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Abstract
Knowledge graph completion (KGC) is a widely used method to tackle incompleteness in knowledge graphs (KGs)
by making predictions for missing links. Description-based KGC leverages pre-trained language models to learn
entity and relation representations with their names or descriptions, which shows promising results. However, the
performance of description-based KGC is still limited by the quality of text and the incomplete structure, as it lacks
sufficient entity descriptions and relies solely on relation names, leading to sub-optimal results. To address this
issue, we propose MPIKGC, a general framework to compensate for the deficiency of contextualized knowledge and
improve KGC by querying large language models (LLMs) from various perspectives, which involves leveraging the
reasoning, explanation, and summarization capabilities of LLMs to expand entity descriptions, understand relations,
and extract structures, respectively. We conducted extensive evaluation of the effectiveness and improvement of
our framework based on four description-based KGC models and four datasets, for both link prediction and triplet
classification tasks.
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1. Introduction

A knowledge graph (KG) is a type of multi-relational
graph data that contains the name/description of
entities and relations and presents relational facts
in a triplet format (Zhu et al., 2022). Examples of
KGs include Freebase (Bollacker et al., 2008), DB-
pedia (Lehmann et al., 2015), and YAGO (Mahdis-
oltani et al., 2015), which have been proven use-
ful in various applications, such as recommender
systems (Sun et al., 2020) and knowledge graph
question answer (Saxena et al., 2020). Despite
their widespread applications, KGs still suffer from
the problem of incompleteness (Xu et al., 2023b).
Along this line, the task of knowledge graph com-
pletion (KGC), which aims at predicting missing
facts within a KG, helps both the construction and
canonicalization of KGs.

There have been several proposed works on
KGC that aim to predict missing facts, such as
structure-based KGC (Sun et al., 2019; Dettmers
et al., 2018; Yue et al., 2023) and description-based
KGC (Wang et al., 2022a,b; Jiang et al., 2023). The
structure-based KGC only considers graph struc-
tural information from observed triple facts and em-
beds each entity and relation separately into train-
able index embeddings. Unlike structure-based
KGC, description-based KGC methods encode the
text of entities and relations into a semantic space
using pre-trained language models. The plausibility
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produced by

director

place of birth

Ian Bryce is an English 
film producer. Starting as 
a production assistant on 
Star Wars Episode VI: 
Return of the Jedi he is 
now an award-winning …

Ian Bryce

Transformers 3 is a 
2011 action sci-fi film 
directed by Michael 
Bay and written by 
Ehren Kruger.

Transformers: 
Dark of the Moon 

Michael Benjamin Bay is 
an American film director 
and producer. His films, 
which include … and the 
Transformers film series. 

Michael Bay 

The United States of 
America, … is a 
federal republic 
consisting of 50 states 
and a federal district.

United States 
of America

Figure 1: A subgraph with entity descriptions from
a KG. The text of relations only includes its name.

of facts is predicted by computing a scoring function
of triplet or matching semantic similarity between
the [head entity, relation] and tail entity (Wang et al.,
2022a). In this way, the textual encoder facilitates
easy generalization of the model to unseen graph
entities, resulting in better scalability than index
entity embedding.

However, despite the significant success
achieved by description-based KGCs in learning
textual and structural knowledge, their effective-
ness is still limited by the quality of Internet-crawled
text and incomplete structure. For instance, in
Figure 1, the brief descriptions of “Ian Bryce”
and “Transformers: Dark of the Moon” are un-
informative. In this case, relying solely on the
name of relation “produced by” may result in
the ambiguous understanding of entity types.
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Meanwhile, learning structural patterns from
known graphs is challenging for long-tailed entities.
These limitations make it hard for KGC to achieve
high performance in real-world applications that
involve insufficient and incomplete knowledge
graphs.

Recently, large language models (LLMs) have
been shown to have massive context-aware knowl-
edge and advanced capability through the process
of pre-training on large-scale corpora (Liang et al.,
2022; Peng et al., 2023). Therefore, it is worthwhile
to utilize the rich knowledge of LLMs to address
the challenges of KGC. However, it raises a ques-
tion: how to effectively leverage the capabilities
and knowledge of a language model to improve the
graph learning?

To answer the above question, in this paper,
we propose a novel technical framework, called
MPIKGC, which prompts LLMs to generate auxil-
iary texts for improving the performance of KGC
models. Specifically, to address the problem of
incomplete entity information, we propose to ex-
pand the entity description using the knowledge
captured by LLMs. We achieve this by design-
ing a Chain-of-Thought (CoT) prompt (Wei et al.,
2022) that allows the LLM to break down the query
into different aspects and generate descriptions
step-by-step. In addition to addressing the issue
of relation ambiguity, we further propose a solution
to improve KGC models’ understanding of relation
meanings, which involves querying LLMs with three
curated prompting strategies, namely global, local,
and reverse prompts that capture the association
between relations and facilitate better reverse pre-
diction. Moreover, to address the issue of sparse
graph links, especially for long-tailed entities, we
propose enriching knowledge graphs by querying
LLMs to extract additional structural information,
using the keywords summarized by LLMs to mea-
sure similarity between entities, and creating new
triples that construct associations between related
entities and enable the formation of new structural
patterns in KGC models.

To demonstrate the effectiveness and universal-
ity of our proposed framework, we apply the strate-
gies from different perspectives to four description-
based KGC models and four datasets separately,
improving their performance on both the link predic-
tion task and the triplet classification task. MPIKGC
is also evaluated through a variety of ablation and
comparison experiments, demonstrating its diver-
sity for performance improvement from different
perspectives and its generalizability across differ-
ent LLMs. The codes and datasets are available in
https://github.com/quqxui/MPIKGC.

2. Related Work

2.1. Description-based KGC Methods
Different from traditional structured-based KGC
methods (Sun et al., 2019), which solely uti-
lized structural information, description-based KGC
methods typically represented entities and relations
in KGs using pre-trained language models. Specif-
ically, these methods utilized textual descriptions
for embedding entities and relations, and for the
long-tailed entities, description-based KGC meth-
ods usually performed well because of the repre-
sentation learning brought by entity descriptions.
For example, DKRL (Xie et al., 2016) employed a
convolutional neural network to encode entity de-
scriptions, while KG-BERT (Yao et al., 2019) utilized
pre-trained BERT models to learn the embeddings
of entities and relations, and KEPLER (Wang et al.,
2021) further adapted pre-trained language models
to simultaneously optimize knowledge embedding
and language modeling objectives. MMRNS (Xu
et al., 2022) leverages the similarity of description to
perform negative sampling for hard samples. Also,
SimKGC, proposed by Wang et al. (2022a), utilized
contrastive learning and various types of negative
sampling to improve performance. LMKE (Wang
et al., 2022b), on the other hand, leveraged lan-
guage models and textual information to generate
knowledge embeddings for entities, particularly for
long-tailed entities. Besides, CSProm-KG (Chen
et al., 2023) extended frozen pre-trained language
models with structural awareness using the pro-
posed conditional soft prompt.

Despite the promising results of description-
based KGC models, they still face difficulties
caused by deficiency of textual data and incom-
plete structure, while our MPIKGC aims to address
these challenges by introducing large language
models to description-based KGC models.

2.2. Large Language Models for KG
Recently, the emergence of large language mod-
els (LLMs), such as GPT4 (OpenAI, 2023), Llama-
2 (Hugo et al., 2023), and ChatGLM2 (Zeng et al.,
2023), has led to several studies (Pan et al., 2023a)
exploring the potential of integrating LLMs and KGs
to achieve improved performance by leveraging the
strengths of both modalities. KGs can enhance
LLMs by providing a means of explicitly storing rich
factual knowledge, while LLMs can aid in the con-
struction of KGs by generating new facts (Pan et al.,
2023b; Xu et al., 2023a). Specifically, Liang et al.
(2022) revealed that LLMs perform well on frequent
entities and relations that mostly occur in the pre-
training data. The Chain-of-Thought (CoT) (Wei
et al., 2022) prompting strategy significantly im-
proved the reasoning performance of LLMs without

https://github.com/quqxui/MPIKGC
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This fact provides some 
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and upbringing, ...
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Figure 2: Framework of improving knowledge graph from the perspective of entity, relation, and structure.
We evaluate the efficiency of the enhanced knowledge graph by employing various description-based
KGC models on link prediction and triplet classification tasks.

requiring further fine-tuning. Besides, Mruthyun-
jaya et al. (2023) exhibited the considerable po-
tential of LLMs in recalling factual information for
symbolic KGs. Moreover, LLMs have shown re-
markable zero-shot performance in named entity
recognition (Li et al., 2023) as they can extract
structural knowledge by utilizing relevant external
context information. Given these findings, we pro-
pose to investigate the potential of LLMs in terms
of the reasoning, explanation, and summarization
abilities for improving the KGC task.

3. Methodology

3.1. Problem Definition
Knowledge graph G is a heterogeneous and direct
graph data structure that can be represented as a
collection of triplets with descriptions, which could
be represented as G = {(h, r, t, d)} ⊆ E×R×E×D,
where E denotes the entity set, R as the relation
set, and D as the original description of entities
and relations. The aim of the triplet classification
task is to ascertain the accuracy of a given triplet.
The link prediction task of KGC is to infer the miss-
ing facts based on the known textual and structural
data, which comprises two parts, i.e., predicting the
tail entity when given (h, r, ?), and predicting the
head entity when provided with (?, r, t). To accom-
plish this, it is necessary to rank all entities within
E by calculating a score function for both positive
and negative triples. Description-based KGC mod-
els utilize pre-trained language models to encode
D and learn representations of entities and rela-
tions, while our goal is to enhance the textual and
structural data as input of KGC models by querying

LLMs with curated prompts.

3.2. Multi-perspective Prompting
In this section, we elaborate on the pipeline of our
MPIKGC and provide motivation for each prompt,
along with an illustrative example for better under-
standing. Our approach involves enhancing knowl-
edge graph completion by improving entity, relation,
and structure data, as shown in Figure 2. Specif-
ically, templates for querying LLMs are shown in
Table 1, in which prompts used for querying LLMs
follow three fundamental principles. (1) Clarity: It
is crucial for LLMs to adhere to our instructions pre-
cisely. An excessively complex prompt may result in
misunderstandings in the instructions, particularly
for small LLMs (with fewer than 10 billion parame-
ters), ultimately reducing the effectiveness of com-
munication. (2) Universality: The prompts we de-
sign should be compatible with various LLMs, and
the generated text from these LLMs consistently
demonstrates improvement on multiple KGC mod-
els, in both link prediction and triplet classification
tasks. (3) Diversity: Prompts should demonstrate
diversity to enrich KG data from various perspec-
tives: including entity, relation, and structure. They
can improve the learning of KGC models and show
cooperative effects when combined. We evaluated
the three claims of our proposed framework in the
experiments presented in Section 4.

3.2.1. Description Expansion

Formalizing the comprehensive knowledge of an
entity from LLMs is non-trivial, as it is difficult to
ascertain whether the LLMs has generated and en-



11959

Strategies Templates

MPIKGC-E Please provide all information about {Entity Name}. Give the rationale before
answering:

MPIKGC-R
Global

Please provide an explanation of the significance of the relation {Relation Name}
in a knowledge graph with one sentence:

MPIKGC-R
Local

Please provide an explanation of the meaning of the triplet (head entity, {Relation
Name}, tail entity) and rephrase it into a sentence:

MPIKGC-R
Reverse

Please convert the relation {Relation Name} into a verb form and provide a
statement in the passive voice:

MPIKGC-S Please extract the five most representative keywords from the following text:
{Entity Description}. Keywords:

Table 1: Templates of each strategy for querying. MPIKGC-E, -R, and -S are corresponding to the
improvement methods in terms of entity, relation, and structure, respectively.

compassed all the information of this entity. Mean-
while, it can be challenging to manually set many
instructions for each entity to query about, such as
asking the released region or director for a movie,
which consumes a lot of manpower and often re-
sults in an excessive number of tokens being input
into the LLMs, consequently increasing the compu-
tational burden of inference. Such long text may
also not be suitable for small-scale LLMs and can
hamper their performance (Bai et al., 2023).

We propose to design a Chain-of-Thought
(CoT) (Wei et al., 2022) prompt strategy, that en-
ables LLMs to break down complex queries into
different directions and generate descriptions step-
by-step, without the need for explicit manual input.
It instructs LLMs to implicitly query relevant infor-
mation on their own, resulting in more efficient and
extensive responses. As demonstrated template in
Table 1 MPIKGC-E, We request LLMs to provide
a comprehensive entity description and provide a
rationale before answering, which serves as justi-
fication for the answer and improves the recall of
KGC models. For instance, Figure 2 presents an
example of a famous person “Michael Bay”, where
LLMs generate a description containing various
occupations and personal details of the individual,
accompanied by rationales for each response to
enhance the LLMs statement.

3.2.2. Relation Understanding

The presence of heterogeneous relations in a
knowledge graph plays a crucial role in distinguish-
ing between two entities. However, relying solely
on relation names may lead to ambiguous interpre-
tations, particularly for complex relation categories
(such as many-to-many and many-to-one). More-
over, the link prediction task requires an additional
reverse prediction, i.e., predicting the head entity
given (?, r, t). Typically, the performance of reverse

prediction for many-to-one relation is significantly
lower than that of forward prediction (Yang et al.,
2014). Structure-based KGC methods attempt to
address this issue by adding a reverse relation for
each forward relation, thereby doubling the train-
able index embeddings for relations. In contrast,
description-based KGC methods, such as SimKGC
(Wang et al., 2022a), append a string “reverse” to
the relation name. We argue that such an approach
does not enable models to fully comprehend the
meaning of relations, resulting in poor performance.

Therefore, we propose three prompting strate-
gies, namely Global, Local, and Reverse, as de-
picted by MPIKGC-R in the Table 1. Specifically,
MPIKGC-R Global aims to deduce the significance
of a relation from the perspective of the entire KG,
thereby facilitating better association between two
relations. For instance, both “produced by” and “di-
rector” are related to the film industry, while “release
region” and “place of birth” are associated with the
name of a country or area. In contrast, MPIKGC-R
Local intends to infer the relation’s meaning from
the triplet perspective, thereby enhancing compre-
hension and suggesting possible types of head/tail
entities while predicting missing facts. For instance,
when querying the meaning of “(head entity, re-
lease region, tail entity)”, LLMs suggest that the
relation may connect to films and regions. In addi-
tion, MPIKGC-R Reverse entails LLMs to represent
relations as verbs, and convert them to the passive
voice. For example, “produce” can be transformed
into “produced by”, thereby enhancing comprehen-
sion and enabling better reverse prediction. The
generated text is appended to the relation name
and is processed according to each KGC model’s
workflow for handling the relation name.
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Dataset #Ent #Rel #Train #Valid #Test

FB15k237 14,541 237 272,115 17,535 20,466
WN18RR 40,943 11 86,835 3,034 3,134
FB13 75,043 13 316,232 5,908 23,733
WN11 38,696 11 112,581 2,609 10,544

Table 2: Statistics of KGs used for our work.

3.2.3. Structure Extraction

KGC models are capable of learning structural pat-
terns from training triples and generalizing to the
missing links in test triples. For instance, a person
entity that has the occupation of a producer or di-
rector, is probably related to film entities. However,
pattern learning from graph structures is limited to
sparse links, particularly for long-tailed entities (Li
et al., 2022). To address this problem, we pro-
pose MPIKGC-S, which queries LLMs to gener-
ate additional structural information to enrich KGs.
To convert the LLMs’ generative text into graph-
based data, we utilize the summarizing capability of
LLMs to extract relevant keywords from description,
then calculate a matching score s between entities
based on the number of matched keywords:

s = len(m)/min(len(kh), len(kt)),

m = intersection(kh, kt),

where kh and kt denote the keywords of head/tail
entities, respectively, and m is the intersection of
kh and kt. After sorting the matching score, we se-
lected top k pairs and created new triples in the form
of (head, Same As, tail), which are then appended
to the training set. In addition to these similarity-
based triplets, we also consider adding a self-loop
triplet with the relation “SameAs” to each entity:
(head, Same As, head). The motivation is to en-
hance the KGC model’s learning of the “SameAs”
relation. These extra triplets construct the asso-
ciation between related entities and allow for the
formation of new structural patterns in KGC mod-
els. For instance, by adding “SameAs” relation
between “Ian Bryce” and “Michael Bay”, “Ian Bryce”
can reach to the “Transformers: Dark of the Moon”
entity with a explicit path, thereby serving as a valu-
able addition to the KGC model learning process.

4. Experiments

4.1. Experimental Setup
Datasets. We conduct link prediction exper-
iments on two widely used datasets, namely
FB15k237 (Toutanova and Chen, 2015) and
WN18RR (Dettmers et al., 2018), as well as triplet
classification experiments on FB13 (Socher et al.,
2013) and WN11 (Socher et al., 2013).

Metrics. We evaluate the performance of KGC
models using the following metrics: Mean Rank
(MR), Mean Reciprocal Rank (MRR), and Hits@n
(H@n, n={1,3,10}) for the link prediction task, and
Accuracy for the triplet classification task. Lower
MR values indicate better performance, while
higher values for other metrics are indicative of
better performance.

Baselines. In our study, we compare our improved
KGs with the original KGs using four description-
based KGC models: KG-BERT (Yao et al., 2019),
SimKGC (Wang et al., 2022a), LMKE (Wang et al.,
2022b), and CSProm-KG (Chen et al., 2023). The
criteria for selecting baselines are based on state-
of-the-art performance, the model’s novelty, and
the experimental time cost. As KGC requires rank-
ing all candidate entities, we prioritized baselines
that utilized a 1-to-n scoring method. We also com-
pared against traditional structure-based KGC mod-
els, including TransE (Bordes et al., 2013), Dist-
Mult (Yang et al., 2014), RotatE (Sun et al., 2019),
ConvE (Dettmers et al., 2018), ConvKB (Nguyen
et al., 2018), and ATTH (Chami et al., 2020).

Backbones. We rely on Llama-2 (Llama-2-7b-
chat) (Hugo et al., 2023), ChatGLM2-6B (Zeng
et al., 2023), ChatGPT (gpt-3.5-turbo-0613) 1,
GPT4 (gpt-4-0613) (OpenAI, 2023) as our pri-
mary text generation backbones. In both LLMs,
we set the temperature to 0.2 and the maximum
length to 256, and use single-precision floating-
point (FP32) for inference. We employ BERT (bert-
based-uncased) (Yao et al., 2019) as the backbone
to encode generated text for all description-based
KGC models, with the hyperparameters being set
in accordance with the corresponding models.

Settings. To ensure a fair comparison, we re-
produce each method using their open-source
codes and utilized the “bert-based-uncased”
version (Yao et al., 2019) as the backbone for all
models. To account for the increased amount of
text for both entities and relations in the enhanced
KGs, we ensure that different augmentation exper-
iments have the same maximal token length and
data processing pipeline. Additionally, we include
Mean Rank results, which were not reported by
some baselines. Other parameters are set follow-
ing the default parameters provided in the original
paper. To ensure the reproducibility of our results,
we provide details on the hyper-parameters used
for the four baselines across four benchmarks in
Appendix 9.1, which includes information on hyper-
parameters such as maximum token length and
batch size. Additional experiments are available in
Appendix 9.2 and 9.3.
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Models FB15k237 WN18RR
MR↓ MRR↑ H@1↑ H@3↑ H@10↑ MR↓ MRR↑ H@1↑ H@3↑ H@10↑

Structure-based Approaches

TransE (Bordes et al., 2013) 323 27.9 19.8 37.6 44.1 2300 24.3 4.3 44.1 53.2
DistMult (Yang et al., 2014) 512 28.1 19.9 30.1 44.6 7000 44.4 41.2 47.0 50.4
ConvE (Dettmers et al., 2018) 245 31.2 22.5 34.1 49.7 4464 45.6 41.9 47.0 53.1
RotatE (Sun et al., 2019) 177 33.8 24.1 37.5 53.3 3340 47.6 42.8 49.2 57.1
ATTH (Chami et al., 2020) - 34.8 25.2 38.4 54.0 - 48.6 44.3 49.9 57.3

Description-based Approaches

CSProm-KG (Chen et al., 2023) 188 35.23 26.05 38.72 53.57 545 55.10 50.14 57.04 64.41
+MPIKGC-E 195 35.51 26.38 38.96 53.74 1244 53.80 49.19 55.65 62.81
+MPIKGC-R 192 35.38 26.29 38.83 53.50 838 53.90 49.35 55.74 62.36
+MPIKGC-S 179 35.95 26.71 39.52 54.30 528 54.89 49.65 56.75 65.24

LMKE (Wang et al., 2022b) 135 30.31 21.49 33.02 48.07 54 55.78 42.91 64.61 79.28
+MPIKGC-E 138 30.83 21.89 33.67 48.75 57 56.35 43.27 65.54 79.53
+MPIKGC-R 145 30.99 22.21 33.70 48.83 59 57.60 45.10 65.95 79.35
+MPIKGC-S 135 30.68 21.67 33.35 48.91 70 50.71 36.91 59.65 76.13

SimKGC (Wang et al., 2022a) 146 32.66 24.13 35.42 49.65 148 65.64 57.08 71.20 80.33
+MPIKGC-E 143 33.01 24.37 35.80 50.29 124 65.64 57.10 71.09 80.41
+MPIKGC-R 156 31.05 22.63 33.62 47.65 129 66.41 57.90 72.08 81.47
+MPIKGC-S 143 33.22 24.49 36.26 50.94 170 61.48 52.81 66.77 76.94

Table 3: Experimental results on the link prediction task where the best results in each block are in bold.
↑: higher is better. ↓: lower is better.

4.2. Main Results
In this section, we conduct a comprehensive perfor-
mance comparison between structure-based KGC
and description-based KGC and evaluate the ef-
fectiveness of our MPIKGC in three perspectives
by feeding the enhanced KGs to description-based
approaches. As presented in Table 3, ATTH out-
performs other structure-based methods across
four metrics. Besides, we observe that in most
situations, structure-based methods exhibited bet-
ter performance on FB15k237, which contains
general world facts (such as an entity of actor),
while description-based methods perform better on
WN18RR, a subset of WordNet (Miller, 1995) with
rich language knowledge suitable for PLMs.

CSProm-KG proposed to focus on both textual
and structural information, which results in its supe-
rior performance on FB15k237 compared to LMKE
and SimKGC. However, it performs much worse
on WN18RR. Our proposed methods, particularly
the structure extraction approach MPIKGC-S, im-
prove the structure-focused aspect of CSProm-KG
and achieve the highest performance on FB15k237
compared to all other baselines, even surpass-
ing the structure-based methods. However, the

1https://openai.com/blog/chatgpt

difference between the FB15k237 and WN18RR
datasets is indeed noteworthy. FB15k237 has
shown particularly good results with MPIKGC-S,
which could be attributed to the fact that FB15k237
has 15K entities and 237 kinds of relations as
shown in Table 2, while WN18RR has 40K enti-
ties with only 11 relations. Adding extra relation
to WN18RR might excessively alter the sparsity
and triplet distribution of the KG, leading to poor
performance.

On the other hand, our proposed method for re-
lation understanding (MPIKGC-R) demonstrates
a 1%-2% improvement in the MRR, Hits@1, and
Hits@3 metrics on WN18RR compared to LMKE,
while MPIKGC-E achieves higher Hits@10 score of
79.53%. The same improvement trend is also ob-
served for the MPIKGC-R approach when applied
to SimKGC on WN18RR. The reason is that both
methods are text-focused and have the capability
to learn abundant information with enhanced data.
However, MPIKGC-S does not exhibit improvement
in LMKE and SimKGC on WN18RR. We hypoth-
esize that this may be attributed to the low num-
ber of relation types, which could potentially mis-
lead the model when adding new relations. More-
over, the incorporation of extracted structural data
for FB15k237 achieves much better performance
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Models FB13 WN11

Structure-based Approaches

TransE (Bordes et al., 2013) 81.5 75.9
DistMult (Yang et al., 2014) 86.2 87.1
ConvKB (Nguyen et al., 2018) 88.8 87.6

Description-based Approaches

KG-BERT (Yao et al., 2019) 84.74 93.34
+MPIKGC-E 86.29 94.13
+MPIKGC-R 84.51 93.36
+MPIKGC-S 85.35 93.61

LMKE (Wang et al., 2022b) 91.70 93.71
+MPIKGC-E 91.52 93.84
+MPIKGC-R 91.49 93.93
+MPIKGC-S 91.81 93.91

Table 4: Accuracy on the triplet classification task.

based on LMKE and SimKGC, which proves the
effectiveness of MPIKGC-S in the link prediction.

4.3. Triplet Classification
In this section, we evaluate our proposed methods
on the triplet classification task, a binary classifica-
tion task that determines the correctness of a given
triplet. Based on the results presented in Table 4,
we can conclude that the structure-based methods
perform well on the FB13 dataset, while signifi-
cantly underperform compared to the description-
based methods on the WN11 dataset. This out-
come is consistent with the findings in the link pre-
diction task discussed in Section 4.2 and can be
attributed to the variations between Freebase (Bol-
lacker et al., 2008) and WordNet (Miller, 1995).
On the other hand, the results demonstrate that
expanding descriptions (MPIKGC-E) is a promis-
ing technique to improve the KG-BERT’s perfor-
mance, as it yields a 1.55% higher accuracy score
on FB13 and a 0.79% higher accuracy score on
WN11. Our methods also exhibit minor enhance-
ments on LMKE and achieve the highest accuracy
score of 91.81% in FB13. The overall results indi-
cate the universality of the MPIKGC framework that
can enhance the performance of various KGC mod-
els in both link prediction and triplet classification
tasks.

4.4. Parameter Analysis of Structure
Extraction

In this section, we evaluate the significance of the
hyper-parameter top k in extracting structural data.
We present the results obtained on FB15k237 and
compare the settings with and without self-loop with

Models FB15k237
MRR H@1 H@3 H@10

LMKE 30.31 21.49 33.02 48.07
+MPIKGC-E 30.71 21.97 33.29 48.35
+MPIKGC-R 30.64 21.70 33.22 48.74
+MPIKGC-S 30.68 21.67 33.35 48.91
+MPIKGC-E&R 30.74 21.77 33.57 48.77
+MPIKGC-E&S 30.92 21.85 33.67 49.50
+MPIKGC-R&S 31.21 22.26 33.86 49.42
+MPIKGC-E&R&S 30.97 21.91 33.90 49.28

Table 5: Ablation of augmentation methods from
different perspectives.

SimKGC. Increasing the value of k implies the addi-
tion of more triplets to the training set. For instance,
when k is set to 1, we identify the best-matched en-
tity for each entity by computing the matching score.
Besides, the self-loop setting involves the inclusion
of a triplet for the entity itself. As shown in Figure 3,
the curves for all three metrics exhibit an upward
trend under both settings as the k increases, which
demonstrates that the augmentation perspective in
structure indeed improves the performance of KGC
on the FB15k237 dataset. Furthermore, we can
see that the setting with self-loop consistently out-
performs the setting without self-loop. This obser-
vation suggests that augmenting KGC’s learning of
the “SameAs” relation is a promising strategy for en-
hancing performance. However, we also note that
the performance starts to decline when k reaches
4 or 5. This trend indicates that the training set
contains excessive extraneous triplets, which could
negatively affect the learning of other data.

4.5. Ablation of Multi-perspective
Prompts

This section presents an analysis of the perfor-
mance of description expansion (MPIKGC-E), re-
lation understanding (MPIKGC-R), and structure
extraction (MPIKGC-S), as well as the perfor-
mance when combining them together. For in-
stance, MPIKGC-E&R denotes the combination
of MPIKGC-E and MPIKGC-R, while the remain-
ing methods follow the same naming convention.
We conduct ablation experiments on the FB15k237
dataset using Llama-2-generated texts, with LMKE
as the baseline. The results demonstrate that af-
ter being enhanced with our method from the per-
spectives of entities, relations, and structures, the
KGC models achieved a nearly 0.5% improvement
across all four metrics. Additionally, MPIKGC-E&R
combines the generated entity descriptions with the
descriptive text of relations, resulting in a slight im-
provement over using either one individually, which



11963

1 2 3 4 5
Top K

32.6

32.8

33.0

33.2

33.4
M

M
R

1 2 3 4 5
Top K

24.0

24.1

24.2

24.3

24.4

24.5

24.6

Hi
ts

@
1

1 2 3 4 5
Top K

35.0
35.2
35.4
35.6
35.8
36.0
36.2
36.4

Hi
ts

@
3

1 2 3 4 5
Top K

49.0

49.5

50.0

50.5

51.0

51.5

Hi
ts

@
10

1 2 3 4 5
Top K

32.6

32.8

33.0

33.2

33.4

M
M

R

SimKGC w/o Self-loop w/ Self-loop

Figure 3: Analysis of hype-parameter k and the self-loop setting on FB15k237.

demonstrates the compatibility of these two meth-
ods. Moreover, MPIKGC-E&S achieves the highest
H@10 score, while MPIKGC-R&S performs best
on MRR and H@1. MPIKGC-E&R&S achieves the
best H@3 score. We observe that incorporating the
structure extraction method further improves per-
formance by nearly 0.5% across most metrics. For
example, MPIKGC-E&R&S gets a H@10 score of
49.28%, which is 0.51% higher than MPIKGC-E&R.
The same phenomenon can be seen when adding
relation text ‘-R’. The comprehensive findings indi-
cate that our diverse enhancement methods are
compatible and can be integrated to boost overall
performance.

4.6. Ablation of Relation Understanding

In this section, we evaluate the performance of
various ablation settings for relation understanding
on the WN18RR dataset, as shown in Table 6.

Specifically, MPIKGC-R G&L represents the com-
bination of Global and Local descriptions, which are
concatenated using a separate token ‘[SEP]’. Mean-
while, the other methods follow the same rule. The
results show that MPIKGC-R Global outperformed
the baseline SimKGC by nearly 1% across all four
metrics. Additionally, MPIKGC-R Local achieves
the highest H@10 score of 81.57%, but has the low-
est MRR and H@1 scores. Conversely, MPIKGC-R
Reverse achieves over 1% improvement in MRR
and H@1 but performs worse in H@10. These re-
sults suggest that MPIKGC-R Local prioritizes the
top-10 recall of correct entities, while MPIKGC-R
Reverse focuses on improving the performance of
the best entity (i.e., top-1).

After combining these three strategies, we ob-
serve that MPIKGC-R G&L achieves a significant
improvement in MRR and H@1, suggesting that
Global and Local prompts have a complementary
effect. However, other combined strategies exhibit
poor performance. We therefore believe that in-
corporating too many relation descriptions may in-
crease the difficulty of learning the meaning of the
relation.

Models WN18RR
MRR H@1 H@3 H@10

SimKGC 65.64 57.08 71.20 80.33
+MPIKGC-R Global 66.41 57.90 72.08 81.47
+MPIKGC-R Local 64.45 54.87 70.65 81.57
+MPIKGC-R Reverse 66.53 59.28 70.72 80.09
+MPIKGC-R G&L 66.97 59.88 70.82 79.77
+MPIKGC-R G&R 65.56 57.00 70.98 80.90
+MPIKGC-R L&R 65.75 57.36 71.03 80.06
+MPIKGC-R G&L&R 65.85 57.47 70.98 80.64

Table 6: Ablation of different relation understanding
strategies and combinations on WN18RR.

4.7. Comparison of LLMs
This section is dedicated to exploring the use of
various LLMs to enhance KGC on FB15k237. Due
to the long querying time and high costs associ-
ated with querying each entity and keyword on four
benchmarks, we have restricted our analysis to
the application of ChatGPT and GPT4 solely for
MPIKGC-R. As shown in Table 7, the results indi-
cate that our framework consistently improves KGC
based on LMKE with generated text across three
perspectives when using various LLMs. This sug-
gests the effectiveness of our designed prompts,
which are universal to both large-scale (ChatGPT
and GPT4) and small-scale (Llama-2 and Chat-
GLM2) LLMs. Specifically, ChatGLM2 produces
superior results for MPIKGC-E and MPIKGC-S
compared to Llama-2, indicating ChatGLM2’s ad-
vantage of reasoning and summarization abilities.
However, Llama-2 and ChatGPT outperform Chat-
GLM2 in terms of their ability to understand rela-
tions. On the other hand, we can see that applying
GPT4 into MPIKGC-R has led to a significant im-
provement in all metrics, owing to the larger model
scale that facilitates a more comprehensive under-
standing of KG relations.

5. Conclusion

In this paper, we proposed MPIKGC, a novel frame-
work that investigates improving the quality of KGs
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Models FB15k237
MRR H@1 H@3 H@10

LMKE 30.31 21.49 33.02 48.07

+MPIKGC-E (Llama-2) 30.56 21.62 33.47 48.15
+MPIKGC-E (ChatGLM2) 30.83 21.89 33.67 48.75

+MPIKGC-R (Llama-2) 30.64 21.70 33.22 48.74
+MPIKGC-R (ChatGLM2) 30.24 21.33 32.96 48.27
+MPIKGC-R (ChatGPT) 30.65 21.82 33.24 48.52
+MPIKGC-R (GPT4) 30.99 22.21 33.70 48.83

+MPIKGC-S (Llama-2) 30.68 21.67 33.35 48.91
+MPIKGC-S (ChatGLM2) 31.07 22.26 33.81 48.82

Table 7: Ablation of different LLMs on FB15k237.

by querying LLMs from three perspectives: ex-
panding the entity descriptions by designing Chain-
of-Thought prompt, enhancing the understanding
of relation by designing global, local, and reverse
prompts, as well as extracting the structural data
via keywords summarization and matching.

We evaluated MPIKGC on WN18RR and
FB15k237 datasets for the link prediction task and
on WN11 and FB13 datasets for the triplet classifi-
cation task. The results of extensive experiments
demonstrated that our method achieved signifi-
cant improvement over four description-based KGC
models. Moreover, additional ablation experiments
highlight the potential to combine different enhance-
ment methods for even better performance.

In the future, we plan to explore the possibility
of refining the "SameAs" relation into more fine-
grained categories, without adding too many triplets.
On the other hand, generating KG data by LLMs
may encounter problems such as hallucination,
toxic and bias, and we plan to develop restricted
prompts or fine-tune LLMs to augment text genera-
tion controllability and interpretability.
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9. Appendices

9.1. Hyper-Parameter Settings
To ensure the reproducibility of our results, we pro-
vide detailed information on the hyperparameters
used for the four baselines across four benchmarks.
This includes information on hyperparameters such
as max token length and batch size, as shown in
Table 10, 9, 8, and 11.

To ensure a fair evaluation of the performance
improvement of our enhanced KG on KG comple-
tion compared to the original KG, we maintain the
same hyperparameters for them. The parameter
settings for the four KGC models mostly follow the
defaults in their open-source code.

KG-BERT FB13 WN11
learning rate 5e-5 5e-5
batch size 32 256
epochs 8 5
max num tokens 70 50
gradient accumulation steps 1 1
warmup proportion 0.1 0.1

Table 8: The hyper-parameter settings of KG-BERT
for FB13 and WN11.

SimKGC FB15k237 WN18RR
learning rate 1e-5 5e-5
batch size 1024 1024
additive margin 0.02 0.02
use amp True True
use self-negative True True
finetune-t True True
pre-batch 2 0
epochs 10 50
max num tokens 70 50

Table 9: The hyper-parameter settings of SimKGC
for FB15k237 and WN18RR.

https://doi.org/10.18653/v1/2023.emnlp-main.1034
https://doi.org/10.18653/v1/2023.emnlp-main.1034
https://openreview.net/forum?id=-Aw0rrrPUF
https://openreview.net/forum?id=-Aw0rrrPUF
https://doi.org/10.1145/1376616.1376746
https://doi.org/10.1145/1376616.1376746
https://doi.org/10.1145/1376616.1376746
https://arxiv.org/abs/1707.01476
https://arxiv.org/abs/1707.01476
http://cidrdb.org/cidr2015/Papers/CIDR15_Paper1.pdf
http://cidrdb.org/cidr2015/Papers/CIDR15_Paper1.pdf
https://doi.org/10.18653/v1/W15-4007
https://doi.org/10.18653/v1/W15-4007
https://doi.org/10.18653/v1/W15-4007


11967

CSProm-KG FB15k237 WN18RR
learning rate 5e-4 5e-4
batch size 128 128
epochs 60 60
desc max length 70 50
prompt length 10 10
alpha 0.1 0.1
n_lar 8 8
label smoothing 0.1 0.1
embed dim 156 144
k_w 12 12
k_h 13 12
alpha step 0.00001 0.00001

Table 10: The hyper-parameter settings of CSProm-
KG for FB15k237 and WN18RR.

LMKE FB15k237/FB13 WN18RR/WN11
bert_lr 1e-5 1e-5
model_lr 5e-4 5e-4
weight decay 1e-7 1e-7
batch size 256 1024
epochs 8 70
max tokens 70 50
self adversarial True True
contrastive True True
plm bert bert

Table 11: The hyper-parameter settings of LMKE
for FB15k237, FB13, WN11, and WN18RR.

9.2. Costs
For the LLM inference stage, we conduct experi-
ments on one NVIDIA V100 32G, and report the
average time and config/cost for 100 data samples,
as shown in Table 12, 13, and 14. For example,
it only costs 11.25 hours of inference time to run
MPIKGC-E on FB15k237 with 15k samples, using
one V100 32G. For the KGC training stage, our
enhancement method requires minimal additional
time over the original method, with only an increase
of 2G-3G in GPU memory consumption due to the
larger maximum token.

It is important to note that the majority of our ex-
periments do not rely on ChatGPT API. Instead, we
primarily utilize open-source LLMs such as Llama
and ChatGLM (in the main experiments). ChatGPT
API is only involved in Section 4.7 for the ablation
study of comparing different LLMs.

LLM config/cost time
chatglm-2-6b V100 13G 5.4s
llama-2-7b-chat V100 14G 6.9s
gpt-3.5-turbo-0613 0.000638$ 4.9s
gpt-4-0613 0.0246$ 13.0s

Table 12: Generation costs for MPIKGC-E.

LLM config/cost time
chatglm-2-6b V100 13G 3.1s
llama-2-7b-chat V100 14G 3.3s
gpt-3.5-turbo-0613 0.00021$ 2.8s
gpt-4-0613 0.00615$ 3.9s

Table 13: Generation costs for MPIKGC-R.

LLM config/cost time
chatglm-2-6b V100 13G 3.4s
llama-2-7b-chat V100 14G 3.3s
gpt-3.5-turbo-0613 0.00020$ 2.7s
gpt-4-0613 0.00318$ 5.2s

Table 14: Generation costs for MPIKGC-S.

9.3. Comparison with TagReal
Here, we compare TagReal (Jiang et al., 2023) to
demonstrate our differences and advantages for
knowledge graph completion. TagReal is a method
for open knowledge graph completion that automat-
ically generates query prompts and retrieves sup-
port information from text corpora to probe knowl-
edge from pre-trained language models. Theoret-
ically, while TagReal performs well on KGC, we
identify several improvements in our method com-
pared to Targal:

• We propose three enhancement strategies that
improve performance from different perspec-
tives (entity, relation, structure). Each strategy
has its own advantages and, when combined,
they further enhance performance.

• Our method exhibits stronger applicability. Our
method can enhance most description-based
KGC models, adapt to multiple LLMs, and im-
prove the performance of both link prediction
and triplet classification tasks.

• Our method is more flexible as it generates
supplementary text descriptions using LLMs
through instructions. However, the prompt gen-
eration of TagReal requires complex steps. We
believe that our designing instructions and gen-
erating prompts using LLMs would be simpler
and more efficient.

As for experimental comparison in Table 15, the
method TagReal differs from ours in terms of the
benchmarks, backbones, and training methods
used. We compared the prompt generated for each
relation from TagReal with our method MPIKGC-R
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in FB15k237. For instance, for the relation "/sport-
s/sports_team_location/teams", the enhancement
strategies are as follows:

• TagReal –> [X] is located in [Y].

• MPIKGC-R –> The relation denotes the geo-
graphical location in which sports teams are
located, indicating the connection between
teams and their respective locations.

Models FB15k237
MRR H@1 H@3 H@10

LMKE 30.31 21.49 33.02 48.07
+TagReal 30.48 21.63 33.19 48.37
+MPIKGC-R Global 30.99 22.21 33.70 48.83

Table 15: Comparison with TagReal, in which the
enhancement data for MPIKGC-R Global was gen-
erated by querying GPT4.

The experimental results show that after supple-
menting the relation, our method can generate a
more detailed explanation for this relation, resulting
in better performance, even though TagReal shows
performance improvement compared to LMKE.
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