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Abstract
Bayesian approaches to reconstructing the evolutionary history of languages rely on the tree model, which assumes
that these languages descended from a common ancestor and underwent modifications over time. However, this
assumption can be violated to different extents due to contact and other factors. Understanding the degree to
which this assumption is violated is crucial for validating the accuracy of phylolinguistic inference. In this paper, we
propose a simple sanity check: projecting a reconstructed tree onto a space generated by principal component
analysis. By using both synthetic and real data, we demonstrate that our method effectively visualizes anomalies,
particularly in the form of jogging.
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1. Introduction

The tree model serves as the foundation for
historical-comparative linguistics (Schleicher,
1853). Although manual inference has tradi-
tionally been dominant in the field (Campbell
and Poser, 2008), the influence of evolutionary
biology has led to a rapid rise to computation-
heavy statistical analysis of linguistic data (Gray
and Jordan, 2000; Gray and Atkinson, 2003;
Bouckaert et al., 2012; Rama and Wichmann,
2018), spawning a multitude of papers built upon
Bayesian phylolinguistic tools.

The tree model assumes that the evolutionary
history of related languages can be represented as
a tree. The root represents a single common an-
cestor and a number of branching events lead to
the observed languages. Over time, modifications
gradually accumulate along the branches, indicat-
ing that the distance between two languages on
the tree approximately corresponds to the extent of
divergence between them. Various methods have
been proposed based on this intuition to address
the inverse problem of reconstructing the tree from
the observed languages (Felsenstein, 2004).

In reality, the tree model is violated to vary-
ing degrees. When languages come into contact,
there is often a horizontal transmission of features
between them, despite the assumption that they
evolve independently. This horizontal transmis-
sion necessitates the addition of extra edges, re-
sulting in a representation that is no longer a tree
but a network (Nakhleh et al., 2005; Nelson-Sathi
et al., 2011). Despite efforts to integrate horizontal
transfer into statistical models (Kelly and Nicholls,
2017; Neureiter et al., 2022), achieving stable and
scalable inference continues to pose a significant

challenge. For this reason, the tree model retains
its dominant position in phylolinguistics.

The modern proponents of the tree model are
well aware of repeated criticisms that in fact
date back centuries (Schmidt, 1872; Kalyan and
François, 2018). Initially, they attempted to demon-
strate the model’s robustness against horizontal
transmission by utilizing synthetic data (Greenhill
et al., 2009; Barbançon et al., 2013). Subse-
quently, they focused their attention on examin-
ing the extent to which the tree model is applica-
ble to real data (Gray et al., 2010; Auderset et al.,
2023). Unfortunately, there is a disparity between
the tree model and their analytical tools: Neighbor-
Net (Bryant and Moulton, 2004), the δ score (Hol-
land et al., 2002), and the Q-residual score (Gray
et al., 2010). These tools are all based on distance-
based approaches despite the use of Bayesian
methods for phylolinguistic reconstruction.

Recent studies (Auderset et al., 2023) con-
duct additional analyses using Bayesian tree sum-
marization tools such as DensiTree (Bouckaert,
2010), based on the speculation that a relative
absence of disagreements within a summary tree
may indicate endorsement of the tree model. How-
ever, uncertainty is an intrinsic characteristic of
Bayesian inference that emerges regardless of
whether the model’s assumptions are valid. After
all, the model itself lacks a direct means to assess
the accuracy of its underlying assumptions. It in-
deed can be deceived by fundamentally non-tree-
like generative processes (Murawaki, 2015).

In this paper, we present a simple and practi-
cal approach to directly analyzing Bayesian phy-
lolinguistic reconstruction. We apply principal
component analysis (PCA) to language states
and project a reconstructed tree onto the PCA-
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Figure 1: Overview of the proposed method. In this example, we reconstruct a phylogenetic tree for four
modern languages, resulting in three ancestral nodes with explicitly represented states. The states of
these seven languages are then subjected to principal component analysis (PCA), followed by projection
onto a low-dimensional space. The downward path from the root to LangC exhibits jogging.

generated space (Figure 1). Our key idea is
to leverage continual diversification, an aspect of
tree-shaped evolution that usually falls outside the
scope of the model’s assumptions. We expect
ancestor-descendant transitions to follow a unidi-
rectional pattern along the first principal compo-
nent axis. A gross violation of this unidirectional-
ity, which we call jogging, can be seen as a de-
viation from the tree model, as is evident in Fig-
ure 4. To illustrate the usefulness of the proposed
method, we provide demonstrations using both
synthetic and real data, emphasizing its potential
as a sanity check. The code is publicly available at
https://github.com/murawaki/treepca.

2. Preliminaries

2.1. Binary Sequence Representations

In a typical Bayesian phylolinguistic reconstruc-
tion scenario, we are provided with a collec-
tion of observed languages, where each lan-
guage is represented as a binary sequence.
Most studies use binary-coded basic vocabulary
data. These lexical data are originated from glot-
tochronology (Swadesh, 1952), despite the de-
cline of glottochronology itself due to substantial
criticism (Bergsland and Vogt, 1962).

Basic vocabulary items such as WATER and EAT
are assumed to be culture independent and resis-
tant to change. The process of constructing lex-
ical data involves two steps. Linguists begin by
collecting words for these items in each language.
Subsequently, they assess the cognacy (related-
ness) of these words across languages. For exam-
ple, English water and German Wasser share their
etymological root whereas French eau and Italian
acqua are cognates. By organizing these two cog-
nate groups, we can represent English and Ger-
man as 10 and French and Italian as 01, where
1 and 0 indicate the presence and absence of a
cognate group, respectively. Concatenating multi-
ple basic vocabulary items, we typically obtain hun-
dreds or thousands of binary features.

Although the evolutionary process of these bi-
nary features is assumed to follow a tree-like pat-
tern, this assumption is not exempt from violations.
One common type of deviation arises from loan-
words. Since cognacy judgments rely on regular
sound correspondences, loanwords can be identi-
fied by linguists and subsequently excluded from
the dataset. However, older loanwords and bor-
rowings between closely-related languages pose
a higher risk of going undetected, thus potentially
eluding removal from the analysis.

Thanks to the arbitrariness of meaning-symbol
connection, it is generally assumed that a feature
is gained only once throughout history. However, it
is important to recognize that this assumption can
be violated. One common cause of such devia-
tions is semantic shift. For instance, the seman-
tic shift from PERSON to MAN is universal and can
happen in parallel, leading to multiple gains of the
same word for MAN in a tree (Chang et al., 2015).

2.2. Bayesian Phylolinguistic Models
Bayesian phylolinguistic models encompass a
range of advanced statistical techniques. For a
comprehensive understanding of the details, we
recommend referring to Drummond and Bouckaert
(2015). Here, we will provide a high-level overview
of the topic.

A phylolinguistic model assigns a probability to a
generative process that begins with a common an-
cestor and extends to observed languages.1 The
probabilistic assessment can be subdivided into
three primary components: a time-tree, state tran-
sitions, and rate variations. A time-tree represents
a rooted tree where each node is associated with a
calendar or relative date. The likelihood of a given
time-tree is evaluated using a time-tree model.

Each node holds a binary sequence as its state,
and the transition from a parent to a child involves
gains (0 → 1) and losses (1 → 0). The probability
of such transitions is assessed by a continuous-

1To be precise, coalescent variants of the time-tree
model look backward in time.

https://github.com/murawaki/treepca
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time state transition model. For inference effi-
ciency, the states of the unobserved languages
are usually marginalized out, accounting for all
possible combinations of the states (Felsenstein,
1981).

The state transition model is linked to a rate
model. The strict clock model enforces a uniform
rate of change in a tree, whereas various relaxed
clock models investigate rate variations. By as-
signing different rates to different branches, we
can analyze the potential alternation of rapid and
slow phases of language change (Greenhill et al.,
2017). Furthermore, assigning distinct rates to
features or groups of features allows for the ex-
ploration of the hypothesis that certain vocabulary
items display greater stability (Pagel et al., 2013).

With observed languages and optional hard con-
straints, the remaining portion of the generative
process defines the search space. The conven-
tional inference method is Markov Chain Monte
Carlo (MCMC) sampling, which generates sam-
ples from the probability distribution. For our anal-
ysis, it is important to note that the sampler does
not directly track the states of the unobserved lan-
guages because they are marginalized out. Never-
theless, it is easy to generate them using an algo-
rithm analogous to forward filtering-backward sam-
pling for sequence data (Scott, 2002).

MCMC sampling yields a vast number of time-
trees, making it necessary to employ summariza-
tion techniques for human interpretation. One
widely used approach is to construct a maximum
clade credibility (MCC) tree by merging these sam-
ples. DensiTree (Bouckaert, 2010) offers another
type of intuitive visualization that effectively high-
lights disagreements among the samples.

2.3. Principal Component Analysis
(PCA)

Principal component analysis (PCA) linearly trans-
forms high-dimensional data into a new coordinate
system, where each principal component (PC) rep-
resents a new axis. Since the first few PCs usually
capture key variance in the original data, PCA can
be used for visualization.

While usually deemed irrelevant in phylolin-
guistics, PCA is ubiquitous in population genet-
ics (Menozzi et al., 1978; Patterson et al., 2006).
PCA itself is agnostic to the evolutionary process
underlying genome data. In fact, whole-genome
data do not follow a tree-like pattern either at a mi-
cro level due to recombination or at a macro level
due to admixture (interbreeding of distinct popula-
tions). While population genetics gives weight to
scalability (Galinsky et al., 2016), a naïve imple-
mentation suffices for small linguistic data.

Formally, let X̃ be an n× p binary matrix, where

n is the number of languages and p is the number
of features. We first apply mean centering to X̃:

X = X̃ − µ,

where each element µi of the vector µ represents
the mean of the corresponding feature. We then
apply singular value decomposition (SVD) to X:

X = UΣV T,

where U is an n × n orthogonal matrix containing
the left singular vectors, Σ is an n × p diagonal
matrix of singular values, and V T is the transpose
of an p × p orthogonal matrix containing the right
singular vectors. Finally, we obtain the projection
of X onto the i-th PC by

x̂i = Xui,

where ui is the i-th column of U .2
The proportion of variance explained by the i-

th PC can be calculated as λi/
∑k

i=1 λi, where
λi = σ2

i /(n−1). In this paper, we only use the first
two PCs for visualization. In fact, the proportion
of variance explained by the first two PCs for lin-
guistic data (usually a few tens of percent) is much
larger than that for genome data.

3. Proposed Method

Our idea is fairy simple: project a reconstructed
tree onto the two-dimensional space generated by
PCA to check if it exhibits anomalies. To do this,
we begin by applying PCA to X̃, the states of the
observed languages, to calculate x̂1, x̂2, µ, u1,
and u2.3 Next, We perform Bayesian phylolinguis-
tic reconstruction and obtain a sample tree from
the sampler. Let Ỹ be an (n− 1)× p matrix repre-
senting the states of the unobserved languages in
the sample.4 Using µ, u1, and u2, we map Ỹ to ŷ1

and ŷ2. Finally, we draw a scatter plot of the en-
tire set of languages, with additional straight lines
connecting parents to children.

We anticipate that ancestor-descendant transi-
tions will predominantly follow a unidirectional pat-
tern along the first PC axis. This expectation aligns
with the tree model’s implication of continuous di-
versification. Note, however, that this is not a rigid

2Contrary to a belief mentioned in Elhaik (2022), PCA
does not preserve distances between data points in the
lower-dimensional space. For cases where distance
preservation is crucial, which we suspect might not be
prevalent, considering multidimensional scaling (MDS)
may be more appropriate.

3Observed languages may contain missing features.
In that case, we let the sampler impute these values.

4A bifurcating tree with n leaves has n − 1 internal
nodes including the root.
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Figure 2: PCA of Bayesian phylolinguistic reconstruction for the skewed time-tree of data simulation, with
four borrowing scenarios. We used the first two PCs, denoted as PC1 and PC2. A percentage indicates
the amount of variance explained by the corresponding PC. Circles indicate observed leaf nodes while
rectangles denote reconstructed internal nodes.

mathematical statement. To see why, let us con-
sider three languages situated along a downward
path in the tree. There are 23 possible combina-
tions for each of the hundreds or thousands of bi-
nary features. The two changeless patterns (0 →
0 → 0 and 1 → 1 → 1) can be ignored. The four
single-change patterns (0 → 0 → 1, 0 → 1 → 1,
1 → 0 → 0, and 1 → 1 → 0) together contribute
to unidirectionality. Among the remaining two pat-
terns, 0 → 1 → 0 is a perfectly valid transition and
yet goes against unidirectionality. The last pattern,
1 → 0 → 1, is a violation of the assumption, with
horizontal transmission being the main contribut-
ing factor, although sporadic parallel innovations
cannot be entirely dismissed.

Recall that PCA is a linear transformation, and
u1 acts as a weight vector for mean-shifted fea-
ture sequences. If the evolutionary process is in-
deed tree-like, we can ignore the last pattern and
anticipate the dominance of the four progressive

patterns over the first regressive pattern. The loss
of a feature is expected to be largely compensated
by the gain of another feature because every lan-
guage is expected to have at least one word for a
basic vocabulary item. To conclude, a gross viola-
tion of the unidirectionality, which we call jogging,
can be seen as a deviation from the tree model.

Note that the absence of visible violations does
not automatically imply the validity of the model for
given data. Additionally, in the event that anoma-
lies are detected, there is no feasible way to rescue
the tree model. Therefore, the proposed method
should primarily serve as a sanity check.

One obvious limitation of the proposed method
is that it works on a single sample although
Bayesian analysis conventionally draws conclu-
sions by summarizing multiple samples. While ap-
plying PCA to multiple trees is possible, visualizing
the outcome remains a challenge. If we focus on
a specific clade, we can visualize a summary of
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Figure 3: PCA for the balanced time-tree of data simulation, with four borrowing scenarios.

multiple samples, as we see in Section 5.2.
The proposed method enables the verification

of results from published papers. Note that slight
modifications to the existing configuration files of
Bayesian inference are required. This is neces-
sary because, as mentioned in Section 2.2, the
sampler does not track the states of unobserved
languages by default. Technical details will be pro-
vided in Appendix A.

4. Simulation Experiments

4.1. Data Simulation

We evaluated the proposed method using syn-
thetic data. To generate the data, we partly fol-
lowed the procedure described by Greenhill et al.
(2009). We obtained the same skewed and bal-
anced time-trees (Supplementary Figure A.1) and
used the software package TraitLab (Nicholls and
Gray, 2006) to simulate evolutionary processes
along the branches of each time-tree, with or with-
out borrowing of features between branches.

TraitLab implemented the stochastic Dollo
model, which assumes that a feature can only
be gained once in history and that once lost in a
branch, it is never regained by descendants. This
assumption is suitable for simulation of lexical
items although it is considered too stringent when
fitting real data (Bouckaert and Robbeets, 2017).

TraitLab supported two borrowing scenarios for
simulation. One was the global borrowing sce-
nario, enabling borrowings among any contempo-
rary languages, and the other is the local bor-
rowing scenario which allowed borrowings only
when the two languages shared a common ances-
tor within a specified time period. For each time-
tree, we tested four scenarios: (1) no borrowing,
(2) global borrowing, (3) local borrowing with the
1,000-year limit, and (4) local borrowing with the
3,000-year limit.

Regarding hyperparameters, we configured the
loss rate to be 0.2 per 1,000 years and the mean
number of traits (features) to be 200. For borrow-
ing scenarios, we set the borrowing rate at 2.241,
indicating that as many as 50% of features were
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Figure 4: PCA for a Japonic sample tree. Left: The entire tree. Right: Zoomed-in view of the mainland
portion. Kagoshima (underlined) is the closest modern mainland dialect to Old Japanese along PC1.

borrowed along an evolutionary path within a span
of 1,000 years.

4.2. Phylolinguistic Reconstruction
We used the software package BEAST
2.7.5 (Drummond and Bouckaert, 2015) to
reconstruct the evolutionary process from ob-
served languages. For simplicity, we used a
Yule tree prior as the time-tree model, a binary
continuous-time Markov chain model as the state
transition model, and a strict clock as the rate
model. Since age calibration was not conducted,
we only estimated relative dates. We manually
modified auto-generated configuration files to
output the node states. We perform MCMC with
a total of 10 million steps and applied PCA to the
final sample.

4.3. Results
Figures 2 and 3 show PCA projections of the tree
samples. Our anticipation was validated by the
synthetic data: In the absence of borrowing, the
trees maintained near-perfect unidirectionality. In
contrast, under the borrowing scenarios, all trees
exhibited jogging.

The structural pattern observed under the no-
borrowing scenario was better preserved in the bal-
anced tree than in the skewed tree. This was likely
due to the direct translation of high-level clades
into the first two PCs.

5. Analyzing Real Data

5.1. Japonic
We reviewed an analysis of the Japonic lan-
guages by Lee and Hasegawa (2011). Using
basic vocabulary data from 59 Japonic dialects,

they conducted a phylolinguistic tree reconstruc-
tion, with a primary emphasis on determining the
root age. They contended that the estimated root
age aligned with the putative agricultural popula-
tion expansion of Japonic speakers.

A peculiarity of their approach was that they
analyzed closely-related dialects that were usu-
ally considered to be primarily characterized by
horizontal transmission (Onishi, 2011). To our
knowledge, no one had applied the compara-
tive method of historical-comparative linguistics
to analyze their primary source, a dialect dictio-
nary (Hirayama, 1992–1994).5 Although Lee and
Hasegawa (2011) expressed some reservations
about the non-tree-like nature of the data, they
nonetheless persisted in utilizing the tree model.

Some effort was needed to replicate their anal-
ysis because no BEAST configuration file was
published. We extracted binary-coded data from
a supplementary PDF. We selected the model
and hyperparameters based on the description of
the paper although we replaced the relaxed clock
model with a newer, more efficient one (Douglas
et al., 2021). Although several errors had been
identified in the data (Pellard, 2021), we only cor-
rected language names. Our MCC tree (Supple-
mentary Figure A.2) suggests that we replicated
the original analysis to a large extent.

Figure 4 shows the PCA projection of the final
tree sample. The first PC manifested a well-known
division between the mainland and Ryukyuan,
while also revealing considerable internal diversity
within Ryukyuan. When examining the mainland,
anomalies were evident. The extensive amount
of jogging confirmed the inapplicability of the tree
model to this dataset in an intuitive manner. The

5A recent phylolinguistic reconstruction of Japonic
languages (Igarashi, 2021) is build on top of a careful
manual selection of shared innovations, not a quantita-
tive analysis of the entire lexical data.



13005

6 4 2 0 2 4 6 8 10
PC1 (11.5%)

4

2

0

2

4

6

8

10
PC

2 
(8

.4
%

)

Burmish languages

LoloishLisu

Tibetan languages

Sinitic 
Languages

ROOT

3 2 1 0 1 2
PC1 (11.5%)

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

PC
2 

(8
.4

%
)

BodicTshangla

DengDarangTaraonDengYidu

TaniBokar

KirantiBahing

KirantiThulung

KirantiKhaling

KirantiKulung

KirantiBantawa
KirantiLimbu

KirantiHayu

ChepangChepang
KhroskyabsWobzi

rGyalrongDaofu

Tangut
rGyalrongJaphug

rGyalrongMaerkang

QiangicZhaba

TibetoKinauriBunan
TibetoKinauriRongpo

TibetoKinauriByangsi

NungicDulong

ChinHakhaMizoLushai
NagaUkhrul

Karbi
GaroGaro

Rabha

JingphoJingpho
ROOT

Figure 5: PCA for a Sino-Tibetan sample tree. Left: The entire tree. Right: Zoomed-in view of the central
portion.

estimated root age is deemed unreliable because
it was derived from the flawed trees.

Kagoshima, located at the southwestern tip of
the mainland, exhibited the closest resemblance to
Old Japanese along the first PC axis even though it
ranked as the second least similar to Old Japanese
among the mainland varieties if we switched to sim-
ilarity based on binary sequences. A plausible ex-
planation of this disparity is that the leftmost area
of the figure was characterized by a multitude of
overlapping diffusional patterns that covered vast
areas but did not consistently reach their periph-
eries. In other words, Kagoshima underwent a rel-
atively rapid change because it was less affected
by dialect leveling, but the features it retained sig-
naled archaism.

5.2. Sino-Tibetan

We turned our attention to Sagart et al. (2019),
who investigated Sino-Tibetan phylogenies. Also
known as Trans-Himalayan, the Sino-Tibetan lan-
guage family encompasses not just Chinese,
Burmese, and Tibetan but also numerous smaller
languages found in the mountainous regions of
Asia. The high-level structure of Sino-Tibetan,
including whether Sinitic represents a primary
branch, remains poorly understood. Recent stud-
ies have also explored a potential connection be-
tween the emergence of Sino-Tibetan branches
and the early phases of agriculture in northern
China.

Sino-Tibetan is renowned for posing signifi-
cant challenges in historical-comparative linguis-
tics, with its complex contact history being a key
factor (DeLancey, 2021). With the world’s lead-
ing Sino-Tibetan specialists on their team, Sagart
et al. (2019) carefully compiled a lexical database
themselves and excluded from their analysis lan-
guages known for intense contact such as Bai.
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Our interest lies in assessing whether their so-
phisticated methodology effectively addressed the
problem of horizontal transmission.

We used a BEAST configuration file6 published
as part of the supplementary materials and slightly
modified it to output node states. Our MCC
tree (Supplementary Figure A.3) again indicates
largely successful replication.

Figure 5 shows our PCA projection of the fi-
nal tree sample. Within this subspace, three dis-
tinct clusters emerge at the extremities, namely
Sinitic, Tibetan, and Burmish, all of which had
long writing traditions and were oversampled in the
dataset. The remaining languages form a clus-
tered group near the root and exhibit noticeable
levels of jogging. According to the model, the evo-
lutionary paths from Proto-Sino-Tibetan (the root)
toward these languages follow a trajectory that
includes Burmish-like intermediate nodes before

6sinotibetan-beast-covarion-relaxed
-fbd.xml



13006

2 1 0 1 2 3 4
PC1 (13.4%)

3

2

1

0

1

2

3
PC

2 
(1

0.
1%

)

ROOT

Tamura

  Korean
peninsula

  Japanese
archipelago

Manchuria

(a) Pseudo Dollo covarion model.

2 1 0 1 2 3 4
PC1 (13.5%)

3

2

1

0

1

2

3

PC
2 

(1
0.

1%
)

Tamura

ROOT

  Japanese
Archipelago

  Korean
Peninsula

Manchuria

(b) Covarion model.

Figure 7: PCA for the Northeast Asian archaeological sites. (a) The model selected by Robbeets et al.
(2021) used the pseudo Dollo covarion model for state transition. (b) The covarion model was used
instead. The y-axis is inverted for the sake of facilitating comparison.

moving back in the direction of the root. While
Sinitic occupies the opposite end of the axis, the
relative positions of these languages do not seem
to correlate with their similarity to Sinitic.

We conducted a further analysis of the Loloish
language of Lisu, which was located slightly out-
side the cluttered group. With the posterior proba-
bility of nearly 100%, Lisu shared a direct common
ancestor (Proto-Lolo-Burmese) with the Burmish
languages. We collected the states of Proto-Lolo-
Burmese from multiple samples and applied PCA
projection. We then performed kernel density es-
timation to approximate the probability distribution
of its location. The result is visualized in Figure 6.
The phylolinguistic model demonstrated high con-
fidence in determining the location of Proto-Lolo-
Burmese, and thus in the presence of jogging in
the evolutionary path to Lisu. Although we can-
not conclude that the phylolinguistic reconstruction
failed, the presence of anomalies necessitates fur-
ther investigation.

5.3. Northeast Asian Archaeological
Sites

Finally, we examined an analysis of archaeological
sites of Northeast Asia by Robbeets et al. (2021),
who advocated a version of the Altaic hypothesis
under a new brand of Transeurasian. The highly
controversial Altaic hypothesis posits a linguistic
connection among Turkic, Mongolic, and Tungu-
sic languages, and at times includes Koreanic and
Japonic languages within this proposed single lan-
guage family. It remains a minority view among
historical linguists (Janhunen, 2023).

A striking characteristic of Robbeets et al. (2021)
was their integration of archaeological, genetic,
and linguistic evidence. However, all three types of

evidence met biting criticism (Tian et al., 2022). In
this paper, we focused on the archaeological data
because the apparent lack of tree-like signal was
the focal point of criticism (Tian et al., 2022).

We slightly edited a BEAST configuration file7

published as part of the supplementary materials.
It contained 171 binary-coded (presence/absence)
typological features of archaeology, such as pot-
tery, horse, and wheat. We replaced coupled
MCMC (Müller and Bouckaert, 2019) with vanilla
MCMC because the current implementation was
incompatible with node state sampling. Compar-
ing our MCC tree (Supplementary Figure A.4) with
the published result, we can observe that the two
agreed on low-level groupings. There were dis-
agreements on high-level groupings, but they can
be explained by their extremely low posterior prob-
abilities. Even if the tree model was applicable, the
phylolinguistic model was highly uncertain about
the high-level structure of the data.

The PCA projection of the final sample is shown
in Figure 7(a). The first PC featured a distinc-
tion between Japan (left) and the rest of Northeast
Asia (right). Overall, the projected tree revealed a
pattern of continual diversification. A notable ex-
ception was Tamura, a site on Japan, which was
buried in the Asian continent in the subspace de-
spite being clearly descended from a Japanese
parent. This can be interpreted as hybridization,
a violation of the tree model. The MCC tree alone
shows no sign of such a deviation.

The scarcity of jogging raises suspicion, as
the data was perceived as markedly non-tree-
like (Tian et al., 2022). We argue that this stemmed
from inappropriate model selection. The model se-
lected by Robbeets et al. (2021) used a pseudo

7pdcov-ucln-bsp-tips.xml
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Dollo model (Bouckaert and Robbeets, 2017) for
state transition. This model loosely adheres to the
Dollo principle, which suggests that a feature can
be gained only once in a tree but lost multiple times.
Because a naïve implementation of this principle
is highly sensitive to borrowings, the pseudo Dollo
model permits multiple gains of a feature in a tree
while it still restricts languages from reacquiring
a feature that their ancestor had lost. Robbeets
et al. (2021) combined the pseudo Dollo model
with the covarion model, which is widely used to
capture fast and slow phases of evolution (Tuffley
and Steel, 1998).

The pseudo Dollo covarion model yields the
complete absence of the 1 → 0 → 1 pattern, which
strongly promotes unidirectionality. For compari-
son, we applied the PCA projection to the simple
covarion model, based on the configuration file in-
cluded in their supplementary materials.8 As ex-
pected, this model choice resulted in a substantial
quantity of jogging (Figure 7(b)).

While the the arbitrariness of meaning-symbol
connection provides a rational basis for applying
the Dollo principle to cognates, it is entirely plau-
sible that a typological feature could potentially be
reacquired. Although Robbeets et al. (2021) justi-
fied their model choice based on its superior fit to
the data, our analysis suggests that the apparent
lack of jogging was an artifact of the inappropriate
model selection.

6. Conclusions

In this paper, we have introduced a method for pro-
jecting a tree sample using principal component
analysis in order to identify anomalies in Bayesian
phylolinguistic reconstruction. A departure from
the tree model can be observed as a deviation
along the first principal component axis, which we
refer to as jogging.

The proposed method is strikingly simple and
can be applied to a wide range of published
data. Our primary focus is on binary-coded lexical
data, as their meaning-symbol connection inher-
ently enforces a unidirectional pattern under the
tree model. Conducting a more comprehensive
analysis of our approach’s effectiveness on differ-
ent data types would be a valuable avenue for fur-
ther research.
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8. Limitations

We investigated a critical assumption inherent
in Bayesian phylolinguistic models, which is fre-
quently violated in real-world scenarios. Our
method aims to visualize deviations from the tree
model, yet it is important to note that the absence
of apparent violations does not guarantee the
model’s validity for the given data. Furthermore,
in cases where anomalies are detected, there is
no feasible way to rescue the tree model.

Principal component analysis is a parameter-
free technique that operates under minimal as-
sumptions. Nonetheless, it can be susceptible to
bias when confronted with an overrepresentation
of one or more clades within the dataset, poten-
tially resulting in a skewed data representation.
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A. Implementation Notes

To sample node states in the software pack-
age BEAST, we usually need to modify the
existing configuration file. Specifically, we
need to replace TreeWithMetaDataLogger
with AncestralSequenceLogger. The “logger”
does not just write logs but samples node states.
The node states are output as node annotations in
the NEXUS format. The logger requires the tag
attribute specifying the key for NEXUS node an-
notations, the data attribute specifying the align-
ment data, the siteModel attribute specifying the
site model, and the branchRateModel attribute
specifying the branch rate model.

AncestralSequenceLogger is old and is in-
cluded in the beast-classic package. It might
not be compatible with newer modules.

Several recent studies define multiple site mod-
els to account for varying rates associated with ba-
sic vocabulary items. In such instances, a straight-
forward solution is to define a logger for each site
model. Consequently, multiple copies of the same
tree are generated, each providing distinct informa-
tion about the node states. A postprocessing step
is necessary to merge them into a single tree with
complete node states.

Node state sampling can also be accom-
plished using the commonly utilized software
BayesTraits (Meade and Pagel, 2022), which ef-
fectively models state transitions for a given tree
or set of tree samples. While theoretically fea-
sible to apply our method to analyses based on
BayesTraits, it is important to acknowledge that our
approach necessitates multiple features, whereas
BayesTraits is often employed to analyze a singu-
lar feature.
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Figure A.1: Two time-trees used for data simulation by Greenhill et al. (2009). One is skewed while the
other is balanced. The horizontal axis represents the passage of time, measured in years.

-2500 -2000 -1500 -1000 -500 0

Fukuoka

Miyazaki

Hokkaido

Kochi

Ishikawa
Kanagawa

Yamaguchi

Tokyo

Fukui

Okinawa

Ibaraki

Tokushima

Hirara

Osaka

Shimane

MiddleJapanese

Yonaguni

Kumamoto

Aomori

Chiba

Mie

Ishigaki

Toyama

Naze

Taketomi

Tarama

Fukushima

Saitama

Ikema
Irabu

Shizuoka

Ehime

Okayama

Gifu

Hateruma

Aichi

Yamanashi

Gunma

Kagawa

Shiga
Hiroshima

Akita

Nara

Nagano

Yamagata
Miyagi

Kyoto

Oita

Tochigi

Wakayama

Kagoshima
Saga

OldJapanese

Hachijo

Iwate

Nagasaki

Tottori

Niigata

Hyogo
0.1

0.89

0.06

0.74

0.51

0.64

0.3

0.75

0.9

0.92

0.36

0.72

0.08 0.53

0.74

0.88

1

0.89

0.2

0.12

0.68

0.7

0.6

0.57

0.77

0.5

0.59

0.87

0.64

0.16

0.56

0.99
1

0.93

0.82

1

0.46

1

1

0.62

0.1

0.83

0.57

0.6

0.95

0.98

0.38

1

0.76

0.56

0.28
1

0.27

0.12

0.96

0.97

0.99

Figure A.2: The maximum clade credibility tree of the Japonic languages. A number positioned above a
branch indicates the posterior probability of the corresponding clade.



13012

-8000 -7000 -6000 -5000 -4000 -3000 -2000 -1000 0

ChinHakha

BurmishOldBurmese

TibetoKinauriRongpo

rGyalrongMaerkang

BurmishLashi

Tangut
rGyalrongDaofu

QiangicZhaba

Rabha

KirantiHayu

TibetanLhasa

SiniticChaozhou

KirantiKhaling

BodicTshangla
DengDarangTaraon

KirantiBantawa

KhroskyabsWobzi

DengYidu

BurmishMaru

SiniticJieyang

LoloishLisu

SiniticBeijing
JingphoJingpho

KirantiKulung

BurmishRangoon

TibetanBatang

BurmishXiandao

BurmishBola

TaniBokar

KirantiLimbu

BurmishAtsi

SiniticXingning

KirantiBahing

TibetoKinauriByangsi
NungicDulong
TibetoKinauriBunan

SiniticGuangzhou

KirantiThulung

BurmishAchang

SiniticOldChinese

ChepangChepang

rGyalrongJaphug

TibetanOldTibetan

Karbi
GaroGaro

TibetanXiahe
TibetanAlike

NagaUkhrul
MizoLushai

SiniticLonggang

0.78

0.94

1

0.52

1

1

1
0.51

0.35

0.99

1

0.29

0.33

0.39

1

0.31

0.54

1

0.98

1

0.57

0.51

1

0.33

0.94

1

0.46
1

11

1

0.97

1

1

0.59

0.99

1

1

0.49

0.97

1

1

1

0.78

0.79

1

0.42
0.96

Figure A.3: The maximum clade credibility tree of the Sino-Tibetan languages. A number positioned
above a branch indicates the posterior probability of the corresponding clade.
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Figure A.4: The maximum clade credibility tree of the Northeast Asian archaeological sites. A number
positioned above a branch indicates the posterior probability of the corresponding clade.
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