the validation and test sets
were present in the training set. If not, we removed
the triple from the set. For a highly dense graph
such as RezoJDM16k, no triple was lost even af-
ter ten different random splits. On the other hand,
a sparse graph such as RL-fr implies edge and
node losses (- 2,152 nodes, - 1,037 edges). There-
fore, we obtained a final graph of 27,068 nodes
and 71,017 edges, which we call RLF27k. Table 2
presents RezoJDM16k and RLF27k and their re-
spective training, validation and test sets.

https://spiderlex.atilf.fr/fr/q/*accord***
https://spiderlex.atilf.fr/fr/q/*accord***
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RezoJDM16k RLF27k

# nodes 15,746 27,068
# edges 832,093 71,017
# triples Train 665,674 57,643
# triples Valid 83,209 6,674
# triples Test 83,210 6,700

Table 2: Statistics on training, validation and test
sets of RezoJDM16k and RLF27k after a 80%,
10%, 10% division.

5.2. Comparing models performance
We evaluated the performance of link prediction
models on both datasets using the same six models
as described by Mirzapour et al. (2022). We repli-
cated their experiments on RezoJDM16k and con-
ducted them on RLF27k. Additionally, we trained
a ConvE model with CompGCN (Vashishth et al.,
2020) encoder (referred to as CompGCN-ConvE
hereafter) to explore the efficacy of a graph neural
network approach on these French datasets.

The results for RezoJDM16k are presented in Ta-
ble 3. We find that CompGCN-ConvE outperforms
all the other models in almost all metrics. Notably,
it achieves an Hits@1 of 0.357, which is more than
twice that of RotatE. Its Hits@3,10 and MRR scores
are consistently best as well and the MR closely
matches the best score achieved by TransD.

Table 4 displays the results for RLF27k. Once
again, CompGCN-ConvE stands out with an MRR
of 0.515, and highest Hits@k scores. However, it’s
worth noting the high MR, which suggests a notable
disparity in the ranks of correct triples: 60% of them
rank within the top 10, while the remaining 40% are
positioned significantly lower.

5.3. Confidence-aware predictions
With CompGCN-ConvE being the best model on
both datasets, we performed a more in-depth analy-
sis of its predictions. Beyond assessing the model’s
performance in predicting the test set triples, we
examined all predictions made by the model for a
given head entity and relation by ranking the pre-
dictions according to their score.

In the example in Figure 4, we generated the
top-20 predictions for the head entity bonnet i
and the relation synonym of RLF27k dataset. The
model logically predicts a triple present in the train-
ing set with a high score (0.893), then predicts two
triples from the test set with scores around 0.08.
We assume that the remaining triples, which do not
exist in the original graph, might be potential candi-
dates. Nevertheless, the score function does not
provide a meaningful way to evaluate the relevance
of these triples, given that all scores are very low
(around 0.01).
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Figure 4: Predictions for the head node bonnet
i (hat) and the relation synonymy. Triples that
already exist in the dataset RLF27k are in red ([tr]
for training set and [ts] for test set). Note that the
y-axis is scaled logarithmically for better visibility.

Based on this, we aim to approximate the pre-
dictive distribution for a given point from our pa-
rameterized model. The predictive distribution
p(y∗|x∗,X,Y) for a new data point x∗ given a
dataset (X,Y) and a model parameterized by θ
is:

p(y∗|x∗,X,Y) =

∫
p(y∗|x∗, θ)p(θ|X,Y) dθ (1)

Here, the first term is the likelihood of observing
the output y∗ given the input x∗ and model parame-
ters θ, and second term is the posterior distribution
of the parameters given the data. Computing the
latter is intractable for deep neural networks due
to its high dimensional parameter space. Monte-
Carlo (MC) Dropout (Gal and Ghahramani, 2016)
allows us to approximate this intractable integral.
By performing T stochastic forward passes through
the network with dropout enabled, we obtain T pre-
dictions for each test input x∗. The empirical distri-
bution of these predictions approximates the pre-
dictive distribution p(y∗|x∗,X,Y). Mathematically,
this can be expressed as:

p(y∗|x∗,X,Y) ≈ 1

T

T∑
t=1

p(y∗|x∗, θt) (2)

More practically, while we typically disable
dropout during inference, to ensure deterministic
and less noisy predictions. However, under MC
Dropout based inference, we draw multiple predic-
tions for the same input, by sampling a different
dropout mask each time. This yields a predictive
distribution for a given model, and inputs, which
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Model MRR MR Hits@10 Hits@3 Hits@1
TransE 0.180 200.78 0.437 0.242 0.040
TransH 0.217 173.28 0.503 0.293 0.064
TransD 0.216 168.18 0.500 0.290 0.065
DistMult 0.219 194.16 0.446 0.252 0.109
ComplEx 0.256 190.79 0.539 0.309 0.119
RotatE 0.312 177.04 0.587 0.409 0.155
CompGCN-ConvE 0.461 171.26 0.659 0.514 0.357

Table 3: Results of KGE link prediction models on RezoJDM16k.

Model MRR MR Hits@10 Hits@3 Hits@1
TransE 0.278 2594.24 0.624 0.497 0.033
TransH 0.250 2957.59 0.581 0.465 0.011
TransD 0.255 2752.03 0.587 0.472 0.016
DistMult 0.373 2748.25 0.613 0.502 0.216
ComplEx 0.413 3447.98 0.593 0.524 0.284
RotatE 0.399 3650.92 0.490 0.454 0.336
CompGCN-ConvE 0.515 2808.68 0.627 0.559 0.450

Table 4: Results of KGE link prediction models on RLF27k.

provides a richer set of information about model pre-
dictions such as the ability to compute confidence
scores for any prediction.

Consider for example the incomplete triple
(bonnet i, syn, ?). Given the original predic-
tive distribution of the model, as shown in Figure 4,
we apply MC Droput to generate n = 100 new dis-
tributions for the triple. Then, we set an inclusive
criterion to turn real valued predictions to binary
decisions, i.e., we check whether the predicted en-
tity is in the top-10 scored predictions. Finally, we
calculate the confidence score as the ratio of the
number of times the predicted entity appears in the
top-10 to the number of predictive distributions n.

This enables us to draw confidence scores about
model predictions, and make claims like “according
to this model, the tail entity kepi is in the top-10
predictions for the input head entity bonnet i and
relation synonymy with 75% confidence”. We out-
line the use of these confidence scores in Sec. 6.2.

6. Qualitative analysis

6.1. Extracting candidates

Our goal is to determine whether this confidence
score can be used to identify relevant triples that
could be incorporated into graphs.

First, we generated all the possible combinations
of triples for both datasets and we removed triples
already in the graphs. In total, 533,551 predic-
tions were generated for RLF27k and 1,720,454 for
RezoJDM16k. We specifically focused on triples
whose entities are not linked by any directed path.

For RLF27k, we obtained 95,766 final triples.
In the case of RezoJDM16k, due to the high den-

sity of the graph, all entities are linked via short-
est paths ranging from 1 to 4. To apply a similar
methodology as for RLF27k, we kept triples with
paths of lengths 3 and 4, resulting in a total of
154,168 triples.

6.2. Manual annotations
To evaluate the confidence score, 240 triples per
dataset were annotated by four annotators, each
of whom annotated 120 triples, thus obtaining two
annotations for each triple and calculating an inter-
annotator agreement (IAA). Confidence scores are
homogeneously represented in the samples of
each annotator, grouped by 0.1.

The annotation task consists of determining
whether a semantic or syntactic link exists between
two entities, without taking into account the relation.
Annotators have no information outside the triple.
Three annotation tags are possible:

• 1: there is a link between the entities,

• -1: there is no link,

• 0: the link is ambiguous or questionable.
Figures 5 and 6 show the pairwise IAA with a

Cohen’s kappa, respectively in RezoJDM16k and
RLF27k samples, with A1, A2, A3 and A4 referring
to the four annotators. The IAA appears notably
stronger in the RLF27k sample with the highest
agreement at 0.84 against 0.61 for RezoJDM16k.
The minimum agreement in RezoJDM16k is partic-
ularly low at 0.1, in contrast to RLF27k’s 0.49.
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Figure 5: Cohen’s kappa values on RezoJDM16k.
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Figure 6: Cohen’s kappa values on RLF27k.

6.3. Results discussion
The difference in the IAA between RezoJDM16k
and RLF27k can be attributed to the unequal distri-
bution of annotation tags, more specifically to the
overrepresentation of the tag -1 in RezoJDM16k.
Of the 240 triples, the annotators agreed on 183.
Of these 183 triples, 85% (156 triples) were anno-
tated as -1 and 15% (27) as 1. The high density
of the graph implies that nodes semantically unre-
lated are connected by a relatively short maximum
path of 4, which explains the high proportion of -1
annotations. Figure 7 presents the comparison be-
tween the manual annotations and the confidence
scores of the triples in the sample. Notably, rare
triples that were manually annotated as accurate
tend to exhibit high confidence scores. However,
due to the prevalence of -1 annotations, a robust
correlation is challenging to establish.

On the other hand, in the RLF27k sample, out
of the 200 triples where both annotators agreed,
56.5% (113) were annotated as -1, 39% (78) as 1
and 4.5% (9) as 0. We can note that the annotation
tags in RLF27k exhibit a more balanced distribu-
tion compared to RezoJDM16k. Figure 8 shows
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Figure 7: Correlation between annotation values
and confidence scores in RezoJDM16k sample.
The triples considered are those where both an-
notators agreed.

a correlation between the annotation tags and the
confidence scores on the RLF27k triples where the
two annotators agree. We can observe that triples
annotated as -1 have a low confidence score, while
those annotated as 1 have higher confidence score.
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Figure 8: Correlation between annotation values
and confidence scores in RLF27k sample. The
triples considered are those where both annotators
agreed.

Figure 9 presents the ratio of predictions anno-
tated as correct by both annotators according to
the confidence threshold. We can notice that in-
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Figure 9: Correct (annotated as 1) predictions ratio
of RLF27k according to the confidence threshold.

creasing the confidence threshold leads to a higher
proportion of correct triples. For instance, choosing
a confidence threshold of 0.95 would result in all
the triples being correct. On the complete RLF27k
graph, there are 95,766 triples whose entities are
not connected by a directed path and 398 of them
have a confidence score greater than 0.95, which
can therefore be considered as potential new triples.
Here are some examples of relevant candidates:

• (kidnappeur, Syn, ravisseur I)
(kidnapper, Syn, abductor I)

• (marchande, Syn, débitante)
(merchant, Syn, retailer)

• (motocycliste n-fem, Syn, motarde)
(motorcyclist n-fem, Syn, biker)

The limitation in RLF27k lies in the fine-grained
representation of polysemy. A large part of the can-
didates are triples where the model predicted the
wrong sense of the target entity, which is proba-
bly due to the copolysemy relations between the
senses of a vocable. Thus, another experiment
would be to train a model without these relations to
reduce this phenomenom.

7. Discussion

In this study, we aimed to identify potential new
triples for two lexical-semantic graphs, Rezo-
JDM16k and RLF27k, using link prediction mod-
els. Initially, we assessed seven KGE models
on both the dense graph RezoJDM16k and the
sparser graph RLF27k. The model CompGCN-
ConvE yielded the best performance on these
datasets, showing state-of-the art results for French
datasets. We further studied the use of MC Dropout
to generate confidence-aware predictions. Based
on this, we chose predictions from the best perform-
ing model (CompGCN-ConvE), as potential triples

to be added to the graph and finally, we evaluated
the confidence score using manual annotations.

There is a marked difference between the
two graphs in terms of density. For a dense
graph like RezoJDM16k, adding new triples
might not yield significant benefits, given that
even entities with slight semantic proximity are
connected via short paths. Yet, our approach
may prove useful for refining general relations
and identifying errors in the graph, especially
since it derives its data from a less controlled
process of GWAPs. Notably, RezoJDM16k heavily
features the general associated relation, consti-
tuting 31% of the edges, which could be refined
through the model’s predictions. For instance:
(infirmière, associated, personne),
(nurse, associated, person) is refined as
(infirmière, is_a, personne), (herpès,
associated, médecine), (herpes, associated,
medecine) as (herpès, domain, médecine)
and (ouvrir, associated, fermer),
(open, associated, close) becomes (ouvrir,
antonym, fermer).

On the other hand, for a sparse graph created
manually by linguists such as RL-fr, our approach
holds greater significance as it offers a valuable way
to enrich the resource. In a final step, we asked
annotators to verify the predictions yielded from our
aforementioned technique. Based on their results,
we find that predictions with high confidence scores
are more likely to be selected as valid additions to
the graph. As a result, several triples could po-
tentially be integrated into the resource, subject to
expert validation.

While the results of our approach are promising,
we maintain that manual verification is an important
step, as the representation of polysemy into sepa-
rate nodes directly affects predictions. Given that
the model only relies on the graph’s structure and
neighboring nodes to grasp semantics, there are
inherent limitations in predicting the precise entity
among the various senses of a vocable.

In subsequent research, beyond intrinsic eval-
uation methodologies, we intend to conduct ex-
trinsic evaluation using augmented or corrected
lexical-semantic graphs in NLP tasks, notably Word
Sense Disambiguation (WSD). Furthermore, from a
resource-centric perspective, we aim to explore the
potential mutual benefit and enhancement between
the two French lexical-semantic networks.

All associated code for our experiments
and manual annotations are available in this
repository: https://github.com/hschoi4/
fr-link-prediction.

https://github.com/hschoi4/fr-link-prediction
https://github.com/hschoi4/fr-link-prediction
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8. Ethical Considerations

In order to run all the experiments in this study,
we estimated that a total of 485 kWh of electric-
ity were used. This gives about 14.5 kg CO2, us-
ing the estimation of carbon intensity (30 g CO2

eq/kWh). These values were collected with a car-
bon tracker (Anthony et al., 2020).

We also want to emphasize that while we tried
to make this study as reproducible as possible, we
are aware that this may not be practical due to
the necessary hardware resources. To train the
models, a computer with at least 96 GB of system
memory (or GPU memory) was needed and we
used a cluster of 113 computers with 18-core CPUs
during 10 hours to compute all the predictions. This
also required the storage of 2 TB of data.
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