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Abstract
Reasoning over the Temporal Knowledge Graph (TKG) that predicts facts in the future has received much attention.
Most previous works attempt to model temporal dynamics with knowledge graphs and graph convolution networks.
However, these methods lack the consideration of high-order interactions between objects in TKG, which is an
important factor to predict future facts. To address this problem, we introduce dynamic hypergraph embedding for
temporal knowledge graph reasoning. Specifically, we obtain high-order interactions by constructing hypergraphs
based on temporal knowledge graphs at different timestamps. Besides, we integrate the differences caused by
time into the hypergraph representation in order to fit TKG. Then, we adapt dynamic meta-embedding for temporal
hypergraph representation that allows our model to choose the appropriate high-order interactions for downstream
reasoning. Experimental results on public TKG datasets show that our method outperforms the baselines. Fur-
thermore, the analysis part demonstrates that the proposed method brings good interpretation for the predicted results.
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1. Introduction

Knowledge Graphs (KGs) have abundant infor-
mation storage and are broadly used for down-
stream tasks (Zou, 2020) due to their excellent
representation of structured knowledge. Knowl-
edge graphs store static facts in the form of triples
(s, r, o) in a graphical structure. However, most
real-world knowledge is incomplete in that facts
constantly change over time. In order to capture
the dynamic changes of facts, Temporal Knowledge
Graphs (TKGs) with temporal attributes are intro-
duced by extending the triple (s, r, o) into a quadru-
ple (s, r, o, t). Recently, TKGs have received a lot
of attention and have been applied to downstream
tasks in KG and even other artificial intelligence do-
mains, such as event prediction (Song et al., 2021),
knowledge graph reasoning (Li et al., 2022) and
question answering (Saxena et al., 2021).

Knowledge graph reasoning that predicts miss-
ing facts for incomplete KGs has been widely ex-
plored. However, reasoning over Temporal Knowl-
edge Graph (TKG) that predicts facts in the fu-
ture is still far from resolved. Previous work can
model the temporal dynamics with the help of GCN
(Kipf and Welling, 2016), RGCN (Schlichtkrull et al.,
2017), etc. However, most of the relationships be-
tween objects in practical applications cannot be
represented by the lower-order model of pairwise
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connections alone. In fact, the data structures in
our real-world applications may go beyond pair-
wise joins to be even more complex. The Figure 1
shows the historical facts related to a query (Barack-
Obama, Makestatement, ?, 2014-12-4) from the
ICEWS14 dataset. The answer to the query is
China, which is not directly or indirectly linked to the
query subject entity, Barack Obama. In this case,
the traditional graph structure has limitations in ex-
pressing data relevance. However, the high-order
relationships can quickly link the related entities,
e.g., the red dotted ellipse can connect countries
and leaders of countries with common features,
making the query subject entity closely related to
the answer. The use of high-order relationships
becomes very important. Therefore, there are two
main challenging problems:
Q1. How to obtain the high-order relationships
between objects in temporal knowledge graph
reasoning?
Q2. How to represent the high-order relation-
ships in graph neural network for the down-
stream reasoning?

To address the aforementioned problems, we in-
troduce Dynamic Hypergraph Embedding for Tem-
poral Knowledge Graph reasoning (DHE-TKG). To
solve Problem Q1, we introduce the hypergraph
structure to obtain high-order relationships in tem-
poral knowledge graphs. Recently, hypergraph has
become increasingly popular, which is a structure
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Figure 1: An example of TKG on the ICEWS14.

for describing higher-order interactions and pro-
vides a more flexible and natural framework for
representing such multi-directional relationships.
However, the existing hypergraph structure lacks
integration of the information of time into entities on
the graph. And in the TKG models, entity features
keep evolving with increasing timestamps, where
the variation of each moment is important for the
prediction of future events, which is ignored by the
existing models. So that we design a temporal fea-
ture variation module to observe the differences
caused by time on the predicted answer features.
Target at Problem Q2, we adapt the dynamic meta-
embedding technique for hypergraph representa-
tion. Specifically, we utilize attention to fuse high-
order interaction features in different timestamps
of the same entity. Experimental results show that
our method outperforms the baseline models.

2. RELATED WORK

2.1. Temporal KG Reasoning and Link
Prediction

Real-world data often evolves over time and the
model dealing with temporal knowledge graph em-
beddings comes into being. Some of the stud-
ies add the part dealing with temporal features to
the KG embedding model. For example, TTransE
(Leblay and Chekol, 2018) extends TransE (Bor-
des et al., 2013) by encoding timestamps as trans-
lations into score functions. TA-DistMult (García-
Durán et al., 2018) uses recurrent neural networks
(RNN) to learn temporal-aware representations of
relations based on DistMult (Yang et al., 2014).
TComlEx and TNTComplEx (Lacroix et al., 2020)
are based on ComplEx (Trouillon et al., 2016) and
are inspired by the canonical decomposition of the
fourth-order tensor.

In addition, some studies also model temporal
features in TKG. Know-Evolve (Trivedi et al., 2017)

and DyREP (Trivedi et al., 2019) use temporal
point processes to model concurrent facts to esti-
mate conditional probabilities to predict future facts;
Glean (Deng et al., 2020) incorporates constructed
word graphs to summarize the text of events by
reasoning in future facts. RENET (Jin et al., 2019)
uses RNN-based event encoders to model inter-
actions between entities and uses GCN (Kipf and
Welling, 2016) to learn multi-hop structural informa-
tion. CyGNet (Zhu et al., 2020) uses sequential
copy networks to model repetitive facts, exploiting
historical information. RE-GCN (Li et al., 2021)
learns the evolutional representations of entities
and relations to predict future facts and learns the
static properties of entities by building additional
static graphs.

However, the above approach can only deal with
pairwise relationships between entities and has
limitations in terms of higher-order relationships.

2.2. Hypergraph Neural Networks
In the real world, the relationship between entities
exists not only between two entities but even be-
yond pairwise associations, which is the reason
(Dengyong Zhou and Jiayuan Huang and Bernhard
Schölkopf, 2006) first introduced the concept of
hypergraph learning to model higher-order relation-
ships for semi-supervised classification and node
clustering. A hypergraph is a graph-based exten-
sion where each hyperedge can connect multiple
nodes and is used to address the case where mul-
tiple nodes exist with the same connection and can
better exploit the correlation of higher-order data.
Extensions to the hypergraph construction method
by (Huang et al., 2009) include the use of k-NN
and search radius methods. HGNN (Feng et al.,
2018) proposes the hyperedge convolution opera-
tion to represent the correlation between data better.
Based on the problem that the hypergraph struc-
ture cannot change dynamically with the features,
DHGNN (Jiang et al., 2019) dynamically updates
the hypergraph structure on each layer. Addition-
ally, Chien proposes a generic HGNN (Feng et al.,
2018) framework that covers most of the HGNN
pproaches. HyperSAGE (Arya et al., 2020) uses a
two-level neural message-passing strategy instead
of transforming the hypergraph structure into a
graph. HyperGCN (Yadati et al., 2018) trains GCN
(Kipf and Welling, 2016) on hypergraphs based on
the spectral theory of hypergraphs.

3. METHODOLOGY

3.1. Notation and Task Definition
A temporal knowledge graph can be viewed as
a series of static knowledge graph snapshots
under different timestamps, denoted by G =
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{G1, G2, ..., Gt}. Gt consists of the set of events
Dt = (S,R,O) occurring at time t, where S is the
set of subject entities, R is the set of relations,
and O is the set of object entities. Each event
in the event set Dt can be defined as a quaternion
(s, r, o, t) occurring at timestamp t, where s is the
set of subject entities, r is the set of relations, and
o is the set of object entities.

The goal of TKG reasoning is to predict the miss-
ing object entity oq of the query (sq, rq, ?, tq) given
the history graph G0:tq−1

, or to predict the missing
relation rq in the query (sq, ?, oq, tq). In addition,
we add the inverse quaternion (o, r−1, s, t) of each
quaternion (s, r, o, t) to the dataset as well.

3.2. The Model
The proposed model DHE-TKG consists of two
parts in general, namely encoder and decoder. The
encoder is used to map entities and relations on the
graph for each timestamp to their low-dimensional
embeddings, and the decoder scores the answer
embeddings for the degree of match of the query.
We focus on the encoder part.

As shown in Figure 2, the encoder consists of
evolutionary embedding, dynamic hypergraph em-
bedding and embedding fusion. Evolutionary em-
bedding encodes according to the historical fact
development, and the entity embedding evolves
continuously with time, and the closer the fact oc-
curs to the query time, the greater the influence on
the result. Dynamic hypergraph embedding uses
the hypergraph structure to encode higher-order
interactions. The embedding fusion combines the
evolutionary embedding with the dynamic hyper-
graph embedding to achieve a balance between
low-order interactions and high-order interactions.

3.2.1. Evolutionary embedding

We use the embedding evolution encoder to cap-
ture the structural dependencies between entities.
To follow the factual evolution, the embedding evo-
lution encoder uses RGCN as the basic module to
input the node embedding of the previous moment,
perform the embedding update of each time step
graph Gt by RGCN, and update the node embed-
ding representation of the current timestamp using
GRU. Normally, RGCN aggregators are defined as
follows:

hl+1
o,t = σ(

∑
r∈R

∑
j∈Nr

o

(
W l

rh
l
o,t

|Nr
o |

) +W l
sh

l
s,t) (1)

where hl
o,t and hl

s,t denote the l-th layer embed-
ding of entities at timestamp t. W l

s and W l
rare the

learnable matrices of the l-th layer. Nr
o denotes

the set of neighboring entities of s connected by

relation r, then |Nr
o | plays a normalizing role. σ is

the activation function.
To maintain historically useful information and to

obtain information with more distant timestamps,
we use GRU for updating entity embedding:

Ĥt = GRU( ˆHt−1, H
RGCN
t−1 ) (2)

where ˆHt−1 and Ĥt are the entity embeddings at
t - 1 and t. HRGCN

t−1 is the entity embedding after
RGCN aggregation at t− 1.

For relational updates, we also use GRU:

rt = [pooling(Ht−1,vr,t
||r)] (3)

Rt = GRU(Rt−1, R
′
t) (4)

where vr,t is all entities with r as a relation at time t.
|| denotes the concatenation operation. R′

t consists
of rt of all relations. Rt−1 and Rt denote the relation
embedding at t− 1 and t.

3.2.2. Dynamic hypergraph embedding

Dynamic hypergraph embedding has two modules,
one is to aggregate all node features in hyperedge e
to obtain this hyperedge feature. The other one ag-
gregates the features of all the hyperedges contain-
ing the current node v to obtain the features of node
v. We effectively distinguish the same entities with
different timestamps based on the characteristics
of the temporal knowledge graph and aggregate
them by a dynamic meta-embedding approach.

(1) Hypergraph Construction. A hypergraph
can be represented as Gh = (Vh, Eh), where
Vh = v1, v2, ..., vn denotes the set of nodes and
Eh = e1, e2, ..., en denotes the set of hyperedges.
Unlike the general graph, a hyperedge can hold
several different nodes, indicating that these nodes
share common features to establish the interaction
of higher-order data. In particular, when the num-
ber of nodes in the hyper edge is 2, the hypergraph
becomes a simple graph.

Let X = (x1, x2, ..., xn) be the set of n d-
dimensional vectors of hypergraph inputs, where
xi = hi,t is the feature vector of the i-th node. In
each layer, we use the KNN method for hypergraph
construction, where the k-1 nearest neighbors of
each vertex u form a hyperedge together with that
vertex.

(2) Location Node Aggregation. The location
node aggregation module is used to aggregate the
features of the nodes in the hyperedge to the hyper-
edge containing those nodes. As shown in Figure 3,
since the hypergraph is not able to distinguish the
order of the input history graphs, in order to enable
the model to take advantage of the development
order of the history graphs, we inject some infor-
mation about the absolute position of the history
graphs. For this purpose, we add the location node
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history graph time order. Dynamic hypergraph embedding captures the higher-order dependencies of
entities. The final answer is obtained by balancing the low-order and high-order representations.
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aggregation module, which adds location informa-
tion to the node features of each history graph in-
put as a distinction between entities under different
timestamps and gives them location order informa-
tion. The features of the history graph are mapped
to a new dimensional space by multilayer percep-
tron (MLP). Next, we model the input feature matrix
with MLP to model the attention matrix and then
use a convolutional layer used to compress the fea-
tures, thus enabling the aggregation of nodes on
multiple history graphs to super edges:

Xt = Wloc(Ht||t) + bloc (5)

αtrans = f(Xt) (6)

xe = conv(αtrans · f(Xt)) (7)

where t is the t-th history graph of the input. Wloc

and bloc are learnable parameters.
(3) Dynamic hyperedge aggregation. Dynamic

hyperedge aggregation module obtains the hyper-
graph embedding by aggregating the hyperedge
features containing node v to update the represen-
tation of nodes in the current hypergraph. As shown
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Figure 4: Dynamic hyperedge aggregation.

in Figure 4, the attention score of each hyperedge
is obtained using MLP and the node features are
aggregated by attention summation.

w = softmax(xeW + b) (8)

xu =

|C(u)|∑
i=0

wixi
e (9)

where C(u) denotes the number of hyperedges
where node u is located. It is worth noting that the
node representations at this point contain the same
entities with different timestamps.

Since queries from different datasets have differ-
ent sensitivities to the input graphs with different
timestamps, we use dynamic attention to learn the
focus of different datasets on queries. We combine
the entity features with different timestamps by ob-
taining a weighted sum to get the updated entity
features X.

X =

NG∑
t=0

αv,tx
v,t
u (10)

where αv,t = g({xv,t
u }Nv

v=1) is the scalar weight ob-
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tained by self-attention. Specifically,

αv,t = ϕ(Wa · xv,t
u ) + b (11)

where Wa and b are learnable parameters. ϕ is
the sigmoid function in this paper due to its good
performance. NG is the number of input history
graphs.

3.2.3. Embedding fusion

Since the impact of evolutionary embedding and
dynamic hypergraph embedding may be different,
we measure their influence by the hyperparameter
α. The final entity features are shown below:

Ht = (1− α)Ĥt + αX (12)

3.2.4. Decoder

Regarding the temporal knowledge graph predic-
tion task a scoring function is usually used to mea-
sure the plausibility of the prediction results. Pre-
vious studies have shown that a GNN with con-
volutional score functions has good performance
on the temporal knowledge graph prediction task.
Therefore, we choose ConvTransE as the decoder
of the model, using ConvTransE(·) to represent it.
Thus the entity prediction probability is represented
as follows:

p(o|Ht, Rt, s, r) = σ(Ht−1ConvTransE(st−1, rt−1))
(13)

Similarly, the relationship prediction probability
is represented as follows:

p(r|Ht, Rt, s, o) = σ(Rt−1ConvTransE(st−1, ot−1))
(14)

where σ is the sigmoid function.

3.3. Training
The entity o prediction obtained from the query
(s, r, ?, t) to obtain entity predictions can be con-
sidered as a multi-classification task, where each
class corresponds to an object entity. Similarly,
the relation r prediction obtained from the query
(s, ?, o, t) to obtain a prediction of the relation r can
also be considered as a multi-classification task,
where each class corresponds to one relation. To
learn the representation of weights and entities with
relations, we use binary cross entropy as a loss
function to obtain the optimal solution by minimizing
the cross-entropy loss during the training period.
Therefore, the equations for entity prediction loss
Le and relationship prediction loss Lr as:

Le =
∑

(s,r,o,t)∈G

yet logp(o|Ht, Rt, s, r) (15)

Lr =
∑

(s,r,o,t)∈G

yrt logp(o|Ht, Rt, s, o) (16)

where yet are the label vectors for the two tasks, in
which the element is 1 if the facts occur, otherwise
0. Based on the above loss function, the final loss
function is defined as:

L = λLe + (1− λ)Lr (17)

where λ is the hyper-parameter from 0 to 1 to bal-
ance the different losses.

4. Experiment

4.1. Experimental Setup

4.1.1. Datasets

We use five typical TKG datasets for evaluating our
model, namely ICEWS14, ICEWS05-15, ICEWS18,
WIKI, and YAGO. The first three datasets are
from the Integrated Crisis Early Warning System
(ICEWS) containing socio-political events from
2014, 2005 to 2015, and 2018, respectively, with a
time granularity of days. WIKI and YAGO are two
knowledge bases containing facts with temporal
information, and we use a subset with a tempo-
ral granularity of years. We split the dataset into
80%/10%/10% for training/ validation/ testing. The
Table 1 provides the statistics of these datasets.

4.1.2. Evaluation Metrics

Our experiments are used for the knowledge graph
reasoning task with future timestamps, including
entity prediction (s, r, ?, t) and relation prediction
(s, ?, o, t) two subtasks. Mean Reciprocal Rank
(MRR), Mean Rank (MR), and HITS@1/3 are used
as evaluation metrics. Without loss of generality,
only the experimental results under the original
setup are reported. The reason for this is that for
the quadruple query (s, r, ?, t1) the missing object
answer is o1. It is assumed that (s, r, o2, t2) exists
in the training set. For the previous study, its fil-
tering settings would ignore temporal information,
leading the model to incorrectly assume that o2 is
also the correct answer. In fact (s, r, o2) may not
occur at t1. Thus, the filtering setting can lead to
over-optimistic experimental effects and may result
in incorrect higher rankings.

4.1.3. Baselines

We compared our model with static KG inference
models and TKG reasoning models. For the static
KG reasoning model, we chose three kinds of base-
lines.

(1) Typical static models. Including DistMult
(García-Durán et al., 2018), Complex (Trouillon
et al., 2016), ConvE (Dettmers et al., 2017) and
RotatE (Sun et al., 2018). Note that these static



15747

Table 1: Statistics of the datasets
Datasets Entities Relations Train Valid Test Time gap Snapshot numbers
ICEWS18 23033 256 373018 45995 49545 24 hours 365
ICEWS14 7128 230 74845 8514 7371 24 hours 365

ICEWS05 - 15 7128 230 63685 13823 13222 24 hours 4017
WIKI 12554 24 539286 67538 63110 1 years 232

YAGO 10623 10 161540 19523 20026 24 hours 189

Table 2: Entity prediction on ICEWS18.
Model MRR HITS@1 HITS@3

DistMult 13.86 5.61 15.22
Complex 15.45 8.04 17.19
ConvE 22.81 13.63 25.83
RotatE 14.53 6.47 15.78
HyTE 7.41 3.10 7.33

TTransE 8.44 1.85 8.95
TA-DistMult 16.42 8.60 18.13

RGCRN 23.46 14.24 26.62
CyGNet 24.98 15.54 28.58
Re-Net 26.17 16.43 29.89

RE-GCN 29.16 19.14 33.05
DHE-TKG 29.23 19.15 33.31

Table 3: Entity prediction on ICEWS14.
Model MRR HITS@1 HITS@3

DistMult 20.32 6.13 27.59
Complex 22.61 9.88 28.93
ConvE 30.30 21.30 34.42
RotatE 25.71 16.41 29.01
HyTE 16.78 2.13 24.84

TTransE 12.86 3.14 15.72
TA-DistMult 26.22 16.83 29.72

RGCRN 33.31 24.08 36.55
CyGNet 34.68 25.35 38.88
Re-Net 35.77 25.99 40.10

TAE 35.80 26.09 40.17
RE-GCN 39.26 29.23 43.94
DHE-TKG 40.02 30.13 44.99

baseline methods are used without considering the
temporal information in the input.

(2) Temporal models under the interpolation
setting. Including HyTE (Dasgupta et al., 2018),
TTransE (Leblay and Chekol, 2018), and TA-
DistMult (García-Durán et al., 2018).

(3) TKG reasoning model. Including RGCRN
(Zhao et al., 2022), CyGNet (Zhu et al., 2020), RE-
NET (Jin et al., 2019), RE-GCN (Li et al., 2021),
TAE (Duan et al., 2022) and HGAT (Shao et al.,
2023).

To be fair, all methods in this paper do not use
the static graph.

4.1.4. Implementation Details

The embedding dimension d is set to 200 on all
datasets. The number of RGCN layers is set to 2.
Dropout is set to 0.2. The value of the hyperparam-

Table 4: Entity prediction on ICEWS05-15.
Model MRR HITS@1 HITS@3

DistMult 19.91 5.63 27.22
Complex 20.26 6.66 26.43
ConvE 31.40 21.56 35.70
RotatE 19.01 10.42 21.35
HyTE 16.05 6.53 20.20

TTransE 16.53 5.51 20.77
TA-DistMult 27.51 17.57 31.46

RGCRN 35.93 26.23 40.01
CyGNet 35.46 25.44 40.20
Re - Net 36.86 26.24 41.85

TAE 37.18 26.70 42.34
RE - GCN 44.54 33.55 50.62
DHE-TKG 45.05 34.16 50.97

eter is determined based on the MRR performance
of each validation set, where the hyperparameter
α is set to 0.4 and 0.1 for the ICEWS05-15 and
ICEWS18 datasets, respectively, and to 0.2 for the
other three datasets. The model parameters were
initialized using Xavier and then optimized with a
learning rate of 0.01 using the Adam optimizer. For
the hypergraph construction stage, the number of
vertices in a k-NN hyperedge is set to 8. For Con-
vTransE, we follow the relevant settings mentioned
in RE-GCN.

Table 5: Entity prediction on WIKI.
Model MRR HITS@1 HITS@3

DistMult 27.96 32.45 39.51
ComplEx 27.69 31.99 38.61
ConvE 26.03 30.51 39.18
RotatE 26.08 31.63 38.51
HyTE 25.40 29.16 37.5

TTransE 20.66 23.88 33.04
TA-DistMult 26.44 31.36 38.9

RGCRN 28.68 31.44 38.58
CyGNet 30.77 33.83 41.19
RE-Net 30.87 33.55 41.27

TAE 31.27 34.39 41.67
RE-GCN 50.97 57.24 68.40
DHE-TKG 51.20 57.47 69.25
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Table 6: Entity prediction on YAGO.
Model MRR HITS@1 HITS@3

DistMult 44.05 49.70 59.94
ComplEx 44.09 49.57 59.64
ConvE 41.22 47.03 59.90
RotatE 42.08 46.77 59.39
HyTE 14.42 39.73 46.98

TTransE 26.10 36.28 47.73
TA-DistMult 44.98 50.64 61.11

RGCRN 43.71 48.53 56.98
CyGNet 46.72 52.48 61.52
RE-Net 46.81 52.71 61.93

TAE 47.03 52.82 62.88
RE-GCN 62.65 70.54 82.04
DHE-TKG 62.93 71.00 82.72

Table 7: Relation prediction
Model RGCRN REGCN DHE-TKG

ICEWS18 37.14 39.00 39.42
ICEWS14 38.04 39.24 40.11

ICEWS05-15 38.37 39.48 39.44
WIKI 88.88 98.13 98.18

YAGO 90.18 94.18 94.07

4.2. Results

4.2.1. Results on Entity Prediction

Table 2-Table 6 shows the experimental results of
our model relative to the baseline approach for the
entity prediction task. Our model demonstrates
its effectiveness on the ICEWS dataset as well as
the WIKI and YAGO datasets. Specifically, our
model significantly outperforms the static models
because it captures temporal dynamics and can
effectively use temporal information. Moreover, our
model outperforms those temporal methods. For
the temporal approach baseline, CyGNet, RE-NET,
and RE-GCN take into account the fact of adjacent
timestamps and show strong performance in ex-
periments. However, unlike these individual meth-
ods for modeling low-dimensional interactions, our
model uses hypergraphs to capture higher-order
interaction information and is able to discover po-
tential connections and common features among
entities.

4.2.2. Results on Relation Prediction

As shown in the Table 7, we selected the tempo-
ral model baselines that can be used for relational
prediction for comparison. DHE-TKG outperforms
most of the baselines. The main reason is that
entity prediction and relationship prediction com-
plement each other and enhance each other. The
multi-task learning scheme used in this paper ef-
fectively combines the goals of the two tasks and
improves the effectiveness of the model in each
task.

4.3. Ablation Study
In this subsection, we studied the contribution of dif-
ferent model components of our model through ab-
lation experiments. We compare the performance
by tuning the model components on ICEWS14 and
the results are shown in Table 8.

Table 8: Ablation studies on ICEWS14.
Method MRR Hits@1 Hits@3

-loc 39.38 29.12 44.56
+mean 39.74 29.78 44.87

DHE-TKG 40.02 30.13 44.99

4.3.1. Location Information Component

We compare adding location information with no
location information, which is denoted by -loc in the
Table 8. The performance without adding location
information decrease, which is in line with our ex-
pectation for the location information component to
keep the input graph from losing order information
in the DHE-TKG.

4.3.2. Dynamically Weighted Components

We use the averaging method instead of the dy-
namic weighting method, which is denoted by
+mean in the Table 8. The results in Table 8 show
that the dynamic weighting component has the pos-
itive impact on the results, which indicates that the
input history graph does not have an equal impact
on the inference.

4.4. Analysis of Gating in DHE-TKG
In this section, we explore the impact of different ac-
tivation functions (Gating) in the dynamic weighting
module by conducting experiments on the dataset
ICEWS14, as shown in Table 9. Overall, the sig-
moid function performs better. One reason is that
the sigmoid function can give the model more op-
tions to make decisions with higher confidence for
the current sample and can divide the differences
between all options.

Table 9: Gating analysis
Method MRR Hits@1 Hits@3
ReLU 39.64 29.49 44.42
Tanh 39.76 29.93 44.44
GELU 39.63 29.66 44.57

Sigmoid 40.02 30.13 44.99

4.5. Visualization of Weight Distribution
In order to observe the effect of history graphs with
different timestamps on answer inference for dif-
ferent datasets, we have displayed the dynamic
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Figure 5: Visualization example of dynamic attention.

weights. We took the input time step of 3 as an
example and selected some entities that success-
fully reasoned and built a heat map of the dynamic
weight distribution on the ICEWS14 dataset. As
shown in Figure 5, it can be seen that different
dynamically weighted components enable differ-
ent entities to dynamically determine the weights
at the three timestamps. And it can be observed
that most of the entities on the ICEWS14 dataset
choose weights that are more biased towards the
timestamp with the forward input.

4.6. Sensitivity Analysis
We explore the importance of the evolutionary em-
bedding versus the dynamic hypergraph embed-
ding through experiments that adjust the magnitude
of the hyper-parameter α in Equation 12. We re-
port the change in the performance of our model
on the ICEWS14 dataset and ICEWS05-15. As
shown in Figure 6, which shows the change in α
from 0 to 1 performance of the model. This demon-
strates that neither ignoring low-order interaction
information, nor high-order interaction information
can make a valid inference. This demonstrates the
necessity of blending low-order information with
higher-order information. By adjusting α, the best
balance of low-order and high-order information
can be achieved.

Figure 6: Performance of DHE-TKG with α variation
on ICEWS14 and ICEWS05-15 dataset.

4.7. Case Study
We study a query (France, Make_statement, ?, 338)
from the ICEWS14 test set. As shown in Figure 7,

DHE-TKG predicts this query by entering the history
graphs with a time step of 3. The left side of the fig-
ure shows a subgraph consisting of selected facts
related to the query for timestamps 335 through
337. For the sake of direct observation, we omit
the relationships in the graphs. We observe that
subject France in the query is not directly related
to the answer Iran in the facts of the input history
graphs. However, frequent interactions between
Iran and Iraq occur within these three timestamps.
The right side of the figure shows the higher-order
interactions between countries established by the
hypergraph, and we observe that France, Iran, and
Iraq are all connected by the hyperedges. DHE-
TKG successfully reasons the query answer Iran
which occurs at 338 timestamp. Compared with
RE-GCN, we find that RE-GCN does not reason
about this query because of the lack of capturing
higher-order interactions.

（France, Make statement, ?, 338）

France Guinea FranceFrançois Hollande

Iraq

Iran Iraq

Iran

Iraq

Iran

Answer: Iran

335 336 337

Military(France) Iran

France
Guinea

Iraq

Figure 7: An example of DHE-TKG capturing higher-
order information on the ICEWS14 dataset.

5. Conclusion

We propose a new TKG representation learning
model for temporal reasoning called DHE-TKG.
DHE-TKG effectively captures higher-order correla-
tions by combining low-order and high-order infor-
mation for representation learning. It also incorpo-
rates temporal location information to fusion node
features dynamically to determine the importance
of the input history graph. The experimental results
show the significant advantages of our model for
entity prediction and relationship prediction on TKG.
Moreover, it is applicable to complex data and is
able to incorporate higher-order data correlations
into representation learning.
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