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Preface

We are excited to present the Proceedings of the 17" International Natural Language Generation
Conference (INLG 2024). This year’s INLG takes place from September 23-27 in Tokyo, Japan and
is organized by the National Institute of Advanced Industrial Science and Technology. We would like to
thank the local organizing team led by Tatsuya Ishigaki; the conference would not be possible without
their dedication and hard work.

The INLG conference is the main international forum for the presentation and discussion of research on
Natural Language Generation (NLG). This year, we received 98 conference submissions (including 2
from ARR) and 7 demo paper submissions. After a peer review process, 38 long papers, 19 short papers,
and 6 demos were accepted to the conference and are included in these proceedings. The accepted
papers showcase the breadth of NLG research, including work on applications, such data-to-text tasks,
machine translation, and summarization; language model evaluation; and many other topics of interest
to the NLG community. We thank Chung-Chi Chen for serving as Publication Chair and preparing these
proceedings.

We are also excited to present four keynotes, which will discuss enhancing reasoning capabilities in NLG
systems, applications of NLG to creative writing, evaluation of language generation, and embodied NLG
for autonomous robots. The keynote speakers are:

* Yulan He, King’s College London, UK

* Mark Riedl, Georgia Institute of Technology, USA

* Kees van Deemter, Utrecht University, the Netherlands
* Koichiro Yoshino, Tokyo Institute of Technology, Japan

For the second year, INLG is hosting a Generation Challenge, a track of the main conference focused on
developing shared tasks for NLG. The track is chaired by Simon Mille and Miruna Clinciu. This year,
there are three challenges: long story generation, visually grounded story generation, and the Generation,
Evaluation, and Metrics (GEM) benchmark.

Two workshops are co-located with the main conference: the 2nd Workshop on Practical LL.M-assisted
Data-to-Text Generation and the 2nd Workshop of AI Werewolf and Dialog System. INLG is also hosting
a tutorial on Human Evaluation of NLP System Quality. We also thank Jing Li for serving as Workshop
Chair for the conference.

Finally, would like to thank our generous sponsors:

* Gold sponsors: Denso IT Library and Fast Accounting Co., Ltd.

* Silver sponsors: Stockmark Inc., Recruit Co., Ltd., and the Artificial Intelligence Research Center
(AIRC).

* Bronze sponsors: Association for Natural Language Processing

We would also like to express our gratitude to the Area Chairs and Program Committee members for their
reviewing contributions, and to the SIGGEN representatives Raquel Hervds and Emiel van Miltenburg
for sharing their expertise.

Your INLG 2024 program chairs,
Saad Mahamood (lead), Nguyen Le Minh, and Daphne Ippolito
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AutoTemplate: A Simple Recipe for Lexically Constrained Text Generation

Hayate Iso
Megagon Labs
hayate@megagon.ai

Abstract

Lexically constrained text generation is one of
the constrained text generation tasks, which
aims to generate text that covers all the given
constraint lexicons. While the existing ap-
proaches tackle this problem using a lexically
constrained beam search algorithm or dedi-
cated model using non-autoregressive decod-
ing, there is a trade-off between the generated
text quality and the hard constraint satisfaction.
We introduce AutoTemplate, a simple yet effec-
tive lexically constrained text generation frame-
work divided into template generation and lex-
icalization tasks. The template generation is
to generate the text with the placeholders, and
lexicalization replaces them into the constraint
lexicons to perform lexically constrained text
generation. We conducted the experiments on
two tasks: keywords-to-sentence generations
and entity-guided summarization. Experimen-
tal results show that the AutoTemplate outper-
forms the competitive baselines on both tasks
while satisfying the hard lexical constraints.!

1 Introduction

Text generation often requires lexical constraints,
i.e., generating a text containing pre-specified lex-
icons. For example, the summarization task may
require the generation of summaries that include
specific people and places (Fan et al., 2018; He
et al., 2022), and advertising text requires the inclu-
sion of pre-specified keywords (Miao et al., 2019;
Zhang et al., 2020b).

However, the black-box nature of recent text
generation models with pre-trained language mod-
els (Devlin et al., 2019; Brown et al., 2020) makes
it challenging to impose such constraints to ma-
nipulate the output text explicitly. Hokamp and
Liu (2017) and others tweaked the beam search
algorithm to meet lexical constraints by increasing

'The code is available at
megagonlabs/autotemplate

https://github.com/

1

Lexical Constraints Z: {Japan, Akihito}

Article x:

Crown Prince Naruhito could then ascend the
throne on ..

Summary y:

Japan is considering legal changes to allow
Emperor Akihito to abdicate at the end of
2018, say local media reports citing
government sources.

AutoTemplate format

Input x:
TL;DR:<X> Japan<Y> Akihito<Z> | Crown Prince
Naruhito could then ascend the throne on ..

Output y:

<X><Y> is considering legal changes to allow
Emperor<Z> to abdicate at the end of 2018,
say local media reports citing government
sources.<w>

Figure 1: Illustration of AutoTemplate. We build the
model input Z by concatenating the constraint lexicons
Z with mask tokens. For the conditional text generation
task, we further concatenate input document x. We
also build the model output ¢ by masking the constraint
lexicons in summary y. Then, we can train a standard
sequence-to-sequence model, p(§ | &), generate masked
template y given input Z, and post-process to achieve
lexically constrained text generation.

the weights for the constraint lexicons, but it of-
ten misses to include all the constrained lexicons.
Miao et al. (2019) and others introduced special-
ized non-autoregressive models (Gu et al., 2018)
that insert words between the constraint lexicons,
but the generated texts tend to be lower-quality than
standard autoregressive models.

On the other hand, classical template-based
methods (Kukich, 1983) can easily produce text
that satisfies the lexical constraints as long as we
can provide appropriate templates. Nevertheless,
it is impractical to prepare such templates for ev-
ery combination of constraint lexicons unless for

Proceedings of the 17th International Natural Language Generation Conference, pages 1-12
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specific text generation tasks where the output text
patterns are limited, such as data-to-text generation
tasks (Angeli et al., 2010). Still, if such a template
could be generated automatically, it would be eas-
ier to perform lexically constrained text generation.

We propose AutoTemplate, a simple framework
for lexically constrained text generations by auto-
matically generating templates given constrained
lexicons and replacing placeholders in the tem-
plates with constrained lexicons. The AutoTem-
plate, for example, can be used for summariza-
tion tasks, as illustrated in Figure 1, by replac-
ing the constraint lexicons (i.e., {Japan, Akihito})
in the output text with placeholder tokens during
training and using these constraints as a prefix of
the input, creating input-output pairs, and then
using a standard auto-regressive encoder-decoder
model (Sutskever et al., 2014) to train the AutoTem-
plate model. During the inference, the constraint
lexicons are prefixed in the same way, the model
generates the template for the constraints, and the
placeholder tokens are replaced with the constraint
lexicons to perform lexically constrained text gen-
eration.

We evaluate AutoTemplate across two tasks:
keywords-to-sentence generation on One-Billion-
Words and Yelp datasets (§3.1), and entity-guided
summarization on CNNDM (Hermann et al.,
2015) and XSum datasets (Narayan et al., 2018)
(§3.2). The AutoTemplate shows better keywords-
to-sentence generation and entity-guided summa-
rization performance than competitive baselines,
including autoregressive and non-autoregressive
models, while satisfying hard lexical constraints.
We will release our implementation of AutoTem-
plate under a BSD license upon acceptance.

2  AutoTemplate

AutoTemplate is a simple framework for lexically
constrained text generation (§2.1), divided into two
steps: template generation (§2.2) and lexicalization
(82.3). The template generation task aims to gener-
ate the text with placeholders ¢, which we defined
as a template, given constraint lexicons Z, and the
lexicalization is to replace these placeholders with
the constraints to perform lexically constrained text
generation.

2.1 Problem Definition

Let = be a raw input text, and Z be a set of
constraint lexicons; the goal of the lexically con-

2

strained text generation is to generate a text y that
includes all the constraint lexicons Z based on the
input text x. For example, given a news article x
and some entities of interest Z, the task is to gen-
erate a summary y that includes all entities. Note
that unconditional text generation tasks, such as
keywords-to-sentence generation (§3.1), are only
conditioned by a set of lexicons Z, and in this case,
we treat the input data = as empty to provide a
unified description without loss of generality.

2.2 Template Generation

Given training input-output pairs (z,y) and con-
straint lexicons Z, we aim to build a model that
generates a template ¢, which has the same number
of placeholder tokens as the constraint lexicons Z.
We assume that the output text y in the training set
includes all the constraint lexicons Z.

The template g is created by replacing the con-
straint lexicon Z in the output text y with unique
placeholder tokens according to the order of appear-
ances (i.e., <X>, <Y>, and <Z> in Figure 1),2 and
then the model input Z is created by prefixing the
constraint lexicons Z with the raw input text .3
These lexicons Z are concatenated with the unique
placeholder tokens to let the model know the align-
ment between input and output. We discuss this
design choice in §4.

Using the AutoTemplate input-output pairs
(Z, ), we can build an automatic template genera-
tion model p(y|Z) using any sequence-to-sequence
models. This study builds the template genera-
tion model p using an autoregressive Transformer
model with a regular beam search (Vaswani et al.,
2017).

2.3 Lexicalization

After generating the template y, we replace the
placeholder tokens with constraint lexicons Z as
post-processing to achieve lexically constrained
text generation. Specifically, during inference, con-
straint lexicons are prefixed to the input text x in
the same way to build the model input z. Then,
we can obtain the template ¢ from the model p and
replace the placeholder tokens with the constraint
lexicons Z.

2We also prefix and postfix the placeholder tokens to use
them as BOS and EOS tokens.

*We use | as separator token for constraints Z and input
text x and also prefixed TL;DR:.



| multiple keywords

autoregressive decoding

keyword conditioning  constraint satisfaction

SeqBF (Mou et al., 2016)

CGMH (Miao et al., 2019)

GBS (Hokamp and Liu, 2017)
CTRLsum (He et al., 2022)
InstructGPT (Ouyang et al., 2022)

N RN

AutoTemplate (ours)

Sl axx
NIENESENN
O x XX NS

Table 1: Summary of existing work for lexically constrained text generation. SeqBF (Mou et al., 2016) and
CGMH (Miao et al., 2019) use non-autoregressive decoding methods to insert words between given keywords.
While these methods easily satisfy the lexical constraints, in general, non-autoregressive methods tend to produce
lower-quality text generation than autoregressive methods. GBS (Hokamp and Liu, 2017), CTRLSum (He et al.,
2022), and InstructGPT (Ouyang et al., 2022) use autoregressive methods to perform text generation, but there is no
guarantee to satisfy all lexical constraints. AutoTemplate empirically demonstrates the capability to generate text

that satisfies the constraints.

2.4 Comparison with existing approaches

An important contribution of this study is to
show that lexically-constrained generation can be
performed in a simple way with AutoTemplate,
whereas it was previously done with only compli-
cated methods. As summarized in Table 1, Se-
gBF (Mou et al., 2016) is the first neural text gen-
eration model for lexically constrained text gener-
ation based on non-autoregressive decoding. The
SeqBF performs lexically constrained text genera-
tion by generating forward and backward text for
a given constraint lexicon. The most significant
limitation is that only a single keyword can be used
for the constraint.

CGMH (Miao et al., 2019) and similar mod-
els (Zhang et al., 2020b; He, 2021) are yet another
non-autoregressive models that achieve lexicon-
constrained generation by inserting words between
given constraint vocabularies, thus easily incor-
porating multiple constraints into the output text.
Nevertheless, non-autoregressive models require
complicated modeling and training to generate text
as good as that of autoregressive models. We con-
firmed that the AutoTemplate produces consistently
higher quality text than non-autoregressive meth-
ods, with or without leveraging pre-training (§3.1).

Another direction is to incorporate soft con-
straints into the autoregressive models such as con-
strained beam search (Hokamp and Liu, 2017; Post
and Vilar, 2018) and keywords conditioning (He
et al., 2022). GBS (Hokamp and Liu, 2017) is a
constrained bean search technique that incorporates
multiple keywords as constraints and promotes the
inclusion of those keywords in the output during
beam search. However, GBS often misses key-
words in the output text.

CTRLSum (He et al., 2022) imposes keyword

3

conditioning into encoder-decoder models by pre-
fixing the keywords with the input. This method
can be easily conditioned with multiple keywords
as a prefix and can be implemented on an autore-
gressive model, resulting in high-quality text gen-
eration. However, the CTRLSum model cannot
guarantee to satisfy lexical constraints. Our ex-
periments show that as the number of constraints
increases, it is more likely to miss constraint lexi-
cons in the output text (§3.2).

InstructGPT (Ouyang et al., 2022) has shown
remarkable zero-shot ability in many NLP tasks,
and lexically constrained text generation is no ex-
ception. Our experiments confirmed that the model
can generate a very fluent sentence, but as with
CTRLSum, we observed a significant drop in the
success rate with each increase in the number of
keywords.*

3 Experiments

two tasks:
and

We present experiments across
keywords-to-sentence generation (§3.1),
entity-centric summarization (§3.2).

3.1 Keywords-to-Sentence Generation

Keywords-to-sentence generation is a task to gener-
ate a sentence that includes pre-specified keywords
as lexical constraints. We will show that AutoTem-
plate is a simple yet effective method to perform
this problem without relying on any complex de-
coding algorithms.

Dataset We use One-Billion-Word and the Yelp
dataset following the previous studies (Miao et al.,

#*Recent studies have pointed out that ambiguity in instruc-
tions influences output quality, but this issue remains to be
addressed in future work (Zhang et al., 2024; Niwa and Iso,
2024).



Model One-Billion-Word Yelp
B2 B4 N2 N4 M SR | B2 B4 N2 N4 M SR

SeqBF (Mou et al., 2016) 4.4 0.7 062 0.62 7.0 <100. 6.9 2.1 052 053 8.7 <100.
GBS (Hokamp and Liu, 2017) 10.1 28 149 150 135  <100. 13.6 45 1.68  1.71 153 <100.
CGMH (Miao et al., 2019) 9.9 35 1.15 1.17 13.1 100. 12.3 4.6 1.41 1.45 14.6 100.
POINTER (Zhang et al., 2020b) 8.7 1.6 211 212 143 100. 10.6 2.4 214 216 1638 100.
CBART (He, 2021) 156 6.6 216 219 152 100. 19.4 9.0 254 264 174 100.
InstructGPT (Ouyang et al., 2022) 10.1 2.8 .72 1.73 13.0 92.33 9.3 2.4 1.42 1.44 13.6 92.17
AutoTemplate

w/ T5-small 164 6.1 311 315 155 100. 225 9.5 351 3.63 171 100.

w/ T5-base 183 7.6 339 345 160 100. 237 108 3.62 376 17.8 100.

w/ T5-large 189 81 349 354 162 100. 241 111 3.68 383 17. 100.

Table 2: Results of keywords-to-sentence generation on the One-Billion-Word and Yelp datasets. Bold-faced and
underlined denote the best and second-best scores respectively. Baseline results are copied from He (2021). B2/4
denotes BLEU-2/4, N2/4 denotes NIST-2/4, M denotes METEOR-v1.5, and SR denotes the success rate of lexical

constraint satisfaction.

Data | #example  outputlen.  # constraints
1B-Words 12M 27.08 1-6
Yelp 13M 34.26 1-6
CNNDM 312k 70.58 4.53
XSum 226k 29.39 2.11

Table 3: Dataset Statistics: The output length is the num-
ber of BPE tokens per example using the T5 tokenizer.
For the summarization datasets, the average number of
constraints per example is shown.

2019; Zhang et al., 2020b; He, 2021). One-Billion-
Word is a dataset for language modeling based on
the WMT 2011 news crawl data (Chelba et al.,
2014). The Yelp dataset is based on the Yelp open
dataset.> We utilized the publicly available pre-
processed dataset,’ which consists of 1M, 0.1M
sentences for training and development sets, re-
spectively, and 6k sentences with 1-6 pre-specified
keywords for test sets, which we summarized in
Table 3.

Baselines For the baselines, we used strong
competitive models for lexically constrained text
generation, including SeqBF (Mou et al., 2016),
GBS (Hokamp and Liu, 2017), CGMH (Miao
et al., 2019), POINTER (Zhang et al., 2020b),
CBART (He, 2021), and InstructGPT (Ouyang
et al., 2022). SeqBF, GBS, and CGMH are imple-
mented on top of GPT2-small (Radford et al., 2019)
(117M parameters). POINTER is implemented on
BERT-large (Devlin et al., 2019) (340M parame-
ters), CBART is on BART-large (Lewis et al., 2020)
(406M parameters), and InstructGPT has 175B pa-
rameters.

5https ://www.yelp.com/dataset
https://github.com/NLPCode/CBART

Model We instantiate the template generation
model based on the Transformer (Vaswani et al.,
2017) initialized with TS5 checkpoints (Raffel
et al.,, 2020) implemented on transformers li-
brary (Wolf et al., 2020). We specifically utilized
the T5-v1.1-small (60M), T5-v1.1-base (220M
parameters), and T5-v1.1-Large (770M parame-
ters). To train the model, we used AdamW opti-
mizer (Loshchilov and Hutter, 2019) with a linear
scheduler and warmup, whose initial learning rate
is set to le-5, and label smoothing (Szegedy et al.,
2016) with a label smoothing factor of 0.1.

Since the dataset used in this experiment is a
set of raw texts, we randomly select 1 to 6 words
from the text and decompose them into constraint
lexicons Z and a template ¥ to create the AutoTem-
plate training data. Note that the constraint lexicons
Z were selected from the words excluding punctu-
ations and stopwords (Loper and Bird, 2002).

Metrics All performance is measured with
the BLEU-2/4 (Papineni et al., 2002), NIST-
2/4 scores (Doddington, 2002), and METEOR
v1.5 (Denkowski and Lavie, 2014). Following the
previous study, we show the averaged performance
across the number of keywords (He, 2021).

Results Table 2 shows the results of keywords-
to-sentence generation. First, the performance
of GBS and InstructGPT is not as high as non-
autoregressive methods. In general, autoregres-
sive decoding produces better text quality than non-
autoregressive decoding. However, since GBS is
not conditioned on the keywords, it sometimes pro-
duces more general text that does not satisfy the
keyword constraint. Also, InstructGPT tries to gen-
erate sentence according to the instructions, but our
experiments show that it frequently fails to include



Keywords: leading , currency , software , industry

Reference: Transoft International , Inc. is a leading provider of
currency supply chain management software solutions for the bank-

ing industry .

CBART: The leading edge currency trading software

industry .

AutoTemplate: The company is a leading provider of currency

management software to the financial services industry .

Table 4: Example generations for the keywords-to-
sentence generation on One-billion-word.

Keywords: nail , salon , always , world

Reference: this is the very best nail salon !i always see amanda

, her workmanship is out of this world !

CBART: this is my favorite nail salon intown! always clean,

friendly and the world amazing .

AutoTemplate: I have been going to this nail salon for over a year

now. they always do a great job, and the prices are out of this world .

Table 5: Example generations for the keywords-to-
sentence generation on Yelp.

constrained keywords.

Second, among the non-autoregressive base-
line models, CBART outperforms CGMH and
POINTER. This suggests that encoder-decoder-
based models such as CBART can produce higher-
quality text than decoder-only models such as
CGMH and POINTER.

Finally, AutoTemplate consistently outperforms
all the baselines on both datasets by a large margin
while keeping the success rate at 100% regardless
of the model size. This indicates that AutoTem-
plate could take advantage of both autoregressive
decoding and encoder-decoder models as described
above. We also confirm that using larger TS5 mod-
els consistently improves text generation quality
across all metrics.

Table 4 and 5 show qualitative examples of gen-
erated texts of CBART and AutoTemplate and hu-
man written reference. The examples show that the
AutoTemplate generates long and fluent sentences
while the CBART tends to generate short text in
Table 4 or non-fluent text in Table 5.

3.2 Entity-guided Summarization

Automatic text summarization distills essential in-
formation in a document into short paragraphs,
but different readers might want to know differ-

ent things about specific entities, such as people
or places. Thus, one summary might not meet
all readers’ needs. Entity-guided summarization
aims to generate a summary focused on the enti-
ties of interest. This experiment demonstrates that
AutoTemplate can produce summaries that satisfy
lexical constraints, even under complex entity con-
ditioning.

Dataset We use CNNDM dataset (Hermann et al.,
2015) and XSum dataset (Narayan et al., 2018)
for the experiment. We simulate the entity-guided
summarization setting by providing the oracle en-
tity sequence from the gold summary as lexical
constraints. Specifically, we use stanza, an off-
the-shelf NER parser (Qi et al., 2020), to parse
the oracle entity sequence from the gold summary
to create entity-guided summarization data. As
summarized in the statistics in Table 3 and more
detailed entity distributions in Figure 2, the CN-
NDM dataset tends to have more entities than the
XSum dataset. Note that one instance in the test set
of the CNNDM dataset has a 676-word reference
summary with 84 oracle entities, which is difficult
to deal with large pre-trained language models, so
we excluded it from the success rate evaluation.

Baselines We used competitive models as base-
lines, including fine-tuned BART (Lewis et al.,
2020) and CTRLSum (He et al., 2022). Similar
to AutoTemplate, CTRLSum further conditions
the input with lexical constraints and generates the
output. The difference is that CTRLSum directly
generates the output text, while AutoTemplate gen-
erates the corresponding template.

Model We use the same training configurations
to instantiate the model used in the keywords-to-
sentence generation task. To build the training
dataset, we use the masked gold summary by the
oracle entity sequence as the output template 3
as described in §2, At inference time, we use the
oracle entity sequence and the source document as
input to generate the template and post-process to
produce the output summary.

Metrics We evaluate the entity-guided summa-
rization performance using F1 scores of ROUGE-
1/2/L (Lin, 2004),” BERTScore (Zhang et al.,
2020a),® and the success rate of entity constraint
satisfaction. Note that our evaluation protocol for

"https://github.com/pltrdy/files2rouge
8https://github.com/Tiiiger/bert_score



Model CNNDM XSum
R1 R2 RL BS SR R1 R2 RL BS SR

reported results

BART (Lewis et al., 2020) 4424 2125 41.06 0.336 - 45.14 2227  37.25 - -

CTRLSum (He et al., 2022) | 48.75 2598 4542 0422 - - - - - -
our implementation

BART (Lewis et al., 2020) 4420 2128 41.02 0358  26.12 | 4421 2093 3518 0510  46.69

CTRLSum (He et al., 2022) | 47.57 2556 4430 0437 7546 | 50.07 2673 4090 0.581 86.32
AutoTemplate .

w/ T5-base 51.02 27.59 47.85 0441 100. 5049  28.19 43.89 0.591 100.

w/ T5-large 52.56 2933 4938  0.465 100. 52.65 30.52 46.19 0.614 100.

Table 6: Results of entity-guided summarization with oracle entities on CNNDM and XSum datasets. R1/2/L
denotes ROUGE-1/2/L, BS denotes BERTScore, and SR denotes the success rate of lexical constraint satisfaction.

Bold-faced and underlined denote the best and second-best scores respectively.
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Figure 2: Distribution of the number of oracle enti-
ties. The CNNDM dataset (left) tends to have longer
summaries and contains more entities than the XSUM
dataset. As the number of entities increases, it becomes
more and more difficult to include all the entities in the
generated summary.

the success rate of entity constraint satisfaction is
different and more difficult than in previous stud-
ies. (Fan et al., 2018; He et al., 2022). While the
previous studies measure whether a single speci-
fied entity is included in the generated summary,
this study measures whether all oracle entities are
included.

Results Table 6 shows the results of entity-
guided summarization. CTRLSum and AutoTem-
plate show improvements in summarization per-
formance compared to the standard BART model,
indicating that entity guidance contributes to the
improvement in summarization performance.

On the other hand, while AutoTemplate always
satisfies entity constraints, CTRLSum shows a con-
straint satisfaction success rate of 75.46% for CN-
NDM and 86.32% for XSum, characterizing the
difference between AutoTemplate and CTRLSum.
As shown in Figure 3, while CTRLSum shows a
high success rate when the number of entity con-
straints is limited, the success rate decreases mono-
tonically as the number of constraints increases. In
contrast, the AutoTemplate showed a 100% success
rate regardless of the number of entity constraints

CNNDM XSum

100- -

~
o
1
1

Success Rate
N [$)]
[$)] o
] ]
! !

0, -
DIENEDEOEAEON 1
As
@ Q0 Qo g0 g2 <
# of entities

# of entities

Figure 3: Success rate of entities included in the gen-
erated summary at a different number of entities. The
green line denotes the BART model (Lewis et al., 2020),
the orange line denotes the CTRLSum model (He
et al., 2022), and blue line denotes AutoTemplate model.
These graphs show that CTRLSum can include a lim-
ited number of entities in summary with a high chance.
However, it becomes more and more difficult as the
number of entities increases, while AutoTemplate al-
ways satisfies the constraint.

and the highest summarization quality.

Table 7 shows the qualitative examples of the
generated summaries by CTRLSum and AutoTem-
plate. While CTRLSum could only include 10 of
the 18 constraint entities in the generated summary,
AutoTemplate covered all entities and generated a
fluent summary.

We also show the generated summaries with dif-
ferent entity conditioning by AutoTemplate in Ta-
ble 8. We confirmed that AutoTemplate can pro-
duce summaries with a different focus using differ-
ent entity conditioning and can also include con-
straint entities in the generated summary.

4 Analysis

Does AutoTemplate generate fluent text? Au-
toTemplate decomposes the lexically constrained
text generation task into template generation and
lexicalization tasks. The template generation task



Constrained Entities: { Amir Khan , Manny Pacquiao , Abu Dhabi , UAE , Khan , Floyd Mayweather Jr ,
Las Vegas , PacMan , Bob Arum , UAE , Khan , Muslim , Brit , the Money Man , PacMan , Khan , Chris Algieri , New York }

CTRLSum (He et al., 2022): Amir Khan could face Manny Pacquiao in Abu Dhabi , UAE . Khan has been linked with a fight with Floyd Mayweather Jr
in Las Vegas . The PacMan ’s promoter Bob Arum is keen for a fight in the UAE .

AutoTemplate: Amir Khan could face Manny Pacquiao in Abu Dhabi , UAE . Khan is preparing to face Floyd Mayweather Jr in Las Vegas on May
2. PacMan ’s vintage promoter Bob Arum has to hand a treasure trove of an offer for a fight in the UAE this November or December. Khan is a hero of the

Muslim world, the Brit would be a huge attraction there. Assuming that the Money Man wins his interim bout with PacMan next month, all that would

appear to stand between him and his long-awaited mega-fight is the outside chance of a re-match. Khan is set to fight Chris Algieri in New York next month.

Table 7: Qualitative comparisons between CTRLSum and AutoTemplate. Constraint entities are extracted from
the reference summary (oracle entities). Underlined entities are missed by the CTRLSum (He et al., 2022) while
AutoTemplate can incorporate them into the generated summary.

Constraint Entities: { Game Boy , Apple , Chris Gallizzi , Nintendo }

AutoTemplate: Case adds iconic Game Boy buttons to Apple handset. It also lets gamers play their existing cartridges on their handset. Developer

Chris Gallizzi said: "We wanted to create a retro device that can be easily adapted into any modern gamer’s arsenal of devices’ Nintendo advised keeping
cartridges away from dust, where possible, to avoid gameplay glitches.

Constraint Entities: { Hyperkin , Nintendo , Game Boy Color , Start and Select }

AutoTemplate: Hyperkin has designed a case that adds the iconic directional arrows from the Nintendo Game Boy Color . It was originally devised as part of
an April Fool’s joke, but the popularity and demand for a real product was so high the firm has announced plans to sell it. It will feature an eight-way D-pad, two
action buttons, a Start and Select button, and a battery that can be charged through the phone.

Table 8: Examples of controlled summary generation by changing constraint entities. By conditioning with different
entities, the model can generate summaries with different points of interest for the same source article.

aims to produce unnatural text with placeholders, toTemplate shows similar fluency with the state-

leading to concerns that the final output text willbe  of-the-art autoregressive text generation models,

less fluent than the directly generating natural text.  including BART and CTRLSum, indicating that
To this end, we compare the fluency of the out-  the AutoTemplate can generate as fluent text as the

put text by AutoTemplate and baselines. We specif-  state-of-the-art direct generation models.

ically used the grammatical acceptability classi-

fier based on roberta-large fine-tuned on CoLA

dataset (Warstadt et al., 2019) following Krishna portance of TS pre-training for AutoTemplate, we
et al. (2020)° and show the micro averaged accu- performed ablation studies using a randomly ini-
racy of sentence-level grammaticality.]o tialized model. As shown in Table 9, we con-

We show the results in Table 10. For the firmed that the model with pre-training significantly

keywords-to-sentence generation task, AutoTem- improves the quality of gel-lerated tex.t in I?Oth
plate shows better fluency scores than the CBART keyword.s—to.—sentence generation and entity-guided
model, characterizing the differences between summarization casces. Note that the key\.w.)r.ds.-to—
CBART and AutoTemplate. While CBART re- s‘entence generation model with random 11.11t1ahza—
lies on the non-autoregressive models, which leads tion gene.rally produced better text q}lahty tl?an
to non-fluent text generation, AutoTemplate can the baseline rpodel, CBARTT confirming the im-
be implemented on top of autoregressive models. portance of using autoregressive models.
Thus, AutoTemplate can generate more fluent out-
put text.

For the entity-guided summarization task, Au-

Importance of Pre-training To evaluate the im-

Are unique placeholders needed? Throughout
this study, we assumed the unique placeholder to-
kens according to the order of appearance, i.e., <X>,
" Onttps://huggingface.co/cointegrated/ <Y> and <Z>, so we investigate the importance of
roberta-large-cola-krishna2020 this design choice. We show the performance of
_ 10Although we can also measure fluency .using the perple.:x— AutoTemplate with a single type of placeholder
ity of an external language model, it can assign low perplexity token (i.e., <X> for all placeholders in the template

to unnatural texts containing common words (Mir et al., 2019). N - )
Therefore, we decided to evaluate fluency using the classifier. ~ ¢) in Table 9. We observed a significant drop in
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Keywords-to-Sentence Generation Entity-guided Summarization
One-Billion-Word Yelp CNNDM XSum
B2 B4 N2 N4 M B2 B4 N2 N4 M R1 R2 RL BS R1 R2 RL BS
AutoTemplate 183 7.6 339 345 16.0|23.7 108 3.62 3.76 17.8|51.02 27.59 47.85 0441|5049 28.19 43.89 0.591
w/random init | 17.0 6.5 3.23 327 156|224 9.8 342 354 17.6|3838 1191 3506 0.210|39.51 1584 32.07 0412
w/ single mask | 16.6 59 3.15 3.19 150|159 52 286 292 13.8|48.05 24.53 44.69 0.387 | 45.67 23.07 39.31 0493

Table 9: Ablation studies for keywords-to-sentence generation and entity-guided summarization tasks using T5-
base checkpoints. B2/4 denotes BLEU-2/4, N2/4 denotes NIST-2/4, M denotes METEOR-v1.5, R1/2/L denotes

ROUGE-1/2/L, and BS denotes BERTScore.

Fluency (%) Keywords-to-Sentence

One-billion-words Yelp
CBART (He, 2021) 94.42 93.95
InstructGPT (Ouyang et al., 2022) 96.57 96.94
AutoTemplate 97.05 98.15
Reference 97.25 90.77

Fluency (%) Entity-guided summarization

CNNDM XSum
BART (Lewis et al., 2020) 96.77 98.88
CTRLSum (He et al., 2022) 96.68 99.01
AutoTemplate 96.38 98.91
Reference 91.55 98.73

Table 10: Results of fluency evaluations by the accept-
ability classifier trained on CoLA dataset (Warstadt
et al., 2019).

the quality of the generated text for both keywords-
to-sentence generation and entity-guided summa-
rization tasks, suggesting the importance of using
unique placeholder tokens in the template.

5 Further Related Work

Template-based Text Generation For classical
text generation systems, templates were an impor-
tant building block (Kukich, 1983; Tanaka-Ishii
et al., 1998; Reiter and Dale, 2000; Angeli et al.,
2010). The advantage of a template-based system
is that it can produce faithful text, but it can pro-
duce disfluent text if an inappropriate template is
selected. Therefore, the current primary approach
is to produce fluent text directly from the input
using end-to-end neural generation models.

More recent studies have focused mainly on us-
ing templates as an auxiliary signal to control the
stylistic properties of the output text, such as deriv-
ing templates as latent variables (Wiseman et al.,
2018; Li and Rush, 2020; Fu et al., 2020) and using
retrieved exemplars as soft templates (Cao et al.,
2018; Peng et al., 2019; Hossain et al., 2020).

Copy mechanism The copy mechanism was
originally introduced to deal with the out-of-
vocabulary problem in machine translation by se-

lecting the words from the source for the generation
in addition to the vocabulary, such as the unknown
word replacement with post-processing (Jean et al.,
2015; Luong et al., 2015), and the joint modeling of
unknown word probabilities into encoder-decoder
models (Gu et al., 2016; Gulcehre et al., 2016), but
with the advent of subword units (Sennrich et al.,
2016; Kudo, 2018), the unknown word problem has
been diminished. Thus, the copy mechanism is not
widely used now for handling out-of-vocabulary
problems.

However, the copy mechanism still plays a vital
role in more complex text generation tasks such
as involving numerical computation (Murakami
et al., 2017; Suadaa et al., 2021) or logical rea-
soning (Chen et al., 2020). Specifically, they
produce special tokens that serve as placeholders
and replace them with the desired words in post-
processing. AutoTemplate adapts a similar copy
mechanism to perform lexically constrained text
generation, showing that it can cover all the con-
strained entities in its outputs, even for more com-
plex conditioning (more than ten entities).

6 Conclusions

This study proposes AutoTemplate, a simple yet
effective framework for lexically constrained text
generation. The core idea is to decompose lexically
constrained text generation into two steps, template
generation, and lexicalization, by converting the
input and output formats. The template generation
can be done with standard encoder-decoder mod-
els with beam search so that AutoTemplate can
perform lexically constrained text generation with-
out using dedicated decoding algorithms such as
non-autoregressive decoding and constrained beam
search. Experimental results show that the Au-
toTemplate significantly outperforms the competi-
tive baselines across keywords-to-sentence genera-
tion and entity-guided summarization tasks while
satisfying the lexical constraints.



7 Limitations

This study proposes a method to perform hard lexi-
cally constrained text generation and shows that our
proposed method could generate high-quality text
in terms of the automatic evaluation metrics while
satisfying the lexical constraints, but this does not
guarantee the faithfulness of generated text. For
example, in the summarization task, our method
does not directly generate entities prone to errors,
so the risk of generating summaries with unfaithful
entities to the input text could be lower than exist-
ing methods. Still, the risk of generating unfaithful
text in other areas remains. For the evaluation, we
didn’t have LLM-as-a-judge due to the budget con-
straint even though it shows a high correlation with
human judgment (Liu et al., 2023; Wu et al., 2024).
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Abstract

Opinion summarization research has primar-
ily focused on generating summaries reflect-
ing important opinions from customer reviews
without paying much attention to the writing
style. In this paper, we propose the stylized
opinion summarization task, which aims to
generate a summary of customer reviews in
the desired (e.g., professional) writing style.
To tackle the difficulty in collecting customer
and professional review pairs, we develop a
non-parallel training framework, Noisy Pair-
ing and Partial Supervision (Maza ¥ ), which
trains a stylized opinion summarization sys-
tem from non-parallel customer and profes-
sional review sets. We create a benchmark PRO-
SUM by collecting customer and professional
reviews from Yelp and Michelin. Experimental
results on PROSUM and FewSum demonstrate
that our non-parallel training framework con-
sistently improves both automatic and human
evaluations, successfully building a stylized
opinion summarization model that can gener-
ate professionally-written summaries from cus-
tomer reviews. !

1 Introduction

Opinion summarization, which focuses on automat-
ically generating textual summaries from multiple
customer reviews, has received increasing attention
due to the rise of online review platforms. Different
from single-document summarization tasks (e.g.,
news summarization), which can easily collect a
large amount of document-summary pairs, manu-
ally creating summaries from multiple reviews is
expensive; it is not easy to collect large-scale train-
ing data for opinion summarization. To address this
challenge, existing studies build pseudo-reviews-
summary pairs in a self-supervised fashion (Chu
and Liu, 2019; Amplayo and Lapata, 2020; Suhara

* Work done while at Megagon Labs.
'The code is available at https://github.com/
megagonlabs/napa

Xiaolan Wang*
Meta Platforms, Inc.

xiaolan@meta.com
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Customer reviews:

e The staff is welcoming, and the food is absolutely
delicious.

o | like this sushi restaurant the best!

e The space is small yet inviting and comfortable.

Conventional opinion summary: (&
This is a great place to eat. The staff is very friendly.

Stylized opinion summary:

The staff is upbeat, and the room is attractively
minimal in design, but what really stands out here is
the adoration of this little sushi-ya's devoted clientele.

Figure 1: Comparison of conventional and stylized opin-
ion summarization. Given multiple reviews as input,
stylized opinion summarization aims to generate a sum-
mary in the desired writing style.

et al., 2020; Amplayo et al., 2021; Iso et al., 2021)
or use a small amount of reviews-summary pairs in
a few-shot manner (BraZinskas et al., 2020a; Oved
and Levy, 2021; Iso et al., 2022) to train opinion
summarization models.

However, existing opinion summarization sys-
tems have focused on summarizing important opin-
ions in reviews while not paying much attention to
the writing style. They leverage customer reviews
as pseudo summaries to train models, which gen-
erate summaries in the same writing style as the
customer reviews as illustrated in Figure 2. On the
other hand, professional reviews, such as Michelin
Guide—a prestigious and popular restaurant guide,
use a quite different writing style to describe the
same type of information.

In this paper, we aim to fill this gap between cus-
tomer and professional reviews by proposing a new
branch of opinion summarization—stylized opin-
ion summarization, where the goal is to generate a
summary of opinions in the desired writing style.
Specifically, besides customer reviews, as the input
to the conventional opinion summarization task, we
use a few example summaries in the desired writing

Proceedings of the 17th International Natural Language Generation Conference, pages 13-23
September 23-27, 2024. ©2024 Association for Computational Linguistics
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(a) Noisy Pairing: Given the candidate summary y, the pairs
of noisy input reviews and output summary, (X’,y), are built
by retrieving the input reviews from a set of reviews from an
arbitrary entity. This example retrieves the reviews from a steak
restaurant given the professionally written summary of a sushi
restaurant.
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(b) Partial Supervision: After building a noisy input-output
pair, we obtain the token-level alignment between the pair
based on the word, stem, and synonym matching. Finally, we
introduce indicator functions J, into the standard negative log-
loss function £ to train using only aligned tokens, highlighted
in green.

Figure 2: Overview of our non-parallel training framework, Noisy Pairing and Partial Supervision.

style as auxiliary information to guide the model in
learning the writing style. Since a few summaries
in the desired writing style may not cover the same
entities (e.g., restaurants) as the customer review
set, the two review sets for the stylized opinion
summarization task are non-parallel, which makes
the task more challenging.?

To this end, we develop a non-parallel training
framework, Noisy Pairing and Partial Supervision
(Magza® ), which builds a stylized opinion sum-
marization model from non-parallel customer and
professional review sets. The core idea consists of
two functions: Noisy Pairing (§4.1) creates pseudo
“noisy” reviews-summary pairs forcibly for each
summary in the desired writing style by obtaining
input reviews similar to the summary. Then, Partial
Supervision (§4.2) trains a model with the collected
noisy pairs by focusing on the sub-sequence of the
summary that can be reproduced from the input re-
views while not learning to hallucinate non-existing
content. Figure 2 illustrates the two functions. In
this example, for a professionally-written review of
a sushi restaurant, Noisy Pairing finds reviews of a
steak restaurant as noisy source reviews, which are
then partially used by Partial Supervision to train a
stylized opinion summarization model.

We also create and release a benchmark for
stylized opinion summarization named PROSUM,
which consists of 700 paired Yelp reviews and
Michelin point-of-views. Experimental results on
PROSUM confirm that Maza ¥ successfully gener-
ates summaries in the desired writing style in a
non-parallel training setting, significantly better
than models trained by self-supervision and exist-
ing non-parallel training methods.

*We will also evaluate the parallel setting later.
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We further performed additional experiments
using existing supervised opinion summariza-
tion benchmarks, FewSum (BraZinskas et al.,
2020a), in a non-parallel setting. We observed
that Maza® brings significant gains over self-
supervised systems and competitive performance
with state-of-the-art supervised systems, indicating
the generalizability of the proposed method.

2 The PROSUM Corpus

Data Collection We build a stylized opinion sum-
marization dataset, PROSUM, which pairs customer
reviews and professional reviews about the same
restaurant, as we need customer reviews as the in-
put and a professional review as the summary for
evaluation purposes.

We first collected 700 professionally-written
restaurant reviews from guide.michelin.
com, a famous restaurant review site. Unlike
crowd-sourced opinion summaries, these reviews
are written by professional writers. Thus, they in-
clude more appealing expressions and attractive
information than crowd-sourced summaries. Then,
we collected customer reviews from a popular cus-
tomer review platform, yelp.com, by asking
crowdsourced workers from Appen’ to find the
same restaurant for each of the restaurants we col-
lected in the first step. We collected up to 5,000
customer reviews for each restaurant.

Filtering Since our main focus is to create a styl-
ized opinion summarization benchmark and thou-
sands of input reviews cannot be handled by most
pre-trained language models, we filtered source
customer reviews to reduce the number of input

*https://appen.com/



‘ Srclen. Tgtlen. ‘

% of novel n-grams in gold summary

Extractive oracle

Unigram Bigram  Trigram 4-gram ‘ R1 R2 RL
PROSUM (ours) | 11627 139.7 | 38.19 84.76 97.17 99.18 | 42.97 1099 22.59
Yelp (Brazinskas et al., 2020a) 4533 58.02 31.71 83.02 95.53 98.35 | 4779 1528 25.84
Amazon (Brazinskas et al., 2020a) | 446.2 56.89 31.62 82.32 95.84 98.60 | 4631 1427 2544

Table 1: Statistics of PROSUM and FewSum Yelp/Amazon benchmarks. PROSUM has a longer source and target
length compared to the FewSum benchmarks and offers more abstractive summaries with respect to the novel
n-gram ratio. The source and target length is the number of BPE tokens per example using the BART tokenizer.

reviews to a size that can be handled by commonly
used pre-trained language models.

For each reviews-summary pair, we selected
source Yelp reviews so that the coverage of the tar-
get Michelin review was maximized. Specifically,
we used the sum of the ROUGE-1/2 Recall scores
between the selected source Yelp reviews and the
target Michelin review to measure the coverage.
We incrementally added source reviews until the
total length exceeded 1,024 words to maximize the
coverage in a greedy manner. On average, 6.7 input
reviews were selected for each pair. This selection
step is to ensure the target Michelin summary can
be created by source Yelp reviews.

Finally, we shuffled the selected source reviews
to remove the selection order bias. The final bench-
mark consists of 100/100/500 entities for the train-
ing/validation/test set. Note that we keep parallel
data (i.e., reviews-summary pairs) in PROSUM for
evaluation and for training supervised models. For
Naga % or other non-parallel training models, we
remove source reviews from the training set.

Statistics We summarize the PROSUM dataset
and compare it with existing opinion summariza-
tion datasets in Table 1. We calculate novel n-
grams in gold summaries to evaluate how abstrac-
tive/extractive PROSUM is and the performance of
the extractive oracle summaries from the source
reviews. We confirm that the PROSUM is more
abstractive than the existing benchmarks. The ex-
tractive oracle performance supports the feasibility
of stylized opinion summarization in PROSUM.

3 Self-supervised Opinion Summarization

This section describes the standard self-supervised
framework for conventional opinion summariza-
tion and then the pseudo-reviews-summary pair
construction approach (Elsahar et al., 2021), which
is also used as the pre-training method in §5.
Opinion summarization is a multi-document
summarization problem that aims to generate a
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textual summary text y that reflects the salient opin-
ions given the set of reviews X = {z1,...,2n}.
Due to the unavailability of a sufficient amount of
reference summaries for training, a commonly used
approach is to create a pseudo-reviews-summary
training pair (X, ) from a massive amount of re-
views and trains an opinion summarization model
Dp using negative log-loss minimization,

L =—logps(§|lX) = = log py(iie|j<t, X).
t

Pseudo reviews-summary pairs construction
Let R denotes the set of reviews for specific entity
e such as a restaurant. For each set of reviews R,
we treat a review in this set as a pseudo summary
1 € R. and then retrieve the relevant reviews to
build a source set of reviews X' Concretely, given
a pseudo summary g, retrieve the source set of N
reviews X by maximizing the sum of the similarity

as follows:
arg max Z sim(z, 3),
XCRMINIX[=N oy

X =

where similarity is measured by the cosine similar-
ity of the TF-IDF vector. This operation is applied
to all reviews as pseudo summaries. Then the top-
K pseudo-reviews-summary pairs with the highest
similarity scores ) _ ¢ sim(z,7) are retained as
the final pseudo-training set {(X;, %) }1< ;.

4 /Va/zw'

Although pseudo-reviews-summary pairs creation
has been one of the solid approaches for conven-
tional opinion summarization, we cannot directly
use it for stylized opinion summarization, as there
are two sets of non-parallel reviews in different
writing styles.

This section describes a non-parallel training
framework for stylized opinion summarization,
Noisy Pairing and Partial Supervision (Napa® ),
which trains a summarization model from non-
parallel customer and professional review sets.



4.1 Noisy Pairing

Noisy Pairing expands the existing pseudo-reviews-
summary construction approach to create “noisy”
reviews-summary pairs for each summary in the
desired writing style by obtaining input reviews
similar to the summary.

To leverage the desired style of summary y for
the entity e, which is not paired with the set of
reviews for the same entity R., we first build the
noisy reviews-summary pairs. Specifically, given
the summary y for entity e, we follow the pseudo
data construction approach (§3) to construct the
source set of reviews, but we retrieve the reviews
from the different entity €’ (# e) with the summary:

X' = argmax E sim(z, y).
XCR.,|X|=N Ty

For instance, given a summary of a sushi restau-
rant, we can use reviews of a steak restaurant to
construct a noisy reviews-summary pair as illus-
trated in Figure 2. Then, using the similar approach
used in the pseudo data construction, we obtain the
final noisy training set {(X”,%)}. In particular, the
top 10 noisy reviews-summary pairs of the highest
similarity score are retained for each summary.

Note that this method could unintentionally se-
lect the review of the correct entity as input (i.e.,
€/ = e), so in our experiments, we explicitly dis-
carded the review of the entity used in summary to
maintain the non-parallel setting.

4.2 Partial Supervision

With the noisy pairing method described above, we
can build noisy reviews-summary pairs {(X’, )},
but obviously, a model trained with these pairs will
generate unfaithful summaries. However, even in
such noisy reviews-summary pairs, there would
be sub-sequences of the summary ¥ that could be
generated from noisy input reviews X

To implement this intuition into the training, we
first compute the token-level alignment between a
noisy set of reviews X’ and summary ¥, and then
introduce the indicator function J; inside of the
standard log-loss function to ignore the unaligned
tokens during the training:

L'=="dlogpy(yely<s, X'),
t

where the alignment function J; will be 1 if the
token g is aligned with the noisy source reviews
X and otherwise 0O as illustrated in Figure 2b. This
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allows for using aligned words, such as the style
and expressions used in the summary, as a training
signal without increasing the likelihood of halluci-
nated words.

For the alignment function, we use word-level
matching between the source and target reviews.
Since professional writers have a rich vocabulary,
which contains words that rarely appear in cus-
tomer reviews, we implement word stem matching
and synonym matching (e.g., serene ~ calm) to
increase the coverage in Partial Supervision. We
discuss the design choice of the alignment function
in §6.3.

5 Evaluation

We use PROSUM and an existing opinion summa-
rization benchmark FewSum (BraZinskas et al.,
2020a) to verify the effectiveness and generaliz-
ability of Mapaw. For FewSum, we discarded
the source reviews from the training dataset to con-
vert FewSum into a stylized opinion summarization
benchmark (i.e., in the non-parallel setting).

5.1 Settings

Training Data For non-parallel training, we first
pre-train a self-supervised opinion summariza-
tion model using pseudo-reviews-summary pairs
(§3). Then, we fine-tune it using noisy reviews-
summary pairs using Maza® (§4). Therefore, we
need two sets of pseudo-reviews-summary pairs
for self-supervised pre-training and noisy reviews-
summary pairs for Maza ™ .

As PROSUM does not contain customer reviews
for training, we use the Yelp review dataset*, which
has 7M reviews for 150k entities, to collect reviews-
summary pairs for PROSUM dataset. We discarded
all the entities used in the Michelin reviews in PRO-
SUM to avoid unintentionally selecting the same
entity for Noisy Pairing. Then, we excluded enti-
ties that do not satisfy the following criteria: (1) in
either the restaurant or food category; (2) the
rating is higher than 4.0/5.0 on average. Then, we
filtered reviews with 5-star ratings. Finally, we dis-
carded entities that have less than ten reviews. After
this pre-processing, we built 100k pseudo-reviews-
summary pairs and 1k noisy reviews-summary
pairs for self-supervised pre-training and Napza ™ ,
respectively. The pre-processing method for the
FewSum dataset is described in Appendix.

‘https://www.yelp.com/dataset



Model We instantiate our summarization mod-
els using the Transformer model (Vaswani et al.,
2017) initialized with the BART-1arge check-
point (Lewis et al., 2020) in the transformers
library (Wolf et al., 2020). We used AdamW op-
timizer (Loshchilov and Hutter, 2019) with a lin-
ear scheduler and warmup, whose initial learning
rate is set to le-5, and label smoothing (Szegedy
et al., 2016) with a smoothing factor of 0.1. We
tested three configurations: (1) the full version,
(2) without Partial Supervision, and (3) without
Noisy Paring and Partial Supervision—the self-
supervised base model trained only using pseudo-
review-summary pairs.

5.2 Baselines

For the main experiment on PROSUM, we com-
pared the state-of-the-art opinion summarization
system (BiMeanVAE) and two text-style transfer
models (Pipeline and Multitask). We also evalu-
ated the upper-bound performance of Napza® by
using the parallel training dataset, where the cus-
tomer and professionally written reviews for the
same entity are correctly paired (Supervised upper-
bound). For the FewSum dataset, we compared
various opinion summarization models, including
self-supervised models and supervised models that
use parallel training data, to verify the performance
of our non-parallel training framework. The details
can be found in Appendix.

BiMeanVAE: BiMeanVAE (Iso et al., 2021) is
a self-supervised opinion summarization model
based on a variational autoencoder. We further fine-
tune this model using Michelin reviews to generate
summaries with the desired style.

Pipeline: We combine a self-supervised opin-
ion summarization model and text style transfer
model to build a two-stage pipeline. For the self-
supervised model, we use the same self-supervised
base model as Mazaw . For the text style trans-
fer model, we use STRAP (Krishna et al., 2020),
which uses inverse paraphrasing to perform text
style transfer using Yelp and Michelin reviews in
the non-parallel setting.

Multitask: We use a multi-task learning frame-
work, TitleStylist (Jin et al., 2020), which combines
summarization and denoising autoencoder objec-
tives to train a summarization model that generates
summaries in the desired writing style. In the ex-
periment, we use Yelp pseudo-reviews-summary
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pairs (Michelin reviews) for the summarization (de-
noising) objective.

5.3 Automatic Evaluation

We use the F1 scores of ROUGE-1/2/L (Lin, 2004)>
and BERTScore (Zhang et al., 2020)° for reference-
based automatic evaluation. Additionally, we cal-
culate the CTC score (Deng et al., 2021) to evalu-
ate the consistency and relevance of the generated
summaries. The consistency score is measured by
the alignment between the source reviews and the
generated summary based on the contextual em-
bedding similarity; the relevance score is measured
by the alignment between the generated summary
and the reference summary multiplied by the con-
sistency score. The contextual embeddings are
obtained from the roberta-large model.

ProSum Table 2 shows the main experimental re-
sults on PROSUM. The self-supervised model (i.e.,
Naga® wlo Noisy Pairing and Partial Supervision)
outperforms all the non-parallel baseline systems.
The comparison shows that Pipeline, which com-
bines the self-supervised model and STRAP, de-
grades the summarization quality. The result indi-
cates that it is not easy to achieve stylized opinion
summarization by simply combining a summariza-
tion model and a text style transfer model.

Napza® wio Partial Supervision improves the
summarization quality against the self-supervised
model while causing degradation in consistency be-
tween generated summaries and the source reviews.
This degradation is expected, as Noisy Pairing cre-
ates pseudo-reviews-summary by sampling reviews
from a different entity, only considering the simi-
larity against the pseudo-summary. We will discuss
this point in detail in §6.1.

Naga® substantially outperforms the baselines
for summarization quality and relevance while
maintaining the same level of consistency as the
best self-supervised model. This confirms that Par-
tial Supervision successfully alleviates the consis-
tency degradation caused by Noisy Pairing.

The experimental results demonstrate that both
Noisy Pairing and Partial Supervision are essential
to building a robust stylized opinion summarization
model, allowing the model to take advantage of
useful signals in the noisy reviews-summary pairs.

FewSum The experimental results on FewSum
in the non-parallel setting shown in Table 3 also ob-

Shttps://github.com/Diego999/py-rouge
®https://github.com/Tiiiger/bert_score



PrROSUM
R1 R2 RL BS  Consistency Relevance
Non-parallel baselines
Multitask (Jin et al., 2020) 2378 1.85 15.81 80.92 95.01 89.84
Pipeline (Krishna et al., 2020) 27.19 2.69 16.76 82.88 96.69 91.99
BiMeanVAE (Iso et al., 2021) 28.15 3.49 18.68 83.10 96.83 91.98
/Va,zw'
Full version 33.54 495 20.67 84.77 96.86 92.48
w/o Partial Supervision 31.64 396 18.90 84.15 96.09 91.80
w/o Noisy Paring and Partial Supervision | 28.19 3.43 17.60 83.49 96.88 91.92
Supervised upperbound 3450 5.770 20.64 84.96 97.23 92.96

Table 2: Experimental results on the PROSUM dataset. R1/2/L and BS denote the F1 scores of ROUGE-1/2/L and
BERTScore. Mapza ¥ gives substantial improvements over the baselines. We also confirm that Partial Supervision
successfully alleviates the consistency degradation caused by Noisy Pairing.

YELP AMAZON
R1 R2 RL R1 R2 RL

Self-supervised baselines

MeanSum (Chu and Liu, 2019) 2750 3.54 16.09 | 26.63 4.89 17.11

CopyCat (Brazinskas et al., 2020b) 28.12 5.89 18.32 | 27.85 4.77 18.86
Supervised baselines — Parallel training

FewSum (Brazinskas et al., 2020a) 3729 992 2276|3356 7.16 24.49

PASS (Oved and Levy, 2021) 3691 8.12 23.09 | 3743 8.02 2334

AdaSum (Brazinskas et al., 2022) 38.82 11.75 25.14 | 39.78 10.80 25.55

BART (our implementation) 39.69 11.63 2548 | 39.05 10.08 24.29
Naypea® — Non-parallel training

Full version 38.59 11.23 25.29 | 36.21 9.18 23.60

w/o Partial Supervision 37.41 10.51 24.18 | 3530 745 2192

w/o Noisy Pairing and Partial Supervision | 33.39 7.64 20.67 | 30.18 5.24 19.70

Table 3: Experimental results on the FewSum dataset (BraZinskas et al., 2020a). Maza® shows substantial
improvements over the self-supervised baselines. Note that the supervised baseline models were fine-tuned on the
parallel training data (i.e., annotated reviews-summary pairs), while Maza ® models were trained in the non-parallel

setting.

serve the substantial improvements by NMaza % over
the self-supervised systems. MNaza ¥ shows com-
petitive performance against state-of-the-art super-
vised systems, which use parallel training data for
training. The results further confirm that provid-
ing a small number of reference summaries in the
desired writing style, even if they are not paired
with input reviews, can help Maza ¥ train a solid
summarization model for stylized opinion summa-
rization.

5.4 Human Evaluation

We conducted human evaluations to compare
the performance of our model (Mazaw) with
three baselines: Self-supervision, Pipeline, and
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Naypa® without Partial Supervision (PS) on PRO-
SuM with respect to the fluency, relevance, and
attractiveness of the generated summary. We asked
human annotators recruited from Appen to rate gen-
erated summaries on a 4-point Likert scale for each
evaluation metric. We describe more details of the
human evaluation in Appendix.

Our findings from the results shown in Figure 3
are: (1) using professionally-written summaries
for training allows the model to generate more flu-
ent and attractive summaries than other baselines
(Mapea® and MNaza ™ w/o PS vs. Self-supervision
and Pipeline); (2) Masza ¥ without Partial Supervi-
sion tends to generate more irrelevant summaries
(MNapza® vs. MNapa® wio PS). Overall, our results
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Figure 3: Human evaluations of the fluency, relevance,
and attractiveness on PROSUM.

demonstrate the importance of using professionally-
written summaries for training to improve the flu-
ency and attractiveness of generated summaries
and the need for Partial Supervision to ensure the
relevance of generated summaries.

6 Analysis

6.1 Importance of Partial Supervision

The experimental results in Tables 2 and 3 show
that Masza® without Partial Supervision—just us-
ing noisy reviews-summary pairs—demonstrates
solid performance for reference-based automatic
evaluation metrics. This is a little bit counterintu-
itive, and this can be attributed to the positive effect
of early stopping against noisy training data (Arpit
etal., 2017; Li et al., 2020). To analyze this point,
we conducted an additional experiment by training
Napa® with and without Partial Supervision for
more training epochs.

Figure 4 shows the ROUGE-1 F1 score on the
validation set of PROSUM at different training
epochs of the Mapza ¥ model trained with or without
Partial Supervision (orange line and green line).
As shown in the figure, we find that in the very early
stages of training, both the models improve the
ROUGE scores. In the later stage, Mayza % without
Partial Supervision (green line) shows continuous
degradation, while Mayza % with Partial Supervision
(orange line) shows robust performance consis-
tently over the entire training process.

This observation is aligned with the literature
on noisy supervision, which shows that over-
parametrized models learn simple patterns in
the early stages of training and then memorize
noise (Arpit et al., 2017). On the other hand, it
is also known that early stopping is not sufficient
under labeling noise (Ishida et al., 2020). We ob-
served that Masza ¥ without Partial Supervision gen-
erated summaries that were less consistent with the
source reviews (Table 2) and contained more hal-
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Figure 4: ROUGE-1 F1 score on validation set of PRO-
SUM at different training stages. The orange line de-
notes the model trained with partial supervision (§4.2),
and the green line denotes the model trained without
partial supervision.

ROUGE-1 ROUGE-2 ROUGE-L
ProSum
20
325 5
30.0 4 18
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Is Pretrained? Is Pretrained? Is Pretrained?

Figure 5: Comparison of summarization quality with
and without pre-training. The blue line denotes the
model trained in a supervised setting, orange line de-
notes the model trained with partial supervision and
green line denotes the model trained without partial
supervision.

lucinations, as described in Appendix. The results
support the importance of Partial Supervision for
improving the robustness of the stylized opinion
summarization model in non-parallel training.

6.2 Pre-training with Self-supervision

As we observe that the self-supervised baseline
(i.e., Maza® w/o Noisy Pairing and Partial Supervi-
sion) shows solid performance in Table 2 and better
performance than the other self-supervised base-
lines in Table 3, we further investigated the effec-
tiveness of the pre-training using pseudo-reviews-
summary pairs (Self-supervision in §3) in the non-
parallel training. We conducted ablation studies for
the model trained with Partial Supervision (orange
line), without Partial Supervision (green line), and
supervised setting (blue line).

As shown in Figure 5, pre-training with self-
supervision in all the settings helps improve sum-
marization quality. The effect of pre-training is
the most remarkable in the non-parallel settings
(orange line and green line). This indicates that
while non-parallel training helps learn the desired
writing style for summary generation, it is diffi-
cult to determine what content to include in the



Reference based metrics Novel n-gram ratios
R1 R2 RL BS | Unigram Bigram Trigram Four-gram
Naja ®
No Partial Supervision (§; = 1 forall ¢) | 31.64 3.96 18.90 84.15 | 31.52 80.38 96.54 99.23
+ word match 32.88 4.77 19.98 84.50 12.78 64.10 91.63 97.69
+ word or stem match 3249 482 20.03 8445 13.23 66.60 92.27 97.94
+ word or stem or synonym match 33.54 495 20.67 84.77 15.54 67.19 92.24 97.75
Supervised upperbound ‘ 3450 5.70 20.65 84.96 ‘ 14.59 58.84 83.20 91.38

Table 4: Comparison of summaries generated with different alignment criteria; + word match is the strictest
alignment criterion; adding + stem and + synonym match allows for more relaxed alignment criteria allowing more
words to be used for training. As the alignment criteria are relaxed, more novel n-grams can be generated.

summary only from the noisy-reviews-summary
pairs. Therefore, we experimentally confirm the ef-
fectiveness of self-supervised pre-training for styl-
ized opinion summarization; self-supervision pre-
training teaches the model the basics of how to
summarize the content, and non-parallel training
introduces the model to write in the desired style.
The same analysis on the FewSum dataset can be
found in Appendix.

6.3 Choice of Token Alignment

As discussed in §4.2, the token alignment func-
tion should be carefully chosen to appropriately
align customer and professional reviews with dif-
ferent vocabularies. For example, the exact word
match should naively disregard semantically sim-
ilar words (e.g., serene and calm). Thus, we fur-
ther performed a comparative analysis of the token
alignment function. We compared Mapza ¥ with dif-
ferent variants of Partial Supervision that use: (1)
exact word matching, (2) stem matching, and (3)
synonym matching.

As shown in Table 4, No Partial Supervision
(first row) generates too many novel n-grams, indi-
cating significant hallucinations; it shows the worst
summarization performance. We confirm that the
model tends to generate more novel n-grams when
the alignment criterion is relaxed and also improves
summarization performance, suggesting that the
stem and synonym matching functions can suc-
cessfully consider semantically similar tokens to
incorporate into training without degradaging the
summarization performance.

7 Related Work

Opinion Summarization Due to the challenges
in collecting training data, many studies have de-
veloped unsupervised solutions for opinion summa-
rization systems (Chu and Liu, 2019; Amplayo and
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Lapata, 2020; Suhara et al., 2020; Iso et al., 2021;
Basu Roy Chowdhury et al., 2022). Recent studies
have explored few-shot learning approaches that
utilize a small number of review-summary pairs for
training (BraZinskas et al., 2020a; Oved and Levy,
2021; Iso et al., 2022).

Our technique falls in the middle of these two
approaches, as we do not use annotated reviews-
summary pairs for training while using a large num-
ber of customer reviews and a small number of pro-
fessional reviews as auxiliary supervision signals.

Text Style Transfer Text style transfer is a tech-
nique to rewrite the input text into the desired
style (McDonald and Pustejovsky, 1985). The pri-
mary approach for text style transfer is sentence-
level, which is used as our baselines (Pipeline (K-
ishna et al., 2020) and Multitask (Jin et al., 2020)).
Based on the observation that both Pipeline and
Multitask do not perform well for the stylized opin-
ion summarization task (in Table 2), we confirm
that applying sentence-level style transfer cannot
offer high-quality stylized opinion summarization
and it requires paragraph-level text style transfer,
which needs further exploration (Jin et al., 2022).

Noisy Supervision Learning statistical models
under labeling noise is a classic challenge in ma-
chine learning (Angluin and Laird, 1988; Natarajan
et al., 2013) and is an active research field because
of the increasing availability of noisy data (Han
et al., 2020; Song et al., 2022). Among the major
approaches for noisy supervision, the loss adjust-
ment approach is widely used in the NLP com-
munity, as it can be coupled with any type of
commonly used Transformer-based language mod-
els (Devlin et al., 2019; Brown et al., 2020)

In text generation, previous studies have at-
tempted to improve the model faithfulness by
treating hallucinated summaries as noisy supervi-



sion (Kang and Hashimoto, 2020; Fu et al., 2020;
Goyal et al., 2022). Our study is different from the
line of work in the sense that we combine noisy-
reviews-summary pairs and noisy supervision to
develop a non-parallel training framework for styl-
ized opinion summarization.

8 Conclusions

This paper proposes stylized opinion summariza-
tion, which aims to summarize opinions of input
reviews in the desired writing style. As parallel
reviews-summary pairs are difficult to obtain, we
develop a non-parallel training framework named
Noisy Pairing and Partial Supervision (Naza® );
it creates noisy reviews-summary pairs and then
trains a summarization model by focusing on the
sub-sequence of the summary that can be repro-
duced from the input reviews. Experimental results
on a newly created benchmark PROSUM and an ex-
isting opinion summarization benchmark FewSum
demonstrate that our non-parallel training frame-
work substantially outperforms self-supervised and
text-style transfer baselines while competitively
performing well against supervised models that use
parallel training data.

9 Limitations

We do not see any ethical issues, but we would
like to mention some limitations. This study in-
vestigates the use of a limited number of unpaired
desired summaries during training. We employ par-
tial supervision to reduce the risk of hallucination,
but there is still a potential to generate unfaithful
summaries. Thus, the model may generate incon-
sistent opinions with the source reviews. There is
also a trade-off between the quality and diversity
of our token-level alignment method. We decided
to use exact, stem, and synonym-based matching,
but these methods may introduce alignment errors,
leading to noisier training. For the annotation tasks,
we paid $0.96 for each summary for the crowd
workers on Appen. The estimated hourly wage on
the platform is $13.48 per hour. For the summary
evaluation, we only used token-level matching met-
rics, unlike LI.M-as-a-judge (Liu et al., 2023; Wu
et al., 2024).
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Abstract

The process of language generation, which se-
lects the most probable tokens one by one, may
intrinsically result in output strings that humans
never utter. We name this phenomenon “LLM ne-
ologism” and investigate it focusing on Japanese,
Chinese, and Korean languages, where tokens can
be smaller than characters. Our findings show
that LLM neologism occurs through the combina-
tion of two high-frequency words with common
tokens. We also clarify the cause of LLM neol-
ogism in the tokenization process with limited
vocabularies. The results of this study provides
important clues for better encoding of multibyte
characters, aiming to prevent catastrophic results
in Al-generated documents.

1 Introduction

The text generation capabilities of LLMs have been
improving year by year (Yin et al., 2023; Zhao
et al., 2023), and the sentences generated by LLMs
have become indistinguishable from those written
by humans. However, LLMs occasionally output
non-existent words. Although this is a rare phe-
nomenon, its occurrence is a clear indication of an
Al-generated sentence and thus should be avoided
as much as possible. In this paper, we name this
phenomenon LLM neologism and investigate it thor-
oughly. The phenomenon is a type of hallucination.
LLM tends to cause hallucination, in which infor-
mation that is not true is presented as if it were
true (Huang et al., 2023). Hallucination is divided
into various types (Rawte et al., 2023), but to the
author’s knowlegde, this type of hallucination is
that has not been adressed in any previous paper.
Figure 1 shows the notion of LLM neologism,

where a non-existent Japanese word “f£ & * is

generated. We call such a word a neo-word. In
languages where a single character can be split into
multiple tokens, such as Chinese, Japanese, and Ko-
rean, the generation of a neo-word is triggered by
the mutation of token sequences of two frequently-
used words. Additionally, the mixture of tokens

Training lﬁ
data (‘insurance’) i3 &
r A o . \ D UTF encode
O0xE4 OxBF 0x9D OxE9 0x99 % OxBA
tokenize
\L (‘guarantee) {% ;I:E D UTF encode
r T \
OxE4 OxBF Ox9D  OxE8 OxAB% 0xBC
LLM tokenize
4

2]

D detokenize

OXE4 OXBF OX9D, OXEQ 0x99  OXBC,
Y " TE
f b —

Figure 1: Overview of LLM neologism. In the predic-
tion of output token sequences, those derived from two
frequent words in the training data may be mutated. This
results in a peculiar word (neo-word) that has a neo-char
generated by the decoding of mixed byte codes.

corresponding to single byte codes can result in
the generation of an unexpected and rarely used
character, which we call a neo-char.

In Section 2, we discuss the mechanism under-
lying LLM neologism in more detail. In Section 3,
we explain the tokenization strategies in the exist-
ing LLMs, and in Section 4, we present our obser-
vation of LLM neologism in a systematic way. The
main contribution of this work are as follows:

* to define the LLM neologism phenomenon,
which to our knowledge is the first time this
phenomenon has been discussed.

* to artificially generate potential neo-words
based on our hypothesis and to enumerate ac-
tual instances in LLM generated texts or web
documents.

* to propose a tokenization strategy for CJK

languages with lower risk of LLM neologism.

2 Mechanism of LLM Neologism

In this section, we explain LLM neologism in an
inductive manner. LLM neologism can happen in
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Neo- Constituent words Similarity
word
R | % (‘work’) 0.94
132 (‘work attendance’) 0.87
* #1597 (‘labor’) 0.80
B | G (‘viewing’) 0.95
A (“vision”) 0.94
* FLFL (“visibility”) 0.81
T8 | B2 (‘sound’) 0.90
I8 (‘sound range’) 0.90
* 54 (“music’) 0.81

Table 1: Japanese neo-words and their constituent
words, shown with similarity scores from the neo-word
in Llama2 embeddings. Constituent words have higher
scores, compared with another word with * that appears
in a similar context.

any language during the LLM’s decoding process
when a word is generated from multiple tokens
that are smaller than words, but here, we focus
on the generation of a neo-word including a neo-
char generated by the mixture of multiple bytes in
Japanese, Chinese, and Korean.

Kanji characters in Japanese and Chinese, and
Hangul characters in Korean are represented by
three UTF-8 codes per character. Since the num-
ber of characters defined in the UTF code page'
is much larger than the vocabulary size of the tok-
enizers used in existing LLMs, a single character
is often divided into multiple tokens, as seen in the
second character in Figure 1.

Here, we set up a hypothesis that a neo-word
is generated from two frequent two-letter words
that share the first letter and tend to appear in
similar contexts. This explains the LLM neolo-
gism in Figure 1. In the process of generating “f#
B4 (‘insurance’), after outputting its first two to-
kens?, it is impossible to guarantee the prediction
of the code OxBA. Instead, another token OxBC,
derived from “f&FE"(‘guarantee’), can have higher
probability than OxBA, and this results in the gen-
eration of a neo-word that contains a neo-char.

Neo-words have been found on the web. A
blog post® reported that ChatGPT output gibberish
Japanese-like words that have never been seen be-
fore and that were subsequently used in a number

"https://www.charset.org/utf-8

These correspond to five bytes in the UTF-8 code.

3https ://okumuralab.org/~okumura/misc/230611.
html
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Tokenizer # in vocabulary

Model (BPE) Kanji | Hangul

GPT3.5 byte-level 549 129

Llama2 byte-fallback 701 111

Elyza byte-fallback 701 111

Elyzafast | OYetalback | ooas gy
+ ja token

Granite-ja byte-fallback 5663 409

Swallow-ja | YAk ogas 1y
+ ja token

Table 2: The number of single CJK characters in each
tokenizer’s vocabulary. Elyza, Elyza-fast, Granite-ja,
and Swallow-ja tokenizers are Llama2-based.

of websites. For every neo-word we found on the
web, we were able to identify the two constituent
two-letter words. Table 1 shows the results of mea-
suring the similarity between the neo-word and the
constituent words in the final layer of embedding
in Llama2 (Touvron et al., 2023). The neo-word
“H1%)” has similarity scores of 0.94 and 0.87 with
the two words “#) 7% (‘work’) and “EJ;2”(‘work
attendance’), and has a higher score than another
word “#[]55”(‘labor’) which has the same first kanji
character. This indicates that a neo-word has al-
ready been trained in the model, and as a result,
this neo-word is likely to be output incorrectly in
place of the two constituent words.

The generated neo-char can be a very infre-
quently used character, causing a reduction in the
naturality of the LLM output and a critical prob-
lem of being revealed as Al-generated. For this
reason, even if the rate of occurrence is not high, it
is important to prevent LLM neologism.

In the next section, we discuss the tokenizer prop-
erties that are related to the occurrence of LLM
neologism.

3 Tokenizers

In this section, we discusses the relationship be-
tween LLM neologism and the underlying tok-
enization process. The generation of neo-words
by a model depends on how characters are split—
specifically, on the tokenizer’s vocabulary. Many
LLMs, such as Llama2/3 (Al@Meta, 2024), and
GPT-3.5/4.0, use byte-pair-encoding (BPE) (Sen-
nrich et al., 2016) for tokenization.

GPT-3.5 has 782 tokens for single or double
bytes in its vocabulary, and Llama2 has 256 to-
kens for a single byte. The combination of these



Generated Generated text
Model
neo-word or web text
GPT Yes Web text
Llama2 Yes Web text
Elyza Yes Generated text
Elyza-fast No -
Granite No -
Swallow No -

Table 3: The presence of neo-words in 3,187 generated
texts and web texts in Japanese. Note that “No” does
not mean that neologism will never occur with that
tokenizer.

tokens represents multi-byte CJK characters that
are not covered in the vocabulary, as in the second
character in Figure 1.

Each tokenizer determines its vocabulary by se-
lecting frequent sequences of byte codes from its
own corpus, and thus, only limited numbers of CJK
characters are in its vocabulary. Table 2 lists the
number of single CJK characters in the vocabulary
for each model. Considering that there are more
than 100,000 Kanji and 11,172 Hangul characters
in the UTF-8 character set, GPT-3.5, Llama2, and
Elyza cover too small a number of CJK characters.
Other Japanese-aware models cover larger numbers
of characters. This difference is the key factor in
the emergence of LLM neologism, which will be
shown in the next section.

4 Replication of LLLM neologism

In this section, we list potential neo-words to de-
termine the occurrence of LLM neologism, and
discuss its relationship with the tokenization.

4.1 List potential neo-words

Here we describe the process of enumerating neo-
words by mixing two words to search for neo-words
in the actual LLM-generated texts. We generate
potential neo-words in Japanese, Chinese, and Ko-
rean. First, we have a list of two-character words
in Kanji or Hangul that are commonly used in
each language. In Japanese Kanji, we use BC-
CWIJ (Maekawa et al., 2014) frequency list. In Chi-
nese Kanji, we use BLCU Chinese Corpus: BCC
corpus of 15 billion characters (Xun, 2016). In
Hangul, we use Korean frequency list (National
Institute of the Korean Language, 2005).

From these lists, we extract word pairs with
word similarity of 0.4 or greater using FastText
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embedding (Grave et al., 2018). Potential neo-
words are then generated by mixing two words
considering the conditions described in Section 2.
The commonly used Kanji characters defined in
Japan (Japan, 2010) and China (the People’s Re-
public of China, 2013) are excluded from our po-
tential neo-chars since they are not prominently
identified.

4.2 Generate sentences

We investigate whether the various LLM outputs
contain neo-words. We used llama-2-7b-chat (Tou-
vron et al., 2023), elyza/ELYZA-japanese-Llama-
2-7b-instruct (Sasaki et al., 2023), ibm/granite-8b-
japanese, and tokyotech-1lm/Swallow-7b-hf (Fujii
et al., 2024) as models. Since LLM neologism
occurs rarely, we consider one of the hypotheses
mentioned in the previous section 2, namely that
the neo-word tends to appear in similar contexts
based on the source of the neo-word, then we gen-
erated sentences in which LLM neologism is likely
to occur.

To this end, we selected Wikipedia titles that con-
tain either of the two words that are the source of
the neo-word candidate, as collected in Section 4.1.
By having LLMs descrive the source words, LLM
neologism would be more likely to emerge in the
process than in normal contexts.

We created 3,187 responses using the follow-
ing prompt which means "Please tell me what you
know about <Wikipedia title> in Japanese, in as
much detail as possible":

Prompt: <wikipedia title>(Z D\ T
HoTWadZexHAGET,
IRBNLSGFULSHATLZEIW,

4.3 Outputs

Table 3 shows the occurrences of LLM neologism
by Japanese models based on our observation. In
the method described in Section 4.1, we explicitly
found a neo-word generated by Elyza. In addition,
we searched manually for the potential neo-words
on the Web, and identified neo-words generated
by the GPT and Llama2 models considering their
tokenizers’ vocabularies. Not that while we did
not identify neo-word generated by other models
(marked “No” in Table 3), this does not mean that
these models are theoretically free from LLM neol-
ogism.

The observed neo-words in a model tend to
be specific to its underlying tokenizer. For ex-



Lang | Neo-word Constituent words Sentence on web with neo-word
| B W, BTH TNENENEEEICE (R VBT 2 REN D 5.
(‘clear’), (“obvious’) (“This needs to be [?clearly] explained to foreign tourists.”)
i | A [l 78, [l AB2ICTY — MEAK 1ERNE,
(‘alumni’), (*same class’) (‘There was an elite [7alumni] at the reunion.”)
X3E X [R5 PRRIRALAHEZRE, MRREAEHE 26 .
| IR =5, .
(‘tough’), (‘firm”) (‘Being [ “strong] is not about how hard your muscles are,
it’s about how hard your spirit is.”)
h 3 A, AR RECEHR 17AE  (EER) 2 —RE-.
oy 13 D) 13 5
(‘tragic’), (‘tragedy’) (‘As for [*sadness), Lady Meng Jiang is a beautiful story.’)
_ N A= 185 o] oE BAZE S o] o] 73 E FolHl
. . sz sty [a]o?ﬂ]o}olﬁ 18] & Ztotut
0 == (‘class’), (‘school’) (‘In addition to [ school] activities, look for opportunities
to participate in volunteer activities.”)

Table 4: LLM neologism in three languages found on the web. Neo-words and their corresponding translations are
enclosed in square brackets. Note that neo-words in the original languages are inherently meaningless, and thus we
provide translations by filling with the more natural constituent word in the context (marked with ***).

ample, the Elyza model generated the neo-word

“X ¥, and we identified its constituent words

[TavA

(‘acoustics’) and “#F 3 (‘sound range”).
However, this neo-word never appeared in other
models such as GPT because its tokenizer splits the
two words into different numbers of tokens, and

37 SHR 9
H &

w7 &

=

ER]

thus they are not mixed into

We show examples of multilingual neo-words in
Table 4, which shows neo-words and the sentences
in which they appeared that actually existed on the
web, in the three languages*. The neo-words that
appeared on the web were used in contexts simi-
lar to the constituent words. All of the neo-chars
we found were the second letters of two-character
words. One possible reason for this is that LLM
generates sentences from the front, so the back
characters are easily mixed up. Many of the web
texts in which neo-words appeared could be im-
plicitly identified as having been written by Al
For example, neo-words appeared on websites with
“AI” in the title and on websites that stating that
they generate video summaries using AI. These
results indicate that LLM neologism occurs in var-
ious models. LLM neologism does not occur fre-
quently, but the appearance of neo-words in a real
document can raise the suspicion of readers that
they are potentially looking at Al-generated text.

4Some sentences were modified due to copyright issues.

27

4.4 Discussion

As we have seen, LLM neologism in CJK lan-
guages is caused by decomposition of a single char-
acter into multiple tokens. Tables 2 and 3 suggest
that the larger vocabulary size to cover more char-
acters avoids LLM neologism. It is difficult for
multilingual models to have larger vocabulary for a
specific language, and there is a trade-off between
small and large sets of vocabularies for tokeniza-
tion in terms of efficiency (Stollenwerk, 2023).

Currently, byte-level encoding, rather than
character-level encoding is a feasible approach for
multilingual tokenization because of its simplicity
(Mielke et al., 2021), and it actually achieves high-
quality multilingual language models. However,
we suggest that the higher coverage of characters in
the vocabulary should be taken into consideration
to avoid LLM neologism that may generate seri-
ously gibberish words, even with a certain amount
of sacrifices in existing benchmarking scores or the
language coverage by a single model.

5 Conclusion

In this paper, we defined LLM neologism and re-
vealed its characteristics. We showed that neo-
words in Japanese, Chinese, and Korean are gener-
ated from two frequent two-letter words that share
a first letter and tend to appear in a similar context.

Neo-words are generated when a single character
is split into multiple tokens, and we clarified that



the likelihood of their generation depends on the to-
kenization method and the vocabulary. We demon-
strated that neo-words in three languages appear
in Al-generated texts, and showed that neo-words
exist in context in a similar sense to constituent
words.

LLM neologism is a tokenizer-dependent prob-
lem that occurs when a character is represented by
multiple tokens. As stated by Mielke et al. (2021),
there is no silver bullet solution that serves as a so-
lution for all purposes. However, LLM neologism
is an essential issue to consider in the context of
generating natural sentences in CJK languages.

It is also known that LLM can generate new
words by mixing words in English®. It is a fu-
ture challenge to generalize LLM neologism in
languages other than CJK.

Limitation

In addition to its linguistic definition, “neologism”
is also used in the field of psychiatry and clinical
psychology. As we wish to avoid potentially mis-
leading patients by our use of this term, we should
emphasize that our usage in this paper is limited to
“LLM neologism” that refers to the phenomenon of
word generation by LLM.
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Abstract

We consider two types of numeric representa-
tions for conveying the uncertainty of predic-
tions made by Machine Learning (ML) models:
confidence-based (e.g., “the Al is 90% confi-
dent”) and frequency-based (e.g., “the Al was
correct in 180 (90%) out of 200 cases™). We
conducted a user study to determine which fac-
tors influence users’ acceptance of predictions
made by ML models, and how the two types of
uncertainty representations affect users’ views
about explanations. Our results show that users’
acceptance of ML model predictions depends
mainly on the models’ confidence, and that ex-
planations that include uncertainty information
are deemed better in several respects than expla-
nations that omit it, with frequency-based repre-
sentations being deemed better than confidence-
based representations.

1

There is a large body of research on how to com-
municate the uncertainty associated with predicted
outcomes, in particular in healthcare (Freeman,
2019; Simpkin and Armstrong, 2019; Spiegelhal-
ter, 2017; Zipkin et al., 2014). In that research,
the uncertainty is derived from simple historical
population averages, e.g., iPrevent provides such
information to enable patients to assess their risk of
breast cancer. However, in the age of personalised
medicine, the uncertainty is obtained from the pre-
dictions of Machine Learning (ML) models, which
are tailored to individuals by learning complex rela-
tionships between a prediction (e.g., a disease) and
a large number of variables. Understanding this un-
certainty is essential to improve medical decision
making (Begoli et al., 2019). However, there is rel-
atively little research on conveying the uncertainty
of predictions made by ML models.

In this paper, we consider two types of
numeric representations for conveying the un-
certainty of ML predictions: Confidence and

“Work done while the author was at Monash University.
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Confidence+Frequency (denoted %Frequency).
The Confidence representation was proposed
in (Cau et al., 2023) to convey how certain an Al
is of its prediction (e.g., “The Al is 80% confident
of the predicted outcome”); and the %Frequency
representation, which is best practice for conveying
population-based statistics in healthcare (Freeman,
2019; Trevena et al., 2013), gives a frequency out
of a reference class (a base population), and the
corresponding percentage. The reference class may
be generic (e.g.,"Out of 200 people, 160 (80%) will
develop this side effect”) or tailored (e.g., “Out of
200 people like you, ...”). We chose the latter, as
recommended in (Trevena et al., 2013).

We describe a user study that examines (1) the
influence of these two representations of uncer-
tainty and other factors on users’ acceptance of
the predictions of an ML model; and (2) users’
views about explanations featuring these represen-
tations of uncertainty. Our study was conducted
in a healthcare scenario, sourced from the Bussel-
ton dataset (Knuiman et al., 1998), where an Al
uses demographic, medical and lifestyle informa-
tion to predict whether a person is at risk of Coro-
nary Heart Disease (CHD). Concessive-contrastive
explanations for these predictions, without uncer-
tainty information, were used as a baseline. We
chose these explanations owing to their support in
the literature (Biran and McKeown, 2017; Maruf
et al., 2023; Miller, 2019).

Table 1 shows a sample scenario, a concessive-
contrastive explanation for an at-risk prediction,
and a Confidence and a %Frequency representa-
tion of uncertainty. The baseline explanation fol-
lows the general template used in (Maruf et al.,
2024) for the concessive-contrastive component of
conservative explanations. It starts with a pream-
ble which mentions feature values that support an
outcome that differs from the predicted one (“‘even
though” part), and ends with a resolution which
mentions feature values that overcome the values
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Table 1: Instance from the Busselton dataset (top part),
a concessive-contrastive explanation of the AI’s predic-
tion, and a Confidence and %Frequency representation
of the uncertainty of this prediction.

At-risk Scenario — ResidentID 83:

You are a 76 year old female whose weight is optimal, does
not drink, but smokes 10 cigarettes a day. You also have
optimal blood pressure, borderline total and HDL cholesterol,
and high triglycerides. But on the upside, you are not diabetic.
Concessive-contrastive explanation (baseline)

Even though you have optimal blood pressure, the Al pre-
dicts that you are at risk of a coronary event because you
are between 72 and 79 years old and have a high level of
triglycerides.

Confidence representation of uncertainty

Based on its past performance, the Al is 90% confident that
you are at risk of a coronary event.

% Frequency representation of uncertainty (tailored)

The Al is 90% confident that you are at risk of a coronary
event. This confidence is based on the AI’s past performance,
where out of 200 residents like you (same age, blood pres-
sure and level of triglycerides), it correctly predicted that 180
(90%) were at risk of a coronary event.

in the preamble to yield the predicted outcome.'

Our user study considers four research questions:
RQ1: How does the type of uncertainty informa-
tion (Confidence or %Frequency) affect the like-
lihood of accepting a prediction, compared to a
baseline explanation that omits this information?

RQ2: Which factors affect the likelihood of ac-
cepting a prediction when uncertainty information
is added to a baseline explanation?

RQ3: How do percentages in Confidence and
%Frequency representations and the size of the ref-
erence class in %Frequency representations affect
the acceptance of a prediction when uncertainty
information is added to a baseline explanation?

RQ4: How does uncertainty information affect
users’ views about four explanatory attributes: com-
pleteness, presence of extraneous information, help-
fulness to understand the AI’s reasoning, and sup-
port for decision making? (Hoffman et al., 2018).

This paper is organised as follows. Section 2
presents related work on conveying uncertainty.
Section 3 describes our experimental design, fol-
lowed by our results in Section 4. Section 5 sum-
marises key findings and discusses future work.

2 Related Work

There has been substantial research in communicat-
ing the uncertainty associated with predicted out-
comes, in particular in healthcare (Freeman, 2019;
Simpkin and Armstrong, 2019; Spiegelhalter, 2017;
Zipkin et al., 2014). Most of that research con-

"We eschew varying the generated text, e.g., by using
Large Language Models, as this may vitiate the experiments.
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siders how to convey probabilities derived from
historical population-based statistics, focusing on
modality selection (i.e., words, numbers or graphs),
and within each modality, on selecting a specific
format (e.g., probabilities, percentages or natural
frequencies for numeric representations).

Gigerenzer (2003) demonstrated that natural fre-
quencies are more understandable than probabili-
ties, and that it is essential to provide a reference
class. But in later review articles, Freeman (2019)
and Spiegelhalter (2017) argued that both percent-
ages and frequencies are required. These insights
have informed best practice in uncertainty repre-
sentations shown to patients (e.g., iPrevent).

Research on communicating uncertainty also
considered the effect of other factors on users’
perceptions of risk, such as communicative in-
tent (Spiegelhalter, 2017), risk type (absolute or
relative) (Gigerenzer, 2003), framing of an out-
come (positive or negative) (Peters et al., 2011),
context (e.g., information about a population at a
lower risk) (Lipkus et al., 2001), and users’ numer-
acy (Vromans et al., 2020).

Our work is inspired mainly by the research of
Vromans et al. (2020) and Cau et al. (2023). Vro-
mans et al. (2020) studied the interaction between
the specificity of the reference class in frequency
representations (generic versus tailored) and pre-
sentation format (words only versus words and
numbers) when communicating population-based
statistics. They found that patients deemed tailored
risks to be less accurate and higher than generic
risks when the risks were presented in words only,
but not when words were combined with numbers.

Cau et al. (2023) examined the interaction be-
tween the correctness of an ML model, the ex-
planation style and the model’s confidence in its
prediction (expressed as a percentage), e.g., “‘the
Al is 45% confident that the price will increase”.

The research described in this paper advances the
state-of-the-art in that (1) it compares the influence
of Confidence and %Frequency representations of
uncertainty on users’ acceptance of ML predictions
(which differ from population-based historical pre-
dictions); (2) it considers the influence of three new
factors, viz predicted outcome, size of the reference
class and level of concern about a coronary event,
on users’ acceptance of a prediction, in addition
to factors from the literature, viz confidence per-
centage (Cau et al., 2023), (dis)agreement between
Al and user predictions (similar to (Maruf et al.,
2023)) and users’ numeracy (Vromans et al., 2020);



Table 2: Classes, features and values, Busselton dataset.

Predicted classes: Not at risk of CHD, At risk of CHD
age (in years): 61 e e 95
gender: female male
weight status: optimal underweight overweight obese
daily std. drinks: 0 .- e 44
daily cigarettes: 0 75
blood pressure:  optimal normal-to-high high
total cholesterol: low normal  borderline high
HDL cholesterol: optimal borderline low
triglycerides: low normal  borderline high
diabetes: no yes

and (3) it examines how uncertainty information in
general and our two types of uncertainty represen-
tations influence users’ views about explanations
that convey the predictions of ML models.

3 Experimental Setup

We describe our dataset, the design of our user
study,? our experiments and our participant cohorts.

3.1 Dataset

Owing to the prevalence and importance of un-
certainty information in healthcare, we chose a
dataset from the medical domain, specifically, the
Busselton dataset (Knuiman et al., 1998). This
dataset contains demographic, medical and lifestyle
information for a group of people, and informa-
tion about whether they developed coronary heart
disease (CHD) within ten years of the initial data
collection, which is encoded as predicted class (Ta-
ble 2). The dataset was pre-processed as described
in Appendix A, and we trained a decision tree that
predicts whether a person is at risk of CHD (Fig-
ure 1, Appendix A).

The explanations we showed in this study were
based on the feature values in the path between the
root of the decision tree and a prediction (Guidotti
et al., 2019; Stepin et al., 2020). However, we man-
ually added feature values, so that all the baseline
explanations are of similar length, thereby obviat-
ing this experimental variable (according to Lom-
brozo (2016), explanation length influences users’
perceptions).

3.2 User study design
The research questions were addressed by means of
two experiments: (1) between subjects — one group
of participants saw only Confidence representa-
tions, and another group saw only %Frequency
representations; and (2) within subject — each par-
ticipant saw a Confidence representation followed
*We have addressed the recommendations for human eval-

uation in (Howcroft et al., 2020). The experiment and data are
available here.
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by a %Frequency representation. We conducted
both experiments for the following reasons. On one
hand, within-subject experiments generally yield
stronger results than between-subjects experiments,
especially for relatively low numbers of partici-
pants. However, the presentation of %Frequency
representations after Confidence representations in
the within-subject experiment may influence users’
opinions about these representations.

Specificity of the %Frequency representation.
As mentioned in Section 2, Vromans et al. (2020)
found no difference in the effect of generic and
tailored frequency representations when words are
combined with numbers (they did not investigate
numbers alone). Nonetheless, we chose tailored
representations, as they are in line with medical
practice (e.g., iPrevent).?

Independent variables. Our experiment has
three intrinsic independent variables, viz predicted
outcome (at-risk, not-at-risk), confidence of the Al
in its prediction and reference class size (only for
%Frequency representations); and three extrinsic
independent variables, viz (dis)agreement between
Al and user predictions (‘agree’, ‘disagree’), and
two participant features — level of concern about
CHD and numeracy. The reference class for a tai-
lored %Frequency representation is the number of
people in the dataset who share the features of the
current patient that were mentioned in the base-
line explanation, e.g., blood pressure, age and level
of triglycerides for the example in Table 1. The
level of concern about CHD was provided by par-
ticipants (’Not at all concerned’: 1 to ‘Extremely
concerned’: 5). Following Vromans et al. (2020),
participants’ numeracy was assessed using Fagerlin
et al.’s (2007) Subjective Numeracy Scale (SNS),
which correlates well with mathematical test mea-
sures of objective numeracy. The SNS consists
of eight self-assessment numeracy questions (on
a 6-point Likert scale; Table 9, Appendix B), and
participants’ Subjective Numeracy Score (SNSc) is
the average of their answers’ scores in the SNS.
We chose two values for confidence {high (90%),
low (65%)}, and two values for reference class size
{large (200 patients), small (20 patients)} out of
1000 people. For example, a low-confidence pre-
diction for a large reference class talks about “130

*Our wording for %Frequency representations resembles
that used in (Vromans et al., 2020). However, they used
frequencies to clarify medical terms, which do not always
match lay-people’s understanding, e.g., “common (occurs in
10 out of 100 people)”.



(65%) out of 200 patients”, while a high-confidence
prediction for a small reference class talks about
“18 (90%) out of 20 patients”. It is worth noting that
the confidence values and reference class sizes are
not based on the dataset; rather, they were chosen
to represent distinct categories, and numbers that
are easy to process. Specifically, their values were
selected so that they are significantly different, but
at the same time, we wanted a low confidence to be
substantially higher than random chance (in con-
trast with (Cau et al., 2023), where low-confidence
values were between 12-55%). These choices are
somewhat arbitrary, and additional research is re-
quired to ascertain the effect of other options.

Scenarios. Eight scenarios are required to cover
all the combinations of the three intrinsic vari-
ables. However, to avoid participant fatigue, our
scenarios comprise only four combinations of pre-
dicted outcome, confidence percentage and refer-
ence class size: {at-risk, high, large}, {at-risk, low,
small}, {not-at-risk, low, large} and {not-at-risk,
high, small}.

3.3 The experiments

After signing a consent form, participants filled a
demographic questionnaire, followed by the body
of the survey and a numeracy test.

The body of the survey consists of the follow-
ing components: an immersive narrative about a
retirement village that has purchased an Al to pre-
dict whether the residents are at risk of CHD; a
brief account of how an Al makes predictions, plus
the features and values that were input to the Al
to predict CHD (Figure 2, Appendix C); a sample
scenario to prepare participants for the survey; and
four scenarios presented in random order.

Scenario description. Each scenario began with
a narrative like that at the top of Table 1, which in-
cludes feature values for a particular patient. Partic-
ipants were then asked to make an educated guess
about the outcome for this patient, and to indicate
how sure they were about this guess on a 7-point
Likert scale (" Very unsure’: 1 to *Very sure’: 7). A
7-point scale is used throughout our experiment,
in line with recent best practice recommendations
in (van der Lee et al., 2021). After participants
entered how sure they were about their guess of
the outcome, they were shown the AI’s prediction
and a concessive-contrastive explanation similar to
the explanation in the second segment of Table 1,
and they were asked again how likely they were to

accept the AI’s prediction on a 7-point Likert scale
(CExtremely unlikely’: 1 to ’Extremely likely’: 7).
At this point, the between-subjects and within-
subject arms of the experiment diverge, but each
arm displays the same four scenarios (in random
order). To detect unreliable responses, at the end of
each scenario, we asked an attention question about
the background information or the explanation.

Between-subjects experiment (Confidence and
Y0Frequency cohorts). There were two groups in
this experiment: one group saw a Confidence un-
certainty representation (third segment in Table 1),
and the other saw a %Frequency representation
(bottom segment in Table 1). After seeing the un-
certainty representation, participants in both groups
were asked again how likely they were to accept
the AD’s prediction. Participants in the %Frequency
group were also asked what prompted their deci-
sion — response options were “number of people
similar to me” (reference class), “percentage of
correct predictions” (confidence) or both.
Participants in both groups were then asked to
rate the initial (baseline) explanation with respect to
four explanatory attributes: completeness, presence
of irrelevant/misleading/contradictory information,
helpfulness for understanding the AI’s reasoning,
and support in deciding whether to accept the Al's
prediction (Hoffman et al., 2018). Next, they were
asked whether adding the uncertainty representa-
tion (which is different for each group) would yield
improvements with respect to each of the explana-
tory attributes, compared to the initial explanation.

Within-subject experiment (Combined cohort).
Participants saw a Confidence representation fol-
lowed by a %Frequency representation — this or-
der was chosen because %Frequency representa-
tions subsume Confidence representations. Af-
ter each representation, participants were asked
how likely they were to accept the AI’s prediction,
which yields two likelihoods of acceptance for the
same confidence percentage. Also, like the above
%Frequency cohort, participants were asked what
prompted their decision (Figure 3, Appendix C).
As for the between-subjects experiment, partic-
ipants rated the initial explanation with respect to
the four explanatory attributes (top panel of Fig-
ure 4, Appendix C). But here, they were asked
which uncertainty representation they would add to
improve the explanation in terms of each attribute
— options were Confidence, %Frequency, ‘Either’
or ‘None’ (middle panel of Figure 4, Appendix C).
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Table 3: Descriptive statistics for the Confidence, %Frequency and Combined groups (number of participants) —
two options with the most participants; and Subjective Numeracy Score (on a 6-point Likert scale).

Attribute Option

Confidence %Frequency Combined

(29) (28) (29)
Gender Male / Female 19/10 16/12 13/16
Age 25-34/35-44 12/ 7 10/ 8 10/12
Ethnicity Caucasian 23 19 21
English proficiency High 29 27 29
Education Bachelor / Some college, no degree 12/15 14/ 8 20/ 5
ML expertise Low / Medium 12/14 15/10 12/15
Concern about CHD Extremely—Moderately / Somewhat—Slightly 1579 13/11 7/19
Subjective Numeracy Score (SNSc) Mean (standard deviation) 452 (1.08) 4.64(0.92) 4.58(0.89)

3.4 Participants

Our survey was implemented in the Qualtrics sur-
vey platform, and conducted on Connect (a Cloud
Research platform (Litman and Robinson, 2020)).
Participants spent 25 minutes on the experiment
on average, and were paid $8-$10 USD. Their
responses were validated based on their answers
to the attention questions and the time they spent
on each scenario, yielding 86 valid responses out
of 101. Table 3 shows descriptive statistics for
the retained participants from the three cohorts:
Confidence and %Frequency (between subjects)
and Combined (within subject). To determine
whether the cohorts are similar, we compared the
Subjective Numeracy Scores of each pair of groups
(Wilcoxon rank-sum test). We did not find any sta-
tistically significant differences between the scores
of the three groups.

4 Results

We report the results for research questions RQ1-
RQ4. Statistical significance was adjusted with
Holm-Bonferroni correction for multiple compar-
isons (Holm, 1979), where applicable; results with
0.05 < p-value < 0.1 are designated as trends.

4.1 RQI1 and RQ2
RQI considers the effect of the type of uncertainty
representation (Confidence or %Frequency) on the
likelihood of accepting a prediction, compared to
a baseline explanation that omits uncertainty infor-
mation. We define this dependent variable as
DiffLikely=AcceptLikely, , oriain—AcceptLikely;,

We use difference in likelihoods, rather than ab-
solute likelihoods, because we observed a high vari-
ability between participants’ absolute likelihoods
of prediction acceptance. A similar observation
was made in (van der Bles et al., 2019) with respect
to verbal expressions of uncertainty.

RQ2 considers the influence of five of the
independent variables described in Section 3.2
on DiffLikely: the discrete variables predicted

outcome, confidence of the Al in its prediction,
(dis)agreement between Al and user predictions
and participants’ level of concern about CHD, and
the continuous variable (or covariate) Subjective
Numeracy Score (SNSc). Reference class size was
excluded from RQ2, because the Confidence group
did not receive this information.

We employed ANCOVA to analyse the data for
RQ1 and RQ2, as it adjusts for the effects of covari-
ates. However, inspection of the assumptions for
ANCOVA revealed that (dis)agreement between Al
and user predictions and level of concern about
CHD are not independent of the covariate SNSc in
the within-subject experiment. Hence, we excluded
these two variables from our initial analysis — the
results appear in Table 10, Appendix D. Our re-
sults show that SNSc has no statistically significant
impact on DiffLikely. We therefore removed this
covariate, and reintroduced the excluded variables.
ANOVA was employed to re-analyse the data for
RQI1 and RQ2, as all the variables are now discrete
— the results appear in Table 11, Appendix D.

Table 4 displays the mean (standard deviation) of
the likelihood of accepting a prediction after seeing
the baseline explanation, and the mean (standard
deviation) of the difference after viewing the un-
certainty information (DiffLikely), broken down ac-
cording to fype of uncertainty and the variables that
had a statistically significant effect in either experi-
ment: predicted outcome, confidence of the Al in its
prediction and (dis)agreement between Al and user
predictions. Statistically significant differences are
boldfaced, and trends are italicised. The analysis of
the effect of the independent variables on the likeli-
hood of accepting predictions after seeing baseline
explanations appears in Appendix D.

Type of uncertainty. The leftmost DiffLikely col-
umn in the top segment of Table 4 shows no statisti-
cally significant effect of type of uncertainty in the
between-subjects experiment (F'(1,223) = 0.136,
p-value = 0.713), while the rightmost DiffLikely
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Table 4: Likelihood of accepting predictions after a baseline explanation, and difference after adding uncertainty
information (DiffLikely), for the between-subjects cohorts (left-hand side) and the within-subject cohort (right-hand
side), broken down by fype of uncertainty, predicted outcome, confidence percentage and (dis)agreement between Al
and user predictions: mean (std. dev.); statistically significant differences in means (p-value < 0.01) are boldfaced,

and trends (0.05 < p-value < 0.1) are italicised.

Between subjects Within subject
Baseline explanation DiffLikely Baseline explanation DiffLikely
Mean  (std. dev.) Mean (std. dev.)|| Mean (std. dev.) Mean (std. dev.)
Type of ancertainty Confidence  4.56 1.75) 0.147 (1.02) 521 (150) —0.138 (1.27)
P Y Frequency  5.01 (1.66) 0.098 (1.10) 5.21 (1.50) 0.155 (1.35)
Predicied ontcome at-risk 557 (1.25) 0.009 (1.01) 5.90 (0.93) —0.207 (1.25)
not-at-risk ~ 3.99 (1.75) 0.237  (1.10) 4.52 (1.63) 0.224 (1.35)
high 4776 (1.76) 0.500 (0.96) 5.05 (1.55) 0.526 (1.11)
Confidence percentage 0 4.80 (1.68) —0254 (1.02) || 5.36 (142)  —0.509 (1.30)
. agree 5.85 (0.95) 0.052  (0.94) 6.05 (0.85) —0.266 (1.20)
Al predict vs User predict disagree 4.00 (1.73) 0.174 (1.14) 4.24 (1.48) 0.324 (1.38)

column shows a trend in the within-subject ex-
periment (F'(1,227) = 3.544, p-value = 0.061).
According to this trend, %Frequency representa-
tions increased the likelihood of acceptance, while
Confidence representations reduced it.*

Predicted outcome. Even though predicted out-
come is domain specific, we consider this vari-
able, as the notions of good and bad outcomes
are general. According to the second segment of
Table 4, in both experiments, there is a statisti-
cally significant difference between the likelihood
of accepting a prediction for the two values of
predicted outcome {at-risk, not-at-risk }, after see-
ing the baseline explanations (p-value < 0.001):
at-risk predictions have a higher likelihood of ac-
ceptance than not-at-risk predictions. The uncer-
tainty information has a statistically significant ef-
fect on DiffLikely in the within-subject experiment
(F(1,227) = 7.664, p-value = 0.006), but shows
only a trend in the between-subjects experiment
(F(1,223) 3.023, p-value = 0.084), where
DiffLikely changes mainly for the not-at-risk pre-
diction. After viewing the uncertainty information,
the acceptance likelihood of not-at-risk predictions
increased in both experiments, and the acceptance
likelihood of at-risk predictions decreased in the
within-subject experiment.

Confidence percentage. The third segment of Ta-
ble 4 indicates that confidence percentage has a
statistically significant influence on DiffLikely (be-
tween subjects F'(1,223) = 33.074, within subject

“The cohorts in the between-subjects experiment corre-
spond to the types of uncertainty, which explains the different
mean ratings for accepting a prediction after seeing the base-
line explanations (leftmost *Baseline explanation’ column).
In contrast, the cohort in the within-subject experiment saw
the same baseline explanations independently of type of un-
certainty, hence the invariant rating (mean 5.21 and standard
deviation 1.50, rightmost *Baseline explanation’ column).
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F(1,227) = 62.07, p-value < 0.001 for both). In
both experiments, a low prediction confidence led
to a reduction in the acceptance likelihood of a pre-
diction, and a high prediction confidence led to an
increase. However, recall that a low prediction con-
fidence is 65%, which is substantially higher than
random chance. This suggests that people may re-
quire a high level of confidence in order to increase
their likelihood of accepting an ML prediction.

(Dis)agreement between Al and user predictions.
Maruf et al. (2023) studied the influence of
(dis)agreement between Al predictions and users’
estimates of these predictions on users’ views
about explanations. Here, we determine whether
(dis)agreement between Al and user predictions af-
fects prediction acceptance, in particular DiffLikely.
According to the bottom segment of Table 4, the
likelihood of accepting a prediction after seeing the
baseline explanations is statistically significantly
higher when the predictions of the Al and the user
agree than when they disagree (p-value < 0.0001
for both experiments). (Dis)agreement between Al
and user predictions has no statistically significant
effect on DiffLikely in the between-subjects ex-
periment (F'(1,219) = 1.167, p-value = 0.281),
but has a statistically significant effect in the
within-subject experiment (F'(1,223) 6.072,
p-value = 0.015). After seeing the uncertainty
information, the acceptance likelihood of Al
predictions that agreed/disagreed with the user’s
decreased/increased. This suggests that uncertainty
information moderates users’ initial inclination to
accept Al predictions on the basis of agreement
with their own predictions or lack thereof.

Subjective Numeracy Score (SNSc). People’s
numeracy has been found to affect their percep-
tions of risk, especially when uncertainty is pre-
sented in different modalities, e.g., numbers versus



Table 5: Likelihood of accepting predictions for the Confidence representation (top segment) — high and low
confidence (between-subjects Confidence cohort — left-hand side, and within-subject experiment — right-hand side);
and for the %Frequency representation (bottom segment) — high and low confidence and large and small reference
class (between-subjects %Frequency cohort — left-hand side, and within-subject experiment — right-hand side):
mean (std. dev.); statistically significant differences in means (p-value < 0.01) are boldfaced.

Confidence representation Between subjects Within subject
High Confidence Low Confidence High Confidence Low Confidence
Mean  (std. dev.) Mean  (std. dev.) Mean (std. dev.) Mean (std. dev.)
Baseline explanation 4.57 (1.92) 4.55 (1.57) 5.05 (1.56) 5.36 (1.42)
DiffLikely 0.431 (0.99) —0.138 (0.98) 0.414 (1.08) —0.690 (1.22)
% Frequency representation Between subjects Within subject
High Confidence Low Confidence High Confidence Low Confidence
Mean  (std. dev.) Mean  (std. dev.) Mean  (std. dev.) Mean  (std. dev.)
Baseline explanation 4.96 (1.56) 5.05 (1.76) 5.05 (1.56) 5.36 (1.42)
DiffLikely 0.571 0.93) —0.375 (1.05) 0.638 (1.15) —0.328 (1.37)
Large reference class Small reference class || Large reference class Small reference class
Mean  (std. dev.) Mean  (std. dev.) Mean (std. dev.) Mean (std. dev.)
Baseline explanation 4.86 (1.64) 5.16 (1.67) 5.22 (1.43) 5.19 (1.57)
DiffLikely 0.429 (1.06) —0.232 (1.04) 0.259 (1.21) 0.052 (1.48)

words (Spiegelhalter, 2017; Vromans et al., 2020).
However, SNSc has no statistically significant im-
pact on DiffLikely in our experiments (between-
subjects F'(1,223) = 0.316, p-value 0.574;
within-subject F'(1,227) 2.137, p-value
0.145). This indicates that users’ numeracy, at the
levels exhibited by our participants, is not relevant
when comparing simple numeric representations.

Participants’ concern about CHD. This vari-
able was considered because people who are con-
cerned about CHD may be biased towards a par-
ticular outcome. However, participants’ concern
about CHD has no statistically significant impact
on the likelihood of accepting a prediction or on
DiffLikely in both experiments (between-subjects
F(4,219) 0.243, p-value 0.913; within-
subject F'(4,223) = 1.743, p-value = 0.142).

Finding 1 The confidence percentage in an uncer-
tainty representation has the strongest influence on
DiffLikely— high values increase acceptance like-
lihood and low values decrease it. The predicted
outcome and (dis)agreement between Al and user
predictions have some influence on DiffLikely.

42 RQ3

RQ3 examines the influence of confidence percent-
age (Confidence and %Frequency representations)
and reference class size (%Frequency representa-
tion) on the likelihood of accepting a prediction,
compared to a baseline explanation that omits un-
certainty information (DiffLikely).

We employed ANOVA to analyse the data for
RQ3 — the results appear in Table 14, Appendix D.
Table 5 displays the mean (standard deviation) of
the likelihood of accepting a prediction and the
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mean (standard deviation) of the difference after
viewing the uncertainty information (DiffLikely)
for the Confidence and %Frequency representa-
tions, for both cohorts of the between-subjects ex-
periment (left-hand side) and for the within-subject
experiment (right-hand side). The results for confi-
dence percentage are consistent with the results in
Table 4 — a high percentage (90%) increases accep-
tance likelihood, and a low percentage (65%) de-
creases it (statistically significant, p-value < 0.01
for both experiments). Looking at reference class
size, a large class (200) led to an increase in ac-
ceptance likelihood, and a small class (20) led
to a decrease, for the %Frequency cohort in the
between-subjects experiment (statistically signif-
icant, p-value < 0.001). However, this effect
was not observed in the within-subject experiment,
where the %Frequency representation followed the
Confidence representation. Rather, an interaction
effect was observed (trend; Table 14, Appendix D);
Tukey’s HSD test for the interaction indicates that
a low confidence percentage for a small reference
class led to a lower DiffLikely (mean < 0) than a
high confidence percentage regardless of reference
class size (mean > 0.5) (statistically significant,
p-value < 0.01).

Finding 2 Finding 1 with respect to confidence
percentage was corroborated for both types of un-
certainty representation. Reference class size also

influences DiffLikely, but the effects differ for the
two experimental conditions.

4.3 RQ4

RQ4 considers the effect of adding uncertainty in-
formation to a baseline explanation on users’ opin-
ions about four explanatory attributes: complete-



Table 6: Participant views about adding uncertainty
information in terms of four explanatory attributes
— one-proportion Z-test applied to Confidence and
%Frequency cohorts of the between-subjects experi-
ment together: number of ‘Yes’ replies (total number of
replies), x? statistic, p-value after Holm-Bonferroni cor-
rection; statistically significant results are boldfaced.

. Uncertainty x>  adjusted
Attribute (228) g statistic p-Jvalue
+Complete 188 94.776 1.76E-15
+Relevant, —Misleading, . . . 161 37.934 3.66E-09
+Helpful for understanding 181 77.583 1.76E-15
+Enable better decisions 192 105.37 1.76E-15

ness, presence of irrelevant/misleading/contradic-
tory information, helpfulness for understanding
the AI’s reasoning, and support in making a de-
cision (Hoffman et al., 2018).

First, we examine overall effects, in terms of
improving a baseline explanation, as reflected by
the total number of ‘Yes’ replies to whether the un-
certainty information would make the explanation
(1) more complete, (2) more relevant, less mis-
leading or less contradictory, (3) more helpful for
understanding the Al’s reasoning, and whether this
information would (4) enable participants to make a
better decision about accepting the AI’s prediction
(Section 3.3). Table 6 displays the results of a one-
proportion Z-test applied to the Confidence and
9%Frequency cohorts together (between-subjects ex-
periment)® — the second column shows the number
of “Yes’ replies (out of 228 responses). As seen
in Table 6, most participants thought that uncer-
tainty information improves baseline explanations
in terms of the four explanatory attributes (statisti-
cally significant, p-value < 0.001).

Next, we examine users’ views about adding
a Confidence or a %Frequency representation to
baseline explanations. For the between-subjects ex-
periment, we counted the ‘Yes’ replies to the above
questions; and for the within-subject experiment,
we counted the number of times the Confidence
representation or the %Frequency representation
was selected when asked which of these repre-
sentations would improve the four explanatory at-
tributes listed above (middle panel of Figure 4, Ap-
pendix C) — users chose very few ‘Either’ and
‘None’ options, which we excluded from our anal-
ysis. The results of the two-proportions Z-test ap-
plied to the cohorts of the between-subjects ex-
periment appear on the left-hand side of Table 7,
and the results of the one-proportion Z-test applied

The within-subject experiment was exluded, as its ques-
tions differ from those in the between-subjects experiment.
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to the cohort of the within-subject experiment ap-
pear on the right-hand side. The Confidence and
%Frequency columns show the number of ‘Yes’
replies for the corresponding representations.

As seen in Table 7 (left-hand side), no statisti-
cally significant differences were found when com-
paring the representations seen by the Confidence
cohort with those seen by the %Frequency cohort
— there was only a trend whereby %Frequency
representations were deemed more complete than
Confidence representations. These results are not
surprising, as each cohort saw only one uncertainty
representation, which was deemed to be a valu-
able addition to a baseline explanation (Table 6).
However, when participants in the within-subject
experiment directly compared the two types of un-
certainty representation, the %Frequency represen-
tation was deemed better than the Confidence rep-
resentation with respect to all explanatory attributes
(statistically significant, p-value < 0.001).

Finding 3 Both types of uncertainty representa-
tions are deemed to add value to baseline expla-
nations in terms of the four explanatory attributes,
with YoFrequency representations being considered
better than Confidence representations.

5 Conclusion

This research focuses on the influence of uncer-
tainty information on the acceptance of predictions
made by ML models. Our main contributions are:
(1) determining factors that influence users’ accep-
tance of these predictions; and (2) comparing the in-
fluence of Confidence and %Frequency uncertainty
representations on users’ views about explanations.

Our results show that when uncertainty infor-
mation is incorporated in an explanation of the
prediction of an ML model, users’ likelihood of ac-
cepting the prediction is influenced by the model’s
confidence percentage — high percentages (90%)
increase the likelihood of acceptance (compared
to a baseline explanation without uncertainty in-
formation), while low percentages (65%) decrease
this likelihood. This finding suggests that people
may require a high level of confidence in order
to increase their likelihood of accepting an ML
prediction. Reference class size influenced the like-
lihood of prediction acceptance, with a large class
(200 out of 1000) increasing this likelihood and a
small class (20 out of 1000) decreasing it (for the
90Frequency cohort).

Predicted outcome and (dis)agreement between



Table 7: Participant views about adding a Confidence versus a %Frequency representation in terms of four ex-
planatory attributes — two-proportions Z-test for the between-subjects experiment, and one-proportion Z-test
for the within-subject experiment: number of Confidence and %Frequency replies (total number of replies), x?
statistic, p-value after Holm-Bonferroni correction; statistically significant results are boldfaced, and trends

(0.05 < p-value < 0.1) are italicised.

Between subjects Within subject
Attribute Confidence %Frequency  x° adjusted || Confidence %Frequency  x° adjusted
(116) (112) statistic  p-value (116) statistic ~ p-value
+Complete 88 100 6.200 0.0511 14 90 54.087 3.84E-13
+Relevant, —Misleading, . . . 87 74 1.780  0.3642 8 83 60.176 2.60E-14
+Helpful for understanding 89 92 0.718  0.3968 17 85 44.010 3.27E-11
+Enable better decisions 92 100 3.547 0.1789 10 90 62.410 1.12E-14

Al and user predictions influenced prediction accep-
tance for baseline explanations (without uncertainty
information), with participants being more likely
to accept at-risk predictions than not-at-risk predic-
tions, and ML model predictions that agreed with
their own predictions than ML model predictions
that disagreed. However, uncertainty information
moderated these effects, increasing the likelihood
of accepting the less-acceptable predictions and
decreasing the likelihood of accepting the more-
acceptable ones.

Users deemed explanations that include uncer-
tainty information to be better, in terms of the four
explanatory attributes, than baseline explanations
that omit uncertainty information. When the two
types of uncertainty representations were seen sep-
arately, users deemed them to be similar in terms of
their effect on the four explanatory attributes. How-
ever, when seen together, %Frequency representa-
tions were deemed to be better than Confidence
representations by the vast majority of users.

Limitations and future work

User study. 'We could not recruit real users who
were personally engaged with the CHD scenario,
and employed crowd-workers instead. This is a
common limitation when evaluating NLG systems,
which we tried to mitigate by having a narrative
immersion at the start of our experiment.

Uncertainty representation. Our study consid-
ers two numerical methods for representing un-
certainty, viz Confidence and %Frequency. In the
future, it is worth investigating additional modali-
ties, such as words and graphs, e.g., charts and icon
arrays (Spiegelhalter, 2017; Zipkin et al., 2014), as
well as combinations of modalities.

Confidence percentage and reference class size.
As mentioned in Section 3.2, our choices for confi-
dence percentage and reference class size are some-
what arbitrary. Additional levels of confidence and
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reference class sizes should be investigated, as well
as the interaction between these two variables.

Additional factors and interactions between them.
Our experiment considers the effect of six indepen-
dent variables on prediction acceptance, viz type
of uncertainty, predicted outcome, confidence of
the Al, (dis)agreement between Al and user predic-
tions, concern about CHD and Subjective Numer-
acy Score. However, as seen in Section 2, there
are many more factors examined in the literature,
e.g., communicative intent (Spiegelhalter, 2017),
risk type (Gigerenzer, 2003), framing of an out-
come (Peters et al., 2011) and context (Lipkus et al.,
2001). Combinations of these factors should be in-
vestigated in the future.

In addition, according to Lombrozo (2016), ex-
planation length influences users’ perceptions. To
obviate the potential effect of the length difference
between %Frequency and Confidence representa-
tions on their relative ratings, content would have
to be added to the latter. However, this would
influence other explanatory attributes of this repre-
sentation, e.g., completeness and relevance.

Aleatoric and epistemic uncertainty. The un-
certainty of ML predictions comes from two
main sources (Hiillermeier and Waegeman, 2021):
aleatoric (due to chance) and epistemic (due to
insufficient information in the prediction models
themselves) — a distinction that is critical in de-
cision making (Senge et al., 2014). In the future,
we will derive these types of uncertainty for the
predictions made by ML models, and investigate
how to communicate them.
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A The Busselton dataset

We employed a version of the dataset that was pre-
processed by Maruf et al. (2023). This dataset has
two classes: whether someone will experience a
CHD event or not within ten years of the initial data
collection. We recoded these classes as at risk of a
coronary event and not at risk of a coronary event
respectively. In addition, in order to fit in with
our narrative about a retirement village (Figure 2,
Appendix C), we removed patients under the age
of 61.

The dataset was split into 80% training and 20%
test sets using proportional sampling (we did not
cross-validate, as average classifier accuracy is tan-
gential to this research). Table 8 shows the two
classes in our evaluation dataset, and the break-
down of the training/test sets. We employed the J48
classifier (Quinlan, 1993) in WEKA (Frank et al.,
2016) to learn a decision tree — the resultant deci-
sion tree has 24 nodes (Figure 1), and achieved an
accuracy of 78.4% and 68.8% on the training and
test set respectively.

Table 8: Breakdown of classes for the training and test
sets, Busselton dataset (patients over 60 years old).

Partition Not ar risk At risk Total

Training 459 166 625
Testing 99 46 145
Total 558 212 770

Age <= 69.1: No

Age > 69.1

| Age <= 78.7

| Triglyce-cat = low: No

Triglyce-cat = desirable

| Smoke_amt <= 11: No

| Smoke_amt > 11

| | Age <= 73.1: No

| | Age > 73.1: Yes

Triglyce-cat = borderline

| BP-cat = Optimal: Yes
BP-cat = Normal-to-High

| Weight-cat = underweight: No
| Weight-cat = normal: No

| Weight-cat = overweight

| | Sex = F: No

|

|

|

|

|

|

| | Sex = M: Yes

| | Weight-cat = obese: Yes
| BP-cat = Mild-Mod-Hyp: Yes
Triglyce-cat = high

| Age <= 71.7: No

| Age > 71.7: Yes

>

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
A 78.7: Yes

ge

Number of Leaves : 15
Size of the tree : 24

Figure 1: Pruned decision tree, Busselton dataset (pa-
tients over 60 years old), recoded classes and features.

B Subjective numeracy test

Table 9 displays the questions in Fagerlin
et al.’s (2007) Subjective Numeracy Scale. All
the answers are on a 6-point Likert scale, where
1 indicates a low preference for numerical infor-
mation or a low proficiency in processing it, and 6
indicates a high preference or proficiency.

Table 9: Questions in the Subjective Numeracy Scale —
answers are on a 6-point Likert scale.

1. Please indicate how good you are at each of the tasks
listed below:
o Working with fractions

Working with percentages

Calculating a 15% tip

Figuring out the price of a shirt that is 25% off

2. When reading the newspaper, how helpful do you find
tables and graphs that are part of a story?

3. When people tell you the chance of something happening,
do you prefer that they use words (“it rarely happens”)
or numbers (“there’s a 1% chance’)?

4. When you hear a weather forecast, do you prefer pre-
dictions using percentages (e.g., “there will be a 20%
chance of rain today”) or predictions using only words
(e.g., “there is a small chance of rain today”’)?

5. How often do you find numerical information useful?




C Screenshots from the experiment

Background

Artificial Intelligence (Al) systems are used to generate predictions in different domains, such as health, finance and industry. For example, the Al system used in this
study predicts whether a person is at risk of & coronary event or not,

We are developing a computer system that automatically generates explanations for the predictions made by this Al system.

The aim of this study is to find out how good are these explanations, and whether presenting the Al's confidence information changes your perceptions about the
explanation. We would appreciate your help in making this determination.

The domain
A seniors village has purchased a state-of-the-art Al system that predicts whether a particular resident is at risk of a coronary event or not. To make these predictions, the
Al system takes into account different factors in a resident's profile, such as their age and cholesterol level (see the table below).

Al systems make predictions based on trends and pattemns they identify in the data. Qur Al system built its prediction model from data obtained from 1000 residents of
the seniors village. These data consist of ten personal, lifestyle and medical factors of previous residents. The same factors are then obtained from new residents to
predict whether they are at risk of a coronary event. These factors and their possible values are listed below in shades of red (more prone to a coronary event) and blue
(less praone to a coronary event). These colours will be used in the situations you will see in the survey,

Personal and Lifestyle Factors Possible values
Age 61 95
Gender Female Male
Weight status based on Body Mass Index (BMI) | Optimal  Underweight  Overweight  Obese
Daily alcohol intake (standard drinks) 0 44
Daily cigaratte consumption 0 40
Medical Factors Possible values
Blood pressure Optimal Normal-to-High  High
Total cholesterol Low Normal Borderline  High
HDL cholesterol Optimal Borderline  Low
Triglycerides Low Normal Borderline  High
Diabetes No Yes

Notes:
This dataset comes from the 1970, and at that time people only had the option to choose from two genders.

+ |fyou hover the mouse over the names of medical factors, you will see a brief description for each of them.
» |fyou hover the mouse over the values of weight status, biood pressure, total cholesterol, HDL cholesterol and friglycerides, you will see the range for each value.

Important: Al systems may defermine that factors that are relevant to some situations are not relevant to other situations. For example, if a person is more than 70 years
old, their weight status may influence the Al system's prediction about their risk of a coranary event. In contrast, the Al system may not need to consider the weight status
of people under 70 years of age.

Disclaimer:

The Al system developed for this study is a Machine Learning model that predicts the risk of a coronary event from data pertaining to a particular population. Although
this system considers relevant factors, it may decide to ignore factors that don't improve the system's prediction accuracy fer this population --- this decision is based on
statistical considerations, not on medical reasons.

Figure 2: Background information; narrative immersion for the survey; description of the reasoning of Al systems;
features and feature values of a patient; notes and disclaimer.
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ResidentID 83:
Assume that you are a 76 year old female whose weight is optimal, who does not drink, but smokes 10 cigarettes a day. You also have optimal blood pressure, high total
cholesterol, low HDL cholesterol and high triglycerides. But on the upside, you are not diabetic.

Notes:

« If you hover the mouse over the underlined values, you will see their range.
« Click here to look at the glossary of all the factors and their possible values for a patient's profile.

The Al system will predict whether you are at risk of a coronary event or not.

Before we proceed, please indicate your expectation regarding your risk of a coronary event based on your profile.

At risk of a coronary event Not at risk of a coronary event Can't decide

O O O

How sure are you about your expectation regarding your risk of a coronary event?

Very unsure Moderately unsure Slightly unsure Neither sure nor unsure Slightly sure Moderately sure Very sure

O O O O O O O

Based on your profile, our Al system predicts that you are at risk of a coronary event. Recall that the Al built its prediction model from data obtained from 1000
residents.

Please read the following explanation carefully before you rate it.

Even though you have

* optimal blood pressure,

the Al predicts that you are at risk of a coronary event because you

e are between 72 and 79 years old and

« have a high level of triglycerides.

Based on this explanation, how likely are you to accept the Al's prediction?

Extremely unlikely Moderately unlikely Slightly unlikely Neither likely nor unlikely Slightly likely Moderately likely Extremely likely

O O (@] O O O O

We will now show you two ways of communicating the Al's confidence in its prediction. We would like to see how each of them affects your acceptance of the
prediction.

Option 1:

HBased on its past performance, the Al is 90% confident that you are at risk of a coronary event.

In light of the above explanation and this confidence information, how likely are you to accept the Al's prediction?

Extremely unlikely Moderately unlikely Slightly unlikely Neither likely nor unlikely Slightly likely Moderately likely Extremely likely

O O (@] O O O O

Option 2:

The Al is 90% confident that you are at risk of a coronary event. This confidence is based on the Al's past performance, where out of 200 residents like you
(same age, blood pressure and level of triglycerides), it correctly predicted that 180 (90%) were at risk of a coronary event.

Based on the above explanation and this confidence information, how likely are you to accept the Al's prediction?

Extremely unlikely Moderately unlikely Slightly unlikely Neither likely nor unlikely Slightly likely Moderately likely Extremely likely

O O O O O O (@]

What prompted your decision?

Number of residents similar to me (200) Percentage of correct predictions (90%) Both

O O O

Figure 3: First page of the survey for the within-subject group: request for a participant’s prediction and their
certainty about it; the AI’s prediction, associated explanation and request to rate it; two options for communicating
uncertainty: Confidence and %Frequency; request for the main factors that prompted the participant’s decision.
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In the table below, we show four statements about the initial explanation (repeated here). Please indicate the extent to which you agree with these statements.

Even though you have
« optimal blood pressure,
the Al predicts that you are at risk of a coronary event because you

« are between 72 and 79 years old and
« have a high level of triglycerides.

Somewhat Neither agree nor

Strongly disagree Disagree disagree disagree Somewhat agree Agree Strongly agree
This explanation is complete (it is not
missing information). 0 0 0 0 0 0 0
This explanation has irrelevant, misleading 0 0 0 0 0 0 0
or contradictory information.
This explanation helps me understand the
reasoning of the Al system. 9 0 0 0 0 o 9
Based on this explanation, | can make a O O O O o O O

decision about accepting the Al's prediction.

We showed you two ways of communicating the Al's confidence in its prediction. Which one would you add to the above explanation to improve the aspects listed below?

Option 2:

The Al'is 90% confident that you
are at risk of a coronary event.
This confidence is based on the
Al's past performance, where
out of 200 residents like you

Option 1: (same age, blood pressure and

Based on its past performance,
the Al'is 90% confident that you

level of triglycerides), it correctly
predicted that 180 (90%) were at

are at risk of a coronary event.  risk of a coronary event. Either None

Make the above explanation more complete. O O O O
Make the above explanation more relevant,

less misleading or less contradictory. 0 0 0 0
Make the above explanation more helpful to

understand the Al's reasoning. 0 9 0 9
Enable me to make a better decision about

accepting the Al's prediction compared to @) @) @) (@)
only the above explanation.

Which of the following factors are not mentioned in the initial explanation above? Select as many as you can.
Gender Daily cigarette consumption Blood pressure Total cholesterol Triglycerides
] g g a g

Figure 4: Second page of the survey for the within-subject group: request to rate the initial explanation on four
explanatory attributes; request to rate the influence of the two types of uncertainty representations on these attributes;

attention question.
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D Experimental results

Table 10 displays the results of the ANCOVA test
for research questions RQ1 and RQ2 for the inde-
pendent variables uncertainty type, predicted out-
come, confidence percentage and SNSc; Table 11
displays the results of the ANOVA test for research
questions RQ1 and RQ2 for the independent vari-
ables uncertainty type, predicted outcome, confi-
dence percentage, (dis)agreement between Al and
user predictions and level of concern about CHD.

Table 12 shows the results of the ANCOVA test
for accepting a predicted outcome for the indepen-

dent variables predicted outcome and SNSc af-
ter seeing the baseline explanation; and Table 13
shows the results of the ANOVA test for accepting
a predicted outcome for the independent variables
predicted outcome, (dis)agreement between Al and
user predictions and level of concern about CHD
after seeing the baseline explanation. The indepen-
dent variables type of uncertainty and confidence
percentage were excluded from these analyses, as
uncertainty is not part of the baseline explanations.

Table 14 shows the ANOVA results for research
question RQ3.

Table 10: ANCOVA results for RQ1 and RQ2 — uncertainty type, predicted outcome, confidence percentage and
SNSc (between-subjects and within-subject experiments); statistically significant results are boldfaced, and trends

(0.05 < p-value < 0.1) are italicised.

Between subjects Within subject
DF Sumof Mean F-value p-value || DF  Sumof Mean F-value p-value
squares square squares  square
Uncertainty type 1 0.13 0.13 0.136 0.713 1 4.98 4.98 3.544 0.061
Predicted outcome 1 2.96 2.96 3.023 0.084 1 10.78  10.78 7.664 0.006
Confidence percentage 1 3244 3244 33.074 2.90E-08 1 62.07 62.07 44.147 2.23E-10
SNSc 1 0.31 0.31 0.316 0.574 1 3.00 3.00 2.137 0.145

Table 11: ANOVA results for RQ1 and RQ2 — uncertainty type, predicted outcome, confidence percentage,
(dis)agreement between Al and user predictions, and participants’ concern about CHD (between-subjects and
within-subject experiments); statistically significant results are boldfaced, and trends (0.05 < p-value < 0.1) are

italicised.
Between subjects Within subject

DF Sumof Mean F-value  p-value || DF Sumof Mean F-value  p-value

squares  square squares  square
Uncertainty type 1 0.13 0.13 0.134 0.714 1 4.98 4.98 3.651 0.057
Predicted outcome 1 2.96 2.96 2.994 0.084 1 10.78  10.78 7.895 0.005
Confidence percentage 1 32.44 3244 32752 3.42E-08 1 62.07 62.07 45478 1.31E-10
AlPredict-vs-UserPredict 1 1.16 1.16 1.167 0.281 1 8.29 8.29 6.072 0.015
Concern about CHD 4 0.96 0.24 0.243 0.913 4 9.51 2.38 1.743 0.142

Residuals 219 216.9 0.99 223 304.35 1.36

Table 12: ANCOVA results for likelihood of prediction acceptance after baseline explanations — predicted outcome
and SNSc (between-subjects and within-subject experiments); statistically significant results are boldfaced.

Between subjects Within subject
DF Sumof Mean F-value p-value DF Sumof Mean F-value p-value
squares  square squares  square
Predicted outcome 1 142.11 142.11 61.46 1.79E-13 1 55.17  55.17 31.082 1.71E-07
SNSc¢ 1 4.70 4.70 2.032 0.155 1 1.28 1.28 0.721 0.397
Residuals 225  520.20 2.31 113 200.58 1.78

Table 13: ANOVA results for likelihood of prediction acceptance after baseline explanations — predicted outcome,
(dis)agreement between Al and user predictions, and participants’ concern about CHD (between-subjects and
within-subject experiments); statistically significant results are boldfaced.

Between subjects Within subject
DF Sumof Mean F-value  p-value || DF Sumof Mean F-value  p-value
squares  square squares square
Predicted outcome 1 14211 142,11 71.712 3.49E-15 1 55.17 5517 38.72  9.29E-09
AlPredict-vs-UserPredict 1 75.61  75.61 38.154 3.10E-09 1 4523 4523 31.74 1.39E-07
Concern about CHD 4 11.40 2.85 1.437 0.223 4 1.31 0.33 0.23 0.921
Residuals 221 437.90 1.98 109 15532 1.42
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Table 14: ANOVA results for RQ3 — Confidence representation (within-subject experiment and Confidence cohort,
between-subjects experiment), and %Frequency representation (within-subject experiment and %Frequency cohort,
between-subjects experiment); statistically significant results are boldfaced, and trends (0.05 < p-value < 0.1) are
italicised.

Confidence representation Between subjects Within subject
DF Sumof Mean F-value p-value || DF Sumof Mean F-value p-value
squares square squares square
Confidence percentage 1 9.39 9.39  9.631 0.002 1 3531 3531 26.75 1.00E-06
Residuals 114 111.12  0.98 114 150.48 1.32
% Frequency representation Between subjects Within subject
DF Sumof Mean F-value p-value || DF Sumof Mean F-value p-value
squares square squares square
Confidence percentage 1 2508 25.08 28.04 6.31E-07 1 27.03 27.03 17.29 6.30E-05
Reference class size 1 1222 12.22 13.66 3.45E-04 1 1.24 1.24 0.79 0.375
[Confidence : Ref. class size] 1 0.01  0.009 0.01 0.921 1 5.83  5.83 3.73 0.056
Residuals 108  96.61 0.895 112 175.1 1.563
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Abstract

Named entities (NE) are integral for preserv-
ing context and conveying accurate information
in the machine translation (MT) task. Chal-
lenges often lie in handling NE diversity, ambi-
guity, rarity, and ensuring alignment and con-
sistency. In this paper, we explore the effect
of NE-aware model fine-tuning to improve the
handling of NEs in MT. We generate data for
NE recognition (NER) and NE-aware MT us-
ing common NER tools from Spacy and align
entities in parallel data. Experiments with fine-
tuning variations of pre-trained TS5 models on
NE-related generation tasks between English
and German show promising results with in-
creasing amounts of NEs in the output and
BLEU score improvements compared to the
non-tuned baselines.

1 Introduction

Machine translation (MT) of named entities (NEs)
such as person or place names remains a signifi-
cant challenge even for modern modelling archi-
tectures simply because they appear less frequently
in training data than other words or phrases. Fur-
thermore, new and unseen NEs get created every
day like organization or product names, and even
common nouns in certain contexts can become
NEs. Meanwhile, the task of NE recognition (NER)
has reached a fairly acceptable level for many lan-
guages with precision values of around 80-90%.
Since most conventional MT models are trained
to perform translation based only on the parallel
training data and context provided, they still often
struggle with rare NEs appearing less often during
training or never at all. In such cases, the models
tend to hallucinate by generating output comprised
of tokens or subword units which are statistically
close in the embedding space to the rare NE, but
this can lead to the generation of a novel word or
phrase instead of the proper acceptable translation.
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In this work, we look into improving how the
model handles NEs by highlighting them in the
training data and training not only to translate but
also to recognize NEs in plain input text. The
motivation for this approach is for the model to
form a more defined understanding of what cer-
tain NEs look like thus enabling it to handle them
better when performing the MT task. We experi-
ment with multi-task training and fine-tuning the
T5 model (Raffel et al., 2020) for translation be-
tween English and German, as well as its multilin-
gual counterpart mT5 (Xue et al., 2021) and the
updated 1.1 version of T5. We compare the results
with the non-modified versions of TS5, mT5, and
the instruction-tuned Flan-T5 (Chung et al., 2022).

Our contributions are 1) a novel, easily repro-
ducible and further extensible method for fine-
tuning transformer models in a multi-task fashion
on named entity recognition and machine transla-
tion tasks; 2) empirical evaluation of the method
on a recent shard task benchmark data set; 3) open-
sourcing of data preparation and training scripts,
and model checkpoints for reproducibility.

2 Related Work

TS Fine-tuning Etemad et al. (2021) tune the
model on abstractive summarisation using specific
datasets. While the pre-trained model had already
been exposed to this task, such fine-tuning led the
authors to state-of-the-art results on several bench-
marks. Zhuang et al. (2023) propose RankT5 to
expand the capabilities of the T5 model into the
text ranking task. They introduce ranking-specific
losses for the task, significantly improving perfor-
mance on select benchmarks. Tavan and Najafi
(2022) participate in a SemEval shared task ' on
multilingual complex NER using the encoder from
TS5 for feature representation extraction.

'SemEval-2022: https://semeval.github.io/SemEval2022
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NE Translation Ugawa et al. (2018) encode NE
tags alongside tokens and concatenate their em-
beddings. Modrzejewski et al. (2020) explore sev-
eral methods for incorporating NE annotations into
MT to improve NE translation. Their experiments
with English-German and English-Chinese MT on
WMT 2019 test sets demonstrate improvements
over the baseline transformer models when using
fine-grained NE annotations as input factors for
MT training. Zeng et al. (2023) use a dictionary to
look up translation candidates and prepend them to
the decoder input. Hu et al. (2022) augment pre-
training data with NEs replaced in the target lan-
guage, pre-train the model to reconstruct such data
to the original sentences and perform multi-task
fine-tuning of the model on both the reconstruction
task and MT. In contrast to related work, we aim
to perform multi-task training on the monolingual
NER tasks and the multilingual MT tasks.

3 Proposed Approach

Since the existing pre-trained TS5 model versions
have already been pre-trained on large multilingual
corpora, the quality of the data used for fine-tuning
on the resource-rich languages plays a more signif-
icant role than the quantity (de Gibert Bonet et al.,
2022). We start with filtering out any critical noisy
data from the WMT23? general translation shared
task training set before tagging named entities in
the form of XML boundary tags. Next, we prepend
instructions to the source side of the training data as
shown in Table 2 to indicate what we expect from
the model in the output. Parallel data for the MT
task have the source side enriched with NE tags
where applicable, and the instruction for NE-MT
at the beginning, while the target side remains as
is. For the NER task, we have the NER instruction
at the beginning followed by the text as is on the
source side, and the text enriched with NE tags on
the target side.

3.1 Training Setup

We combine and shuffle all training data for the
tasks, and experiment with different quantities of
data provided to the model during training in com-
bination with the different model sizes. We tune
the small size models using 100K examples, base
with 1M, and large with 10M respectively. We base
this choice on observations from preliminary exper-
iments where small models often converged before

2WMT 2023 - http: //www2. statmt.org/wmt23/
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reaching 1M examples and base models converged
before seeing 10M. We apply this to the differ-
ent TS5 model variations (T5, T5 1.1, mT5, Flan-
T5) with parameter ranges between around 60M to
around 1B. We use the Adafactor optimizer with
FP16 training, effective batch sizes of 256 for large
models and 512 for base and small sized models,
evaluation every 1000 steps, and early stopping set
to 10 checkpoints of evaluation loss not improving.

4 Data Preparation

We use the English-German parallel data from the
WMT 2023 shared task on general text transla-
tion for experimentation. To develop our models,
we use the general test set from WMT22 and for
evaluation and result reporting — general test set
of WMT?23. We first filter the data by removing
noisy parallel segments. Then we populate the data
with NE tags in either the source or target side,
depending on the task. Finally, we prepend task-
specific instructions to all source-side inputs. For
the NER task training data, we use both source and
target MT parallel sentences, essentially doubling
the amount when compared to MT task data.

4.1 Dataset and Filtering

Since most training corpora are produced semi-
automatically, errors such as misalignments be-
tween source and target sentences or direct copies
of source to target can occur, as well as third-
language data in seemingly bilingual data sets.
To avoid such problems, we used data cleaning
and pre-processing methods (Rikters, 2018) that
include: 1) a unique parallel sentence filter; 2)
equal source-target filter; 3) multiple sources - one
target and multiple targets - one source filters; 4)
non-alphabetical filters; 5) repeating token filter;
and 6) correct language filter. We also perform
pre-processing consisting of the standard Moses
(Koehn et al., 2007) scripts for punctuation normal-
isation and cleaning. However, there is no separate
tokenisation or splitting into subword units besides
the tokeniser included with the model.

4.2 NE Tagging and Alignment

We use Spacy (Honnibal et al., 2020) to introduce
NE tags for the source side of MT task training
data and the target side of NER task data. Spacy
was chosen mainly for its good balance of tagging
accuracy, speed, and ease of use. As an additional
quality assurance mechanism, we also tag the target
side of MT data and keep only the NE tags that are



%
EN: Today we are <ORG>hearing</ORG> the case of <PER> Albin Kurti </PER> of <LOQ> Kosovo </LOC> .

DE: Wir haben heute von dem Fall <PER> ATan Kurti </PER> aus dem <LOC> K‘dsf(r)vo </LOC=> erfahren .

Figure 1: An example of alignment and misalignment between English and German entities. The NER model
recognized “hearing” as an organisation entity for English, but there was no matching NE recognized for German,
so this tag was dropped in the alignment process, while the person and location tags aligned correctly and were kept.

German English
LOC LOC
LOC GPE
MISC -
ORG ORG
PER PERSON
Pr 0.85 0.90
Re 0.84 0.90
F, 0.85 0.90
English Only
CARDINAL DATE EVENT
FAC LANGUAGE LAW
MONEY NORP ORDINAL
PERCENT PRODUCT QUANTITY
TIME WORK_OF_ART

Table 1: Entity alignment dictionary, and Spacy NER
evaluation metrics - precision (Pr), recall (Re) and F;.
The bottom rows list NE types which are not available
for German in Spacy.

symmetric between the two languages, as shown
in Figure 1. The available classes of NEs to be
recognized by NER tools depend highly on the lan-
guage in question and available annotated training
data for that language. Spacy supports recognition
of only four classes in German - locations, organ-
isations, persons, and miscellaneous. Meanwhile,
for English, there are 18 different classes, and for
other languages such as Japanese — even 22 NE
classes. Furthermore, for English, there are two
distinct granularities of location - GPE, which in-
cludes countries, cities, and states, and LOC, which
covers all other non-GPE locations like mountain
ranges, bodies of water, etc. To align recognized
entities between English and German, we prepared
an alignment dictionary as shown in Table 1.

4.3 Instruction Formatting

The original T5 model was initially pre-trained
using data prepared in the instruction-tuning for-
mat with instructions such as “translate English to
German: 7 or “summarize: ~ prepended to each
training data source input. Such instructions were
also part of Flan-T5 training, but not mT5 or the
1.1 version of T5. We supplement these with in-
structions for NE-aware translation and the NER

Task Instruction

T5 MT  translate English to German:

NER recognize English entities:
NE-MT entity translate German to English:

Table 2: Instruction examples for NE-aware T5 tuning.
T5 MT represents instructions already in the pre-trained
models. NER and NE-MT - our additions.

Model Size EN-DE DE-EN
NE-T5 small 25.11 25.98
NE-T5 base  26.29 32.25
NE-T5 large 25.76  32.45
NE-T51.1 small 26.15 24.12
NE-T51.1 base 16.15 25.33

Table 3: MT evaluation results in BLEU for entity-aware
fine-tuned models.

task as shown in Table 2.

In addition to the existing “translate” instruction,
we add our custom “entity translate” instruction for
input data with pre-annotated NEs. We also add
fully custom instructions for recognising entities
in English and German so that the model can learn
NER for plain text inputs.

5 Results

We evaluate MT performance by computing
BLEU (Papineni et al., 2002) scores using sacre-
BLEU (Post, 2018) and NER performance using

NER NEs
Model Size EN DE EN DE
NE-T5 small 86.86 82.70 333 450
NE-T5 base 84.31 85.21 320 458
NE-T5 large 92.01 91.37 308 447
NE-T51.1 small 88.93 85.18 331 451
NE-T51.1 base 80.59 81.42 329 495

Table 4: NER results for entity-aware fine-tuned mod-
els. The last two columns represent the number of NEs
recognized in the generated translations.



Model Size EN-DE DE-EN EN DE
TS5 small  26.88 348 255 402
TS base  29.83 327 265 415
TS5 large  30.23 3.51 247 405
Flan-T5 small 648 15.01 281 436
Flan-T5 base 12.63 23.15 312 499
Flan-T5 large 1531 29.25 318 446

Table 5: Baseline model results on MT for non-fine-
tuned models. The last two columns represent the num-
ber of NEs recognized in the generated translations.

Model Sizez EN-DE DE-EN EN DE
MT-T5 small  27.65 20.75 266 420
MT-T5 base  30.40 28.61 299 434
MT-T51.1 small 17.83 26.69 302 419
MT-T51.1 base 22.00 30.72 315 440
MT-mT5 small 16.09 23.50 252 402
MT-mT5  base 17.67 25.88 278 413

Table 6: Baseline results for models fine-tuned on only
MT without entity-aware data. The last two columns
represent recognized NE counts in the translations.

the F; score. An overview of the main automatic
evaluation results is shown in Tables 3 and 4. By
looking only at the BLEU scores, it does seem like
DE-EN translation improves compared to baseline
results in Tables 5 and 6 while EN-DE seems to
be degraded. However, the amounts of recognized
NEs in the generated translations are overall higher
for the NE-aware models. Performance on the NER
task is relatively low, aside from the TS5 large model,
but that is not our main focus.

5.1 Machine Translation

The highest-scoring NE-aware model for both
English-German and German-English translation
is the TS5 base tuned with the 10M example data
set, while overall including NER performance the
T5 large model tuned with 10M examples seems
better. Both of them fall behind the non-tuned base-
line versions for EN-DE by 3.04 and 4.47 BLEU
respectively, but both generate about 10% more
NEs in the output than the baselines.

For a clearer comparison to the baselines we also
evaluated the pure pre-trained models before any
fine-tuning on the entity-aware data, as well as af-
ter fine-tuning only on MT data, but without any
entity tags. Results of these experiments are shown
in Table 5 and Table 6. Since none of the pre-
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training includes NE tasks, the NER part could not
be evaluated. Furthermore, TS was only pre-trained
with instructions for translation from English into
German, but not from German into English. This
explains why the first three rows of the DE-EN
column in Table 5 have such low scores. Mean-
while, mT5 and TS5 1.1 cannot be evaluated without
fine-tuning, since the instructions for translation or
any other downstream task were not included in
the model pre-training. As an alternative for mTS5,
we include evaluation results from Flan-T5 (Chung
et al., 2022) in Table 5, which is a multilingual
instruction-tuned version of T5.

For a more detailed look at the specific entity
classes recognized by the models, Table 7 lists
the recognized NE amounts in the source and ref-
erence files, baseline non-tuned T5 and Flan-T5
versions, as well as our NE-aware models. There
are some differences between the recognized NEs
in the source and target files, which is why we per-
formed the NE alignment as mentioned in Section 4
to narrow them down to the lowest mutually match-
ing amount. Out of all baselines, Flan-T5 large
does generate a good amount of NEs in the output,
but the small version and both T5 baselines notice-
ably fall behind. Both NE-aware TS5 1.1 small and
TS5 large generate closer amounts of NEs in the
output to the source and reference. These results
show that the biggest improvements can be gained
by fine-tuning the small versions of T5.

5.2 Named Entity Recognition

Given the overall low scores for NER in Table 4,
we manually inspected the generated output files
for the NER task. The most common critical errors
for the small-size models were mismatching NE
beginning and ending tags. Many lower-scored
cases were also due to the entity not being tagged
in the reference, but the model output correctly
identified it. To further support this, we performed
a manual evaluation included in the Appendix.

6 Conclusion

In this paper, we introduced a simple approach for
fine-tuning sequence-to-sequence models that is
effective at mitigating one of the commonly known
drawbacks of MT - the translation of rare words
and named entities. With a small training data mod-
ification, we were able to increase the amount of
generated named entities in translations, and even
achieve a higher BLEU score than the baselines



when translating from English into German.

In future work, we plan to evaluate the approach
on more languages and alternative NER taggers
for training data generation. We are also eager to
explore the applicability of the back-translation ap-
proach for incremental NER improvements, as well
as an extension of our method to summarisation
and question-answering tasks.
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A Manual Evaluation

We performed a small-scale manual evaluation to
further verify the effectiveness of our proposed
approach. We randomly select 100 sentences from
the evaluation data and manually judge the ability
of different model variations to generate automatic
translations and recognise named entities.

A.1 Machine Translation

Figure 2 shows one of the common examples where
less common location names “Mazedonien” and
“Nord-Mazedonien” are mistranslated or rather just
simply copied over to the output in English without
changing to the correct forms of “Macedonia” and
“North Macedonia.” The NE-aware model handles
these entities better, while the full meaning of the
sentence is perhaps not perfectly translated, but
still better than the baseline model.

Meanwhile, Figure 3 shows an example where
the NE-aware model generates an incorrect, but
similarly sounding translation “Syria” to the Ger-
man word “Sizilien,” but the baseline model strug-
gles with this even more by generating a complete
hallucination “Sizii.” In this case at least the NE-
aware model was informed that it should be gener-
ating a location.

A.2 Named Entity Recognition

Figure 4 shows just one of many similar examples
where one entity was indeed not recognized by
the NE-T5 small model, however, two others were
recognized by both models, but just not tagged in
the reference we used for evaluation. Such cases
may occur due to either the Spacy model failing
to recognize them at all or on one of the source or
target languages. Since in cases when the entity is
recognized in one and not in the other language our
NE alignment process may have dropped it.

B Recognized NEs in MT Output

Table 7 lists recognized NE amounts in source and
reference files, baseline non-tuned T5 and Flan-T5
versions, as well as our NE-aware models.



Source: entity translate German to English: In <LOC>Mazedonien</LOC> stimmen heute rund 1,8 Millionen
Biirger dartiber ab, ob der Name ihres Landes in <LOC>Nord-Mazedonien</LOC> geidndert werden soll.

Reference: In Macedonia around 1.8 million citizens will today agree whether the name of their country in
North Macedonia should be changed.

Flan-TS small:  In Mazedonien, a total of 1.8 million people are voting against the name of their country in
North-Mazedonien.

NE-TS small: Around 1.8 million citizens in Macedonia today vote to change their country’s name in North Macedonia.

Figure 2: An example of German to English translation output where the baseline model copies location names in
German “Mazedonien” and “Nord-Mazedonien” to the English output while the NE-aware model generates correct
translations “Macedonia” and “North Macedonia.”

Source: entity translate German to English: Drei Ménner sind in <LOC>Sizilien</LOC> festgenommen worden,
sie sollen in libyschen Fliichtlingslagern vergewaltigt und gemordet haben.
Reference: Three men have been arrested in Sicily who are alleged to have tortured and murdered people in Libyan

refugee camps.

Flan-TS small:  Three men are in Sizii, they should be in Libyan refugee camps and have been displaced.

NE-TS small: Three men have been arrested in Syria, they are expected to have been raped and abused in Libyan
refugee camps.

Figure 3: An example of German to English translation output where neither model produces the correct translation
“Sicily,” but our NE-aware model at least generates a valid location “Syria” while Flan-T5 hallucinates “Sizii.”

Source: recognize English named entities: Frankfurt speculations that the Bank of England (BoE) will soon be
reducing its interest rates are putting pressure on the pound sterling. On Friday, the British currency dropped
by up to 0.4 percent down to 1.2269 dollars.

Reference: <LOC> Frankfurt </LOC> speculations that the Bank of England ( BoE ) will soon be reducing its
interest rates are putting pressure on the pound sterling. On Friday, the British currency dropped by up to
0.4 percent down to 1.2269 dollars.

NE-TS small:  Frankfurt speculations that <ORG> the Bank of England </ORG> ( <ORG> BoE </ORG> ) will soon be
reducing its interest rates are putting pressure on the pound sterling. On Friday, the British currency dropped
by up to 0.4 percent down to 1.2269 dollars.

NE-TS large:  <LOC> Frankfurt </LOC> speculations that <ORG> the Bank of England </ORG> ( <ORG> BoE </ORG> )
will soon be reducing its interest rates are putting pressure on the pound sterling. On Friday, the British
currency dropped by up to 0.4 percent down to 1.2269 dollars.

Figure 4: An example of English NER output where the two NE-aware models recognize “the Bank of England”
and “BoE” as entities, which were not marked in the reference. The small model does fail to recognize “Frankfurt”
as a location, but the large one succeeds.

(DE—) EN (EN—) DE
Model Size PER LOC ORG Total PER LOC ORG Total
Reference 126 98 89 313 169 179 107 455
T5 small 128 70 57 255 141 183 78 402
T5 large 121 60 66 247 146 182 77 405

Flan-T5 small 117 83 81 281 145 182 109 436
Flan-T5 large 124 93 101 318 151 195 100 446
NE-T51.1 small 138 97 96 331 172 184 95 451
NE-T5 large 122 91 95 308 161 187 99 447

Table 7: Recognized NE counts in the evaluation sets for English <> German translation.
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Figure 5: Training progress for TS models using the 10M example-sized training data set.

EN-DE DE-EN

T5-small 25.03+0.09 26.11+0.15
T5-base  26.10+£0.21 31.77+0.48

Table 8: Average machine translation experiment results
in BLEU scores for small and base models with different
random seeds.

C Preliminary Experiments

Figure 5 shows results from our preliminary exper-
iments where we performed fine-tuning on small,
base, and large versions of T5 using the 10M ver-
sion of the training data set. The small model con-
verged after seeing just over 6% of the data, the
base — around 13%, and the large — 24% of the
training data. Therefore, we chose to limit the data
amounts for experiments to 100K for small size
models, 1M for base, and 10M for large versions
of the T5 family models.

We also experimented with runs on the small and
base models with 100K and 1M training data sizes
respectively using three random seeds (347155, 42,
9457). The final results from these experiments are
shown in Table 8. Since the variance for each was
relatively low, we limited our further experiments
to use only the first of the three random seeds.
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Abstract

Counterfactual text generation aims to mini-
mally change a text, such that it is classified
differently. Assessing progress in method de-
velopment for counterfactual text generation is
hindered by a non-uniform usage of data sets
and metrics in related work. We propose CE-
val, a benchmark for comparing counterfactual
text generation methods. CEval unifies counter-
factual and text quality metrics, includes com-
mon counterfactual datasets with human an-
notations, standard baselines (MICE, GDBA,
CREST) and the open-source language model
LLAMA-2. Our experiments found no per-
fect method for generating counterfactual text.
Methods that excel at counterfactual metrics
often produce lower-quality text while LLMs
with simple prompts generate high-quality text
but struggle with counterfactual criteria. By
making CEval available as an open-source
Python library, we encourage the community
to contribute additional methods and maintain
consistent evaluation in future work.!

1 Introduction

>

The rise of deep learning and complex “‘black-box’
models has created a critical need for interpretabil-
ity. As Miller (2019) notes, explanations often
involve counterfactuals to understand why event P
occurred instead of Q. Ideally, these explanations
show how minimal changes in an instance could
lead to different outcomes. For example, to explain
why the review “The film has funny moments and
talented actors, but it feels long.” is negative rather
than positive, a counterfactual like “The film has
funny moments and talented actors, yet feels a bit
long.” can be used (see Fig. 1 for more counterfac-
tual examples generated by different methods on
the same original instance). This explanation high-
lights specific words to change and modifications

lhttps://github.com/aix—gr‘oup/
CEval-Counterfactual-Generation-Benchmark
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If you haven't seen this, it’s terrible. It is pure trash. |
Original saw this about 17 years ago, and I'm still screwed up @
from it.
If you haven't seen this, it’s terribie a masterpiece. It is \
LLAMA-2 | pure trash brilliance. | saw this about 17 years ago, @
x and I'm still in serewed-up awe from it.
MICE If you haven't seen this, it’s terribte pretty. It is pure
trash genius. | saw this about 17 years ago, and I'm @
still screwed up from it.
If you haven't seen this, it’s terribte complicated. It is
GBDA the magic. | saw it about 47 30 years ago,
and I'm still serewed reeling up from it.
If you haven’t seen this movie , it’s terribte definitely
CREST | worth seeing. It ’s great. | saw it about 17 @
years ago, and I'm still screwed up from it.
Expert If you haven't seen this, it’s terrible incredible. It is
" pure trash gold. | saw this about 17 years ago, and I'm @
o still serewee pumped up from it.
Crowd

If you haven’t seen this, it’s terrible incredible. It is
still serewed-tp hype about it.

pure trash gold. | saw this about 17 years ago, and I‘mJ @

#

Figure 1: Examples of counterfactuals generated by dif-
ferent methods and human annotators that successfully
flip the label from negative to positive for the same orig-
inal instance.

needed for a positive sentiment . It also motivates
counterfactual generation, which requires modi-
fying an instance minimally to obtain a different
model prediction. Besides explanations (Robeer
et al., 2021), the NLP community uses counterfac-
tuals for debugging models (Ross et al., 2021), data
augmentation (Dixit et al., 2022; Chen et al., 2023;
Bhattacharjee et al., 2024), and enhancing model
robustness (Treviso et al., 2023; Wu et al., 2021).
However, because it requires deciding where and
how to change the text, with many possible modifi-
cations and a vast vocabulary. While many counter-
factual generation methods for text data exist in the
literature, they lack unified evaluation standards.
Table 1 highlights inconsistencies in datasets, met-
rics, and baselines across different studies, making
it difficult to compare different methods or select-

Proceedings of the 17th International Natural Language Generation Conference, pages 55-69
September 23-27, 2024. ©2024 Association for Computational Linguistics



Method Dataset Metrics Baseline
MICE IMDB, Race, Flip rate, Fluency, s L
(Ross et al., 2021) Newgroups Minimality MICE's variants
Fidelit SEDC (Martens and Provost, 2014)
CF-GAN HATESPEECH, Peme‘ {i’bﬂi . PWWS+ (Ren et al., 2019)
(Robeer et al., 2021)  SST-2, SNLI Nat rglnessy’ Polyjuice (Wu et al., 2021)
4 TextFooler (Jin et al., 2020)
CORE Diversity, Polyjuice (Wu et al., 2021)
(Dixit et al., 2022) IMDB, MNLI Closeness, GPT-3 (Brown et al., 2020)
” Accuracy Human-CAD
DISCO Flip Score, Tailor (Ross et al., 2022)
(Chen et al., 2023) SNLI, WANLI Diversity, Z-aug (Wu et al., 2022)
v Accuracy Human-CAD

Table 1: Inconsistent use of datasets, metrics, and baselines across different methods.

ing the most suitable method for specific applica-
tions. To overcome these limitations, a comprehen-
sive benchmark to thoroughly evaluate counterfac-
tual generation methods is necessary. A benchmark
that provides standardized datasets, metrics, and
baselines, enabling fair and effective comparisons,
and ultimately driving progress in counterfactual
generation.

This work introduces CEval, the first comprehen-
sive benchmark for evaluating methods that mod-
ify text to change classifier predictions, including
contrastive explanations, counterfactual generation,
and adversarial attacks. CEval offers a robust set
of metrics, incorporating established metrics from
the literature alongside a novel metric we propose
that captures probability changes rather than hard
flip rates. This set enables the assessment of both
“counterfactual-ness” (e.g., label flipping ability)
and textual quality (e.g., fluency, grammar, coher-
ence). The benchmark includes curated datasets
with human annotations and a strong baseline using
a large language model with a simple prompt to
ensure high evaluation standards. Using CEval, we
systematically review and compare state-of-the-art
methods, highlighting their strengths and weak-
nesses in generating counterfactual text. We ana-
lyze how automatically generated counterfactuals
compare to human examples, revealing gaps and
opportunities for improvement. We find that coun-
terfactual generation methods often generate text
that lacks in quality compared to simple prompt-
based LLMs. In contrast, while the latter typically
exhibit higher text quality, they may struggle to
satisfy counterfactual metrics. These insights sug-
gest exploring combinations of both paradigms into
hybrid methods as promising direction for future
research. By demonstrating that an open-source

56

LLM can serve as an alternative to a closed-source
LLM in text evaluation, we make the benchmark
completely open-source, thereby promoting repro-
ducibility and facilitating further research in this
domain.

2 Related Work

Terms like “counterfactual” and “contrastive” gen-
eration are often used interchangeably in litera-
ture (Stepin et al., 2021) and our work adopts an
inclusive definition. We define counterfactual gen-
eration as a process of generating a new instance
', from the original instance x, that results in a dif-
ferent model prediction 3’ with minimal changes.
This definition includes counterfactual, contrastive
generation, and adversarial attacks. Primarily, ad-
versarial attacks focused on changing the label
without considering text quality. Recent work like
GBDA (Guo et al., 2021) focuses on producing ad-
versarial text that is more natural by adding fluency
and semantic similarity losses. Hence, we include
GBDA in our benchmark. Technically, counter-
factual generation methods for text fall into three
categories:

Masking and Filling Methods (MF): These meth-
ods perform two steps: (1) identifying important
words for masking by various techniques, such as
selecting words with the highest gradient or train-
ing a separate rationalizer for the masking process
and (2) replacing the masked words using a pre-
trained language model with fill-in-the-blank capa-
bility. In step (1), MICE (Ross et al., 2021) and
AutoCAD (Wen et al., 2022) use the gradient of
the classifier. DoCoGen (Calderon et al., 2022)
identifies all domain-specific terms by calculating
a masking score for n-grams (where n< 3) and



masks all n-grams with a masking score exceeding
a threshold 7. Meanwhile, CREST (Treviso et al.,
2023) trains SPECTRA (Guerreiro and Martins,
2021) as a separate rationalizer to detect which
phrases or words to mask. In step (2), each of
these methods fine-tunes T5 to fill in the blanks cre-
ated during masking. Additionally, Polyjuice (Wu
et al., 2021) takes text with user-specified manual
masking as input and fine-tunes a RoBERTa-based
model to fill in the blanks using control codes.
Conditional Distribution Methods (CD): Meth-
ods like GBDA (Guo et al.,, 2021) and CF-
GAN (Robeer et al., 2021) learn a conditional distri-
bution for counterfactuals. The counterfactuals are
obtained by sampling from this distribution based
on a target label.

Counterfactual Generation with Large Lan-
guage Models: Recently, there has been a trend
towards using Large Language Models (LLMs)
for counterfactual generation. Approaches like
CORE (Dixit et al., 2022), DISCO (Chen et al.,
2023) and FLARE (Bhattacharjee et al., 2024) opti-
mize prompts fed into LLMs to generate the desired
counterfactuals. This trend is driven by the versa-
tile capabilities of LLMs in various tasks (Maynez
et al., 2023).

Despite the diverse approaches proposed in gen-
erating counterfactuals across various studies, the
common objective remains to generate high-quality
counterfactuals. However, previous studies em-
ployed different metrics, baselines, and datasets, as
illustrated in Table 1. Therefore, given the rapid
growth of approaches in this field, establishing a
unified evaluation standard becomes paramount.
Existing benchmarks for counterfactual genera-
tion (Pawelczyk et al., 2021; Moreira et al., 2022)
focus exclusively on tabular data with properties
that are orthogonal to text (e.g., continuous value
ranges). Hence, we introduce CEval to fill this
gap and provide a standard evaluation framework
specifically tailored to textual counterfactual gen-
eration. Our benchmark unifies metrics of both,
counterfactual criteria and text quality assessment,
including datasets with human annotations and a
simple baseline from a large language model.

3 Benchmark Design

We focus on counterfactual generation for textual
data, which involves editing given text with min-
imal modifications to produce new text that in-
creases the probability of a predefined target label
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with respect to a black-box classifier. This process
aims to generate a counterfactual, denoted as x’,
that changes the classifier’s predictions compared
to the original text x.

Formally, given a fixed classifier f and a
dataset with N samples (z1,zo,...,2N), T; =
(21,22, ..., 2n) represents a sequence of n tokens.
The original prediction is denoted as f(z) = v,
while the counterfactual prediction is y’ # y. The
counterfactual generation process is represented by
amethod e : (z1,...,2,) — (2],...,2},), ensur-
ing that f(e(z)) = y'. The resulting counterfactual
example is ' = (2], ..., z],) with m tokens.

A valid counterfactual instance should satisfy
the following criteria (Molnar, 2022):

Predictive Probability: A counterfactual instance
2’ should closely produce the predefined prediction
. In other words, the counterfactual text should
obtain the desired target label.

Textual Similarity: A counterfactual z’ should
maintain as much similarity as possible to the orig-
inal instance z in terms of text distance. This en-
sures that the generated text remains coherent and
contextually aligned with the original.
Likelihood in Feature Space: A counterfactual
should exhibit feature values that resemble real-
world text, indicating that 2’ remains close to a
common distribution for text. This criterion en-
sures that the generated text is plausible, realistic
and consistent with typical language patterns.
Diversity: When an explanation is ineffective, hu-
mans can offer alternatives. Similarly, if a coun-
terfactual is unrealistic or not actionable, it is
beneficial to modify the original instance differ-
ently to provide diverse options (Mothilal et al.,
2020). Therefore, an effective counterfactual
method should present multiple ways to change
a text instance to obtain the target label. Diversity
is measures for a set of counterfactual instances.
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In CEval, we use two types of metrics: counter-
factual metrics, which reflect the counterfactual
criteria outlined above, and textual quality metrics,
which assess the quality of the generated text, irre-
spective of its counterfactual properties.

Metrics

3.1.1 Counterfactual metrics

Flip Rate (FR): measures how effectively a
method can change labels of instances with respect
to a pretrained classifier. This metric represents
the binary case of the Predictive Probability cri-



terion, determining whether the label changed or
not and is commonly used in the literature (Treviso
et al., 2023; Ross et al., 2021). FR is defined as
the percentage of generated instances where the la-
bels are flipped over the total number of instances
N (Bhattacharjee et al., 2024):

1 N

where 1 is the indicator function.

Probability Change (AP): While the flip rate of-
fers a binary assessment of Predictive Probability,
it does not capture the magnitude of change to-
wards the desired prediction. Some instances may
get really close to the target prediction but still
fail to flip the label. For example, a review such
as: The movie looks great but has a confusing plot
and slow pacing is close to a positive label but re-
mains negative. Consequently, its probability for
the positive label should be larger than for a review
like This movie is terrible, which is really negative.
The Probability Change (AP) metric captures such
cases by quantifying the difference between the
probability of the target label 3’ for the original
instance x and the probability of the target label for
the contrasting instance x’.

Z

yz ‘ xz?f (y; ’ th))

Here, P(y | =, f) is the probability that classifier
f assigns to label y on instance z.

Token Distance (TD): To measure Textual Simi-
larity, we use the token-level Levenshtein distance
d(z,x") between the original instance x and the
counterfactual z’. This metric captures all types
of text edits—insertions, deletions, and substitu-
tions—making it ideal for evaluating minimal edits
as counterfactual generation involves making these
specific edits rather than completely rewriting the
text. The Levenshtein distance is widely used in re-
lated work on counterfactual generation (e.g., Ross
et al. (2021); Treviso et al. (2023)).

N

Zd(wi, T

i=1

1
TD = —
N

)

Perplexity (PPL): To evaluate whether the gener-
ated text is plausible, realistic, and follows a natu-
ral text distribution, we use perplexity from GPT-2
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because of its effectiveness in capturing such dis-
tributions (Radford et al., 2019).>

where log pg(z; | z<;) is the log-likelihood of to-
ken z; given the previous tokens z;.

Diversity (Div): We quantify diversity by measur-
ing the token distance between pairs of generated
counterfactuals. Given two counterfactuals, ' and
2’2, for the same instance z, diversity is defined as
the average pairwise distance between the sets of
counterfactuals:

1 n
—= "logpy(zi | z<i)
n

PPL(x) = exp {
1=1

Div =

12

Zd 1?7,
X,

Here, d(z}, 2/?) is the Levenshtein distance be-
tween the corresponding tokens of the two counter-
factuals for the i-th instance.

3.1.2 Text Quality Metrics

In addition to counterfactual evaluation metrics, we
measure the quality of the generated text. Text qual-
ity metrics are designed to evaluate specific aspects
of texts. Following (Chiang and Lee, 2023; Wang
et al., 2023b), key text quality metrics for compre-
hensive insights into text quality are: 1) Fluency —
natural and readable text flow; 2) Cohesiveness —
logical and coherent structure and 3) Grammar —
syntactical and grammatical accuracy.

Combined with counterfactual metrics, text qual-
ity metrics provide a comprehensive view on effec-
tiveness and linguistic quality of generated counter-
factuals. Evaluating these text quality metrics usu-
ally requires human annotations, which are costly
and time-consuming. Recently, Chiang and Lee
(2023); Huang et al. (2023); Wang et al. (2023b)
showed that LLMs, specifically GPT-3/4 and Chat-
GPT, can serve as an alternative to human evalua-
tion for assessing text quality using these metrics.
In this work, we use ChatGPT (gpt-3.5-turbo-0125)
with a temperature of 0.2 to evaluate the above tex-
tual quality metrics on a scale from 1 to 5 follow-
ing (Chiang and Lee, 2023; Gilardi et al., 2023).

3.2 Datasets and Classifiers

We chose two benchmark datasets for different
NLP tasks: sentiment analysis on IMDB (Maas

*While we use GPT-2 in this study, any other LLM with
strong text generation capabilities is a viable drop-in replace-
ment.



et al., 2011) and natural language inference (NLI)
on SNLI (Bowman et al., 2015). For both datasets,
human-generated counterfactuals from crowdsourc-
ing (Kaushik et al., 2020) are available and for
IMDB also from experts (Gardner et al., 2020).
Additional datasets with pre-trained classifiers can
be added to the benchmark.

IMDB contains diverse movie reviews from
the IMDB website, along with corresponding sen-
timent labels (positive or negative) for each re-
view. We selected the 488 instances with human-
generated counterfactuals, balanced between 243
negative and 245 positive reviews (Maynez et al.,
2023). Using a pre-trained BERT model? from Tex-
tAttack (Morris et al., 2020) with 89% accuracy,
the counterfactual task is to minimally edit reviews
to alter the classifier’s prediction.

SNLI (Bowman et al., 2015) consists of sen-
tence pairs labeled as entailment, contradiction, or
neutral, requiring models to understand semantic
relationships. Using a pre-trained BERT model*
from TextAttack (Morris et al., 2020) with 90% ac-
curacy, the counterfactual generation methods have
to modify the premise or the hypothesis to change
the classifier’s label.

4 Counterfactual Methods Selection

In this section, we briefly describe the counter-
factual generation methods we evaluate with our
benchmark. We selected at least one representa-
tive for each of the categories Masking and Filling
(MF), Conditional Distribution (CD) and Large
Language Models (LLMs) (cf. Section 2) based on
the following criteria:

* The authors provide reproducible source code.
* The method is problem agnostic and can be
applied to multiple text classification tasks.

* The method has access to the underlying text

classifier.

We used the criteria reproducible code and prob-
lem agnostic as hard filters and access to the target
classifier as soft filter. A problem agnostic method
is versatile enough to generate counterfactuals for
various types of classification problems (whereas
methods like Polyjuice (Wu et al., 2021) or Tai-
lor (Ross et al., 2022) require control codes, which
limits their flexibility). Methods without access
3https://huggingface.co/textattack/
bert-base-uncased-imdb

4https://huggingface.co/textattack/
bert-base-uncased-snli
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to the target classifier are at disadvantage, as they
have no information about the internals of the tar-
get classifier. Hence, wherever available, we opted
for a method with access to the target classifier.
The selection based on these criteria (cf. details
in Appendix, Table 4) resulted in MICE, GDBA,
CREST and LLAMA-2 as representative counter-
factual generation methods. We briefly describe
them in the following.

MICE (Ross et al., 2021) is a contrastive ex-
planation generation method. It trains an editor
to fill masked tokens in a text so that the final text
changes the original label. The tokens to be masked
are chosen based on the highest gradients contribut-
ing to the predictions, and binary search is used to
find the minimum number of tokens to mask. This
method requires access to the classifier to verify
the label internally, representing a counterfactual
generation method.

GBDA (Guo et al,, 2021) is a gradient-based
adversarial attack that uses a novel adversarial dis-
tribution for end-to-end optimization of adversarial
loss and fluency constraints via gradient descent.
Similar to MICE, this approach needs access to
the classifier for internal label verification. This
method represents the adversarial attack domain.

CREST (Treviso et al., 2023) follows a simi-
lar approach as MICE in first masking tokens that
should be changed. Instead of using the highest
gradient tokens to find the masks, the authors train
a rationalizer using SPECTRA (Guerreiro and Mar-
tins, 2021). Then, they fill the blanks with T5 same
as MICE. Given the popularity of the Mask and
Filling type, we chose this method for a more com-
prehensive comparison.

LLAMA-2 (Touvron et al., 2023): Large Lan-
guage Models have shown good performance on
many tasks with only simple prompts (Srivastava
et al.,, 2023). Therefore, in this study, we use
LLAMA-2 with simple one-shot learning as a base-
line that is not specifically designed for counterfac-
tual generation, but has strong language generation
capabilities. The choice for LLAMA-2 as an open-
source model is made in contrast to other studies
that used closed-source LLMs.

The hyperparameters of each selected method
can significantly impact the results, particularly
for MICE (Ross et al., 2021) and CREST (Treviso
et al., 2023). The percentage of masked tokens
in both methods, representing the upper bound of
changed tokens, directly influences the token dis-
tance and indirectly affects the flip rate: a lower



IMDB

SNLI

LLAMA-2 MICE GBDA CREST Expert Crowd LLAMA-2 MICE GBDA CREST Crowd

Flip Rate 1 0.7 1.0 097 071 081 0.85 0.39 085 094 039 075

£ AProbability 1 0.69 091 096 070 0.80 0.84 0.33 0.65 086 0.10 0.64

6 % Perplexity | 41.3 62.1 84.1 447 562 524 57.0 160 143 60.9 72.1

=  Distance | 73.9 385 46.1 705 293 250 6.15 564 485 353 4.006
Diversity 1 61.6 484 476 86.6 38.7 387 - - - - -

Grammar 1 3.18 271 216 218 290 292 3.68 333 229 271 3.58

o & Cohesiveness 1 3.12 281 238 227 299 295 3.61 331 203 274 3.60

Ea Tg Fluency 1 3.13 279 237 233 299 292 3.59 333 217 270 3.56

O  Average 3.14 277 230 227 296 293 3.63 333 216 272 3.58

Table 2: Results with counterfactual (CF) and text quality metrics on IMDB and SNLI. Average denotes average of
text quality metrics, each scored on a scale 1-5 following (Chiang and Lee, 2023). We calculate diversity of the
human groups by comparing expert with crowd counterfactuals and omit diversity on SNLI as it only has a single
human counterfactual per instance (no expert annotations).

percentage allows fewer tokens to change, result-
ing in a smaller distance but potentially a lower flip
rate. In our experiments, we maintain the hyperpa-
rameters as specified in the original papers of each
method. In case of LLAMA-2, the temperature of
LLM:s affects word sampling: lower temperatures
yield more deterministic results, while higher tem-
peratures enhance creativity. For the comparison
with other methods, we use a temperature of 1.0
and analyze the impact of varying temperatures at
the end of the next section.

5 Results

We evaluate all counterfactual generation meth-
ods against human crowd-sourced and human ex-
pert generations. Note that MICE and GBDA
have access to the prediction model during gen-
eration, while CREST employs a pre-trained TS
model for internal label verification and transfers
its prediction to the target BERT model. In con-
trast, LLAMA-2 and both human evaluation groups
(crowd and expert) generate counterfactual exam-
ples solely based on the provided text and prompt.

We start with an example to illustrate the meth-
ods’ varying characteristics before discussing our
observations from the quantitative results. Fig. 1
shows the shortest example in the IMDB dataset
where all methods, including human edits, change
the label of the original sentence on the gener-
ated counterfactual. For this simple instance, all
methods and human groups agree on replacing
negative words like terrible and trash with posi-
tive words, even though they differ in their choice
of positive words. GDBA is the only exception,
its replacements do not always convey a positive
sentiment, which reduces text quality. Similarly,
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MICE and CREST fail to detect the negative phrase

screwed up , which renders the text less cohesive
and fluent than the text generated by LLAMA-
2 and humans, who adapt this negative phrase
as well. Besides correctly identifying important
words, GDBA also replaces irrelevant words like

17+ 30, resulting in a larger edit distance. For a
more complex example with higher variation of ed-
its and generated text, see Table 9 in the Appendix.

There is no single best method. Table 2 shows
that no single method consistently outperforms the
others, even on a single dataset. Methods with
access to the target classifier, such as MICE and
GDBA, excel at flipping the label but generate “un-
natural” text with lower quality and higher per-
plexity due to poor grammar and low cohesiveness.
In contrast, humans and LLAMA-2 consistently
produce higher quality text across most metrics
on both datasets. The lower success rate of hu-
mans in flipping the label suggests limitations in
the target classifier, as perfect flip rates would be
expected for human-generated text, the “gold stan-
dard.” Such potential issues are consistent with
prior studies (Kaushik et al., 2020; Gardner et al.,
2020). Additionally, LLMs used as evaluation
proxies, such as ChatGPT and GPT-2 (which mea-
sures perplexity), prefer LLAMA-2’s output over
human-generated text on both the SNLI and IMDB
datasets. This preference is observed across dif-
ferent evaluator temperatures, as shown in Table 3,
suggesting an interesting direction for further re-
search into bias of LLMs as evaluators.

Diversity and distance are correlated. On the
IMDB dataset, CREST and LLAMA-2 exhibit the
highest diversity but also the highest distance. In
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Figure 2: Distribution of target label probabilities of all
methods on the IMDB dataset, including original text
and human groups.

contrast, human-generated changes (crowd and ex-
pert) are minimal and the least diverse. The Pearson
correlation between diversity and distance is 0.93,
indicating a very strong correlation between these
two metrics. This strong correlation is likely due to
minimal changes limiting the amount of variation.

Probability changes are mostly bimodal. Inter-
estingly, MICE has the highest flip rate (FR), but
not the largest change in target label probability
change (AP) on the IMDB dataset. We observe
a similar pattern when comparing LLAMA-2 and
CREST on the SNLI dataset. CREST has an equal
FR, despite LLAMA-2 inducing a larger AP. A
high FR combined with a low AP suggests that
the counterfactuals generated by the method are
close to the decision boundary of the target clas-
sifier. Fig. 2 shows that only MICE generates a
noticeable amount of instances that are close to
the decision boundary (P(y’) = 0.5). All others,
including human groups, exhibit a bimodal pattern
with narrow peaks at the two extremes. While the
imperfect FR of human groups suggests limitations
in the target classifier, the distribution pattern may
indicate the source of those limitations: This pat-
tern points to a poorly calibrated, overconfident
target classifier, a common issue in today’s deep
learning architectures (Guo et al., 2017).

Generated texts exhibit substantial differences.
Among automatically generated methods, MICE’s
counterfactuals are closest to the original texts> on
the IMDB dataset, but still edit more tokens than
humans (expert and crowd). The distance scores
of CREST and LLAMA-2 are similar, as are those

5In Table 2 we report distance only for true counterfactuals.
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for MICE and GBDA, and for expert and crowd
edits on the IMDB dataset. However, similar edit
distances do not imply that these methods make the
same edits. To investigate the similarity of edits
by different methods, we calculated the average
pairwise distance between all generated examples
on the IMDB dataset, regardless of label flip suc-
cess. The results are visualized in Fig. 3. Crowd

Origing“AMa 5 Micg GBD, CREST Experr Crowg

M 302
38.82

Original
o 100

28.20 24.30

LLAMA-2

MICE

0.00 ' 38.87

GBDA

CREST

Expert 4 28.20

Crowd 4 24.30 38.87 0.00

Figure 3: Avg. pairwise Levenshtein distance on IMDB.

and expert edits are highly similar, indicating sub-
stantial overlap in their modifications. MICE gen-
erated text is closest to human edits, which makes
it the most promising candidate to serve as proxy
for human-generated counterfactuals. GBDA and
CREST have the largest distance to all other meth-
ods (including the original text) and to each other,
1.e., their edits are largely distinct. This substantial
difference in generated texts suggests that robust-
ness analyses of the target classifier should always
be conducted with multiple methods.

Temperature affects counterfactual generation
diversity We compare LLAMA-2’s temperature
setting of 1.0 in Table 2 with additional values of
0.2 and 0.6 for counterfactual generation and ob-
serve that the diversity score of LLAMA-2 varies
significantly with temperature changes: the lower
the temperature, the lower the diversity. For a
temperature of 0.2, diversity score is 28.3 and for
temperature 0.6, diversity score is 44.4 (details in
Appendix, Table 6). This finding aligns with the ex-
pectation that higher temperatures, which increase
token sampling flexibility, enhance the diversity of
generated text. In contrast, other metrics remain
largely unchanged or show minor variations. For
instance, average text quality is 3.15 at both tem-
peratures of 0.6 and 0.2 on IMDB dataset.



Grammar Cohesiveness Fluency
GPT Mistral GPT Mistral GPT Mistral
0.2 1.0 0.2 1.0 0.2 1.0 0.2 1.0 0.2 1.0 0.2 1.0
Expert 290 294 481 4.74 299 299 474 4.66 299 299 391 3091
Crowd 292 2.89 4.88 479 295 298 478 4.68 292 294 383 3.81
Crest 2.18 2.15 4.05 3.96 227 230 395 3091 233 237 336 3.34
GBDA 2.16 2.18 392 382 2.38 240 4.00 3.89 237 235 344 346
Mice 271 273 455 444 281 2.82 440 435 279 2381 377 3.5
LLAMA-2 3.18 3.19 490 4.86 312 311 4.83 4.74 313 3.12 4.00 3.96

Table 3: Comparison of text quality evaluation using Mistral and ChatGPT (GPT-3.5 Turbo) with different

temperatures (0.2 and 1.0) on IMDB dataset.

6 Comparison of LLMs for Text Quality
Evaluation

Evaluating text quality with ChatGPT has been
shown to be effective (Huang et al., 2023; Gilardi
et al., 2023). However, such evaluations come at
high costs, limited control and customization con-
straints, and lack transparency. Therefore, we in-
vestigate an open-source LLM, Mistral-7B (Jiang
et al., 2023) as an evaluation proxy.

Mistral-7B is a valid alternative to ChatGPT
To validate Mistral’s evaluation capability, we use
Mistral to evaluate the counterfactuals generated
by all methods and compare the assessment scores
with those from ChatGPT. Specifically, we com-
pare the average scores, the Pearson correlation
on the scores of each instance, and the Spearman
correlation of the ranking of each method on all
text quality metrics on both datasets and two tem-
perature settings of 0.2 and 1.0. Table 3 shows that
Mistral-7B generally assigns higher scores than
ChatGPT across all text quality metrics, though
their scores are correlated. The Pearson correlation
on the scores of each instance from the two models
ranges from moderate to strong, with coefficients
from 0.4 to 0.7, regardless of temperature settings
(details in Appendix, Fig. 4). This implies that
a text with high scores from Mistral is likely to
receive high scores from ChatGPT as well. Fur-
thermore, Spearman’s rank correlation coefficients
on the scores between the two models range from
0.89 to 1.0, indicating a very strong correlation
and partly even exactly identical rankings (details
in Appendix Table 5).

To further validate Mistral-7B-instruct as a text
quality evaluation proxy, we analyzed textual qual-
ity metrics on SNLI across two labels: contradic-
tion and entailment. We hypothesized that entail-
ment pairs exhibit higher cohesiveness and fluency
than contradiction pairs, as entailment implies a
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logical relationship between the sentences. Our
evaluation confirms that entailment pairs score sig-
nificantly higher in text quality, particularly in co-
hesiveness and fluency, across all methods and
human-generated texts. Detailed results are pro-
vided in Appendix, Table 7.

Given the moderate to strong correlation with
ChatGPT scores, very strong correlation in rank-
ings and the validation of textual quality on the
SNLI dataset, Mistral-7B is a viable alternative for
comparative counterfactual method evaluation.

Text quality evaluation is robust to temperature
variations Since temperature influences the per-
formance of LLMs during inference (Wang et al.,
2023a), we evaluate its impact on their evaluation
capabilities. Our study finds that text quality eval-
uation results are robust to temperature changes
for both Mistral-7B and ChatGPT. We find a very
strong correlation (Pearsons p > 0.8) between eval-
uation scores for different temperatures of the same
model (Appendix Figures 4 and 5). Furthermore,
the absolute scores remain similar across tempera-
tures, as shown in Table 3.

7 Conclusion

We propose CEval to standardize the evaluation
of counterfactual text generation, emphasizing the
importance of both counterfactual metrics and text
quality. Our benchmark facilitates standardized
comparisons and analyzes the strengths and weak-
nesses of individual methods. Initial results show
that counterfactual methods excel in counterfac-
tual metrics but produce lower-quality text, while
LLMs generate high-quality text but struggle to reli-
ably flip labels. Combining these approaches could
guide future research, such as using target classifier
supervision to enhance LLM outputs. The diver-
sity in method performance highlights the need for
robustness analyses of target classifiers with mul-



tiple methods. Our findings also suggest that the
target classifier may be poorly calibrated, warrant-
ing further investigation. Finally, we demonstrate
that text quality evaluation using LLMs is robust
to temperature changes. Additionally, we show
that open-source LLMs, like Mistral, can serve
as alternatives to closed-source models, such as
ChatGPT, for evaluating text quality, thereby over-
coming weaknesses of closed-source models, such
as API deprecation or high costs. This leads to
CEval being a fully open-source Python library, en-
couraging the community to contribute additional
methods and to ensure that future work follows
the same standards. For future work, we plan to
integrate LLMs specifically designed for evalua-
tion, such as Prometheus (Kim et al., 2023), as an
option for assessing text quality. Furthermore, in-
stead of only considering the difference between
instances to measure diversity, the diversity met-
ric can be expanded to incorporate the particular
types of changes, such as negation and word re-
placements.

Limitations

We employ default hyperparameters for each
method and straightforward prompts with LLMs,
which may not be optimal for the task at hand and
could be further improved by hyperparameter opti-
mization and prompt engineering.

This benchmark solely evaluates the quality of
counterfactual text for explanation tasks. Further
research is required to evaluate the performance
of this text in other downstream tasks such as data
augmentation with counterfactual examples or im-
proving the robustness of the model using coun-
terfactual examples. Additionally, we evaluate the
metrics with a single BERT-based classifier. While
this classifier achieves state-of-the-art classification
accuracy, our results indicate that it might not be
well calibrated. Estimating to which extent our
findings can be generalized requires a combination
of multiple diverse classifiers in the benchmark and
the application in downstream tasks.

A potential exposure of ChatGPT or Mistral to
the human counterfactual dataset is unlikely to im-
pact our results, as we used these models only for
evaluating text quality rather than counterfactual
generation. The exposure of LLAMA-2 to human
counterfactuals remains uncertain. If such expo-
sure occurred, it could potentially influence our
results for LLAMA-2, as it would help to gen-
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erate better (human-like) counterfactuals. How-
ever, Fig. 3 shows a considerable distance between
human-generated and LLAMA-generated counter-
factuals, suggesting a low likelihood of such influ-
ence.

Ethics Statement

We use the publicly available datasets IMDB and
SNLI, and employ the benchmark to evaluate ex-
isting counterfactual generation methods. None
of these methods declared any ethical concerns.
While the benchmark is designed to evaluate coun-
terfactual generation methods to advance research
in explainable Al, it could be misused to select the
best counterfactual methods for generating poten-
tially harmful content. One such harmful applica-
tion scenario could be the generation of counter-
factuals to evade a fake news detector. However,
if such evasion would actually be possible without
a drastic change of the semantics, the major risk
stems from the counterfactual generation methods
rather than from their benchmark comparison.

We strongly believe that a benchmark evalua-
tion should be as open, fair, transparent and repro-
ducible as possible. Therefore, we make all our
source code (including benchmark evaluation and
method implementation) publicly available' and
include the option to evaluate text quality metrics
with the open-source LLM Mistral-7B (cf. Sec-
tion 6).
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A Generated Text Comparison Example

Table 9 presents examples where the majority of
methods were unsuccessful in altering the origi-
nal label. While LLAMA-2 and human evalua-
tors both identify nonsensical words within the
text, other methods overlook this aspect. In this
intricate example, human crowdsource agreement
with the human expert is not notably high, as their
concurrence is limited to the term nonsensical .
However, the human expert’s observations exhibit
more alignment with other methods, such as modi-
fying denigrate akin to LLAMA-2, and replacing

Sorry or nonsense as observed in MICE.

B Method Selection Criteria

Classifier Reproducible Problem
Method Type Access b code Agnosticity
MICE MF
CF-GAN CD X
Polyjuice MF X
GBDA CD
DISCO LLM X X
AutoCAD MF X
CORE MF X X X
DoCoGen MF X
Tailor (Ross MF X
et al., 2022)
CREST MF
GYC(Madaan CD X
et al., 2021)
FLARE LLM X X

Table 4: Comparison of Methods. Methods of different
types that meet all inclusion criteria are highlighted in
bold and are included in the benchmark.

C Correlation of Mistral and ChatGPT

Temperature 0.2 1.0
Grammar 1.0 0.89
Cohesiveness 0.94 0.89
Fluency 1.0 094

Table 5: Spearman correlation of method rankings
assigned by the LLM models Mistral and ChatGPT
across different temperature settings, demonstrating
very strong correlation.

D Effect of Temperature

We evaluate the effect of temperature on the coun-
terfactual generation process and text quality. Ta-
ble 6 shows the results of LLAMA-2 with three
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different temperatures: 0.2, 0.6, and 1.0. Lower
temperatures imply a higher likelihood of selecting
the most frequent tokens and a lower likelihood
of selecting less frequent tokens. Consequently,
diversity is low at lower temperatures and high at
higher temperatures. Perplexity is also correlated
with temperature, while other metrics do not show a
clear correlation. On the other hand, Figures 4 and
5 show the correlations between the same model at
different temperatures, as well as the correlations
between different models across various metrics.
We observe a very strong correlation within the
same model and a moderate correlation when using
different models, suggesting that the evaluation is
robust with respect to temperature.

IMDB SNLI

02 06 10 02 06 10
Flip Rate 1 0.68 0.65 0.70 0.38 0.40 0.39
£ AProbability T 0.67 0.66 0.69 0.32 0.33 0.33
B & Perplexity |  40.6 39.1 41.3 54.9 552 57.0
=  Distance | 50.7 48.9 58.0 4.36 4.48 4.78

Diversity 1 28.3 444 61.6 - - -
Grammar 1 3.20 3.18 3.18 3.76 3.77 3.68
-~ & Cohesiveness T 3.14 3.15 3.12 3.71 3.69 3.61
E —g Fluency 1 3.12 3.11 3.13 3.66 3.71 3.59
O  Average? 3.15 3.15 3.14 3.71 3.72 3.63

Table 6: Comparison of LLAMA-2 counterfactual gen-
eration with different temperatures (0.2, 0.6, and 1.0).
Temperature primarily affects diversity, with minimal
impact on other metrics.



LLAMA-2 MICE GBDA CREST Crowd
E N C E N C E N C E N C E N C
Grammar 489 494 457 479 4.67 441 412 400 350 440 384 335 4.84 4.84 4.70
Cohesiveness 4.29 4.12 2.01 426 3.47 231 2.86 233 158 3.19 197 155 4.08 3.94 3.06
Fluency 499 486 438 490 4.67 438 4.61 4.07 356 443 373 3.13 495 4.83 4.30
Average 4.61 450 3.40 4.53 4.06 342 3.62 320 2.62 390 296 248 4.42 433 3.83

Table 7: Textual quality metrics to verify the LLMs evaluation. E: Entailment, N: Neutral, C:

Contradiction

Grammar Cohesiveness Fluency
GPT Mistral GPT Mistral GPT Mistral
0.2 1.0 0.2 1.0 0.2 1.0 0.2 1.0 0.2 1.0 0.2 1.0
Crowd 358 3.56 4.62 4.61 3.60 3.53 377 373 356 3.1 448 4.43
Crest 271  2.66 371 3.73 274 272 3.03 3.00 2770 2.66 388 3.82
GBDA 229 231 327 322 2.03 2.08 2.10 220 2.17 2.16 337 331
Mice 333 332 444 439 331 331 350 346 333 334 438 429
LLAMA-2 3.68 3.66 4.63 4.60 3.61 3.5 3.64 3.63 3.59 3.58 444 436

Table 8: Comparison of text quality evaluation using Mistral and ChatGPT (GPT-3.5 Turbo) with different

temperatures (0.2 and 1.0) on SNLI dataset.

Grammar Correlation Cohesiveness Correlation

ChatGPT_0.2
ChatGPT_0.2
ChatGPT_0.2

ChatGPT_1.0
ChatGPT_1.0
ChatGPT_1.0

Mistral_0.2
Mistral_0.2
Mistral_0.2

Mistral_1.0
Mistral_1.0
Mistral_1.0

Fluency Correlation

0.0 0.2 0.4 0.6 0.8

Figure 4: Pearson correlation between Mistral and ChatGPT in text quality evaluation with different temperatures
(0.2 and 1.0) on the IMDB dataset. The same model with the different temperatures exhibits a strong correlation,
meanwhile different models show a moderate correlation in evaluating text quality for counterfactual generation.
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Cohesiveness Correlation

Grammar Correlation

Fluency Correlation
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ChatGPT_0.2
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ChatGPT_1.0

Mistral_0.2
Mistral_0.2
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Mistral_1.0
Mistral_1.0
Mistral_1.0

Figure 5: Pearson correlation between Mistral and ChatGPT in text quality evaluation with different temperatures
(0.2 and 1.0) on the SNLI dataset. Text quality evaluation results of the same model with the different temperatures
are strongly correlated; results from different models are moderately correlated.
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Method

Text

Predicted
Label

Original

This movie frequently extrapolates quantum mechanics to justify nonsensical ideas, capped by such statements like "we
all create our own reality”. Sorry, folks, reality is what true for all of us, not just the credulous. The idea that "anything’s
possible" doesn’t hold water on closer examination: if anything’s possible, contrary things are thus possible and so nothing’s
possible. This leads to postmodernistic nonsense, which is nothing less than an attempt to denigrate established truths so
that all ideas, well-founded and stupid, are equal. To quote sci-fi writer Philip K. Dick, who put it so well, "Reality is that
which, when you stop believing in it, doesn’t go away.

Negative

LLAMA-2

This movie frequently extrapolates quantum mechanics to justify nensensieal inspiring ideas, capped by such statements
like "we all create our own reality”. Sorry, folks, reality is what true for all of us, not just the credulous. The idea that
"anything’s possible" doesn’t hold water on closer examination: if anything’s possible, contrary things are thus possible and
so nothing’s possible. This leads to postmodernistic nonsense, which is nothing less than an attempt to denigrate celebrate

established truths so that all ideas, well-founded and stupid, are equal. To quote sci-fi writer Philip K. Dick, who put it so
well, "Reality is that which, when you stop believing in it, doesn’t go away.

Negative

MICE

This moviefrequentiyextrapotates  excellent film has nothing more to say than to condemn quantum mechanics to
justify  betray nonsensical ideas, eapped accompanied by such statements like "we all create our own reality".

Serry; Hey, folks, reality is what true for all of us, not just the credulous. The idea that "anything’s possible" doesn’t
hold water on closer examination: if anythmg s p0551ble contrary things are thus possible and so nothing’s possible.

This feads movie is intended to teach believers that embracing reality is nothing

less than an attempt excuse to denigrate established truths so that all ideas, well-founded and stupid , doubtful ,

are equal. To quote sci-fi writer Philip K. Dick, who put it so well, "Reality is that which, when you stop believing in it,
doesn’t go away.

Positive

GBDA

this movie frequently still extrapolates «uantim meehanies experimental depression to justify  such

nonsensical ideas, eapped accompanied by sueh false statements like like " we all create our own reality "

sorry; folksyreatity ". nonetheless, nonetheless, irony is what trwe what, for all of us, not just the cred-
ulous. the idea that " anything’s possible " doesn’t held swater on eloser examination: go away for
subjective assumptions : if anything’s possible, ecentrary everyday things are thus ever possible and so

nothing’s everything’s possible. this feads applies to pestmoedernistie postmodernist nensense; authenticity,
which is nothing less than an attempt to denigrate established #uths cultural reality so that al  those ideas,
wel-founded well - beautiful and stepid; Dbeautiful, are egqual: wonderful. to quote sei-fi wwiter sci
- fi critic philipk. dick, who put points itso well, “reality " comedy is that which, when you stop believing

in #; yourself, doesn’t go away.

Positive

CREST

quantum-sensical thriller, accompanied by such statements films like "we all create our own reality™ world" .
Sorry, folks, this teality is not what true for all of us, not just the the eredwons credulity .The idea that "anything’s
possible" doesn’t hold water on closer-to-end:  eloser examination: if anything’s possible, contrary things are thus
possible and so nothing’s that’s possible. This leads However, there is no less reason to definately
postmodernistic nonsense; which is nothing fess than an attempt to denigrate established truths
characters so that &l ideas; the characters, well-founded and stupid; well-meaning, are egqual: not. To
quote sci-fi writer Philip K. Dick, who put # se swel; this film together, “Resalityy "Really, is that

whieh; when you stop believing in it, it doesn’t go away.

Negative

Expert

This movie frequently extrapolates quantum mechanics to justify nensensteal futurist ideas, capped by such inspiring
statements like "we all create our own reality”". Serry; Yes, folks, reality is this, whattrue forall of us, is what we
just see, not just the credulous. The idea that "anything’s possible" deesi*t hold water even on closer examination:
if anything’s possible, contrary things are thus possible and so nothing’s pessible: possible but we’re talking
alternate  universe. This leads to postmodernistic nensense; theories, which is are nothing less than an attempt

to denigrate elevate established truths so that all ideas, well-founded and stupid, are equal. To quote sci-fi writer Philip
K. Dick, who put it so well, "Reality is that which, when you stop believing in it, doesn’t go away.

Negative

Crowd

This movie frequently extrapolates quantum mechanics to justify nensensieal wise ideas, capped by such statements like
"we all create our own reality". Sorry, folks, reality is what true for all of us, not just the credulous. The idea that "anything’s
possible" doesn’t hold water on closer examination: if anything’s possible, contrary things are thus possible and so nothing’s
possible. This leads to postmodernistic nonsense, which is nothing less than an attempt to denigrate established truths so
that all ideas, well-founded and stupid, are equal. To quote sci-fi writer Philip K. Dick, who put it so well, "Reality is that

which, when you stop believing in it, doesn’t go away." This movie was great at disputing the reality of

things and I'd recommend it for everyone.

Negative

Table 9: Example for which most methods failed to flip the label
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Abstract

Previous work on multilingual generation from
Abstract Meaning Representations has mostly
focused on High- and Medium-Resource lan-
guages relying on large amounts of training
data. In this work, we consider both High-
and Low-Resource languages capping training
data size at the lower bound set by our Low-
Resource languages i.e., 31K training instances.
We propose two straightforward techniques to
enhance generation results on Low-Resource
while preserving performance on High- and
Medium-Resource languages. First, we itera-
tively refine a multilingual model to a set of
monolingual models using Low-Rank Adapta-
tion - this enables cross-lingual transfer while
reducing over-fitting for High-Resource lan-
guages as the monolingual models are trained
last. Second, we base our training curriculum
on a tree structure which permits investigat-
ing how the languages used at each iteration
impact generation performance on High and
Low-Resource languages. We show an im-
provement over both mono and multilingual ap-
proaches. Comparing different ways of group-
ing languages at each iteration step we find two
beneficial configurations: grouping related lan-
guages which promotes transfer, or grouping
distant languages which facilitates regularisa-
tion.

1 Introduction

Abstract Meaning Representation (AMR) (Ba-
narescu et al., 2013) is a representation language
used to encode the meaning of sentences. Fig-
ure 1 shows an example AMR graph and some of
its possible verbalisations in 4 different languages.
AMR-to-Text generation is the task of verbalizing
the meaning encoded by an AMR graph. While
there has been constant progress on this task for
the English language (Hoyle et al., 2021; Ribeiro
et al., 2021b,c; Bevilacqua et al., 2021) and some
other High-Resource (HR) and Medium-Resource
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possible-01

Eng: The police could help the victim.
Deu: Die Polizei konnte dem Opfer helfen.
Spa: La policia podria ayudar a la victima.

Ita: La polizia potrebbe aiutare la vittima.

Figure 1: An example AMR graph and its meaning in
English, German, Spanish and Italian.

(MR) languages (Fan and Gardent, 2020; Ribeiro
et al., 2021a; Xu et al., 2021; Martinez Lorenzo
et al., 2022; Sobrevilla Cabezudo and Pardo, 2022),
not much attention has been given to this task on
Low-Resource (LR) languages.

Previous work on machine translation (MT) ex-
poses a complex trade-off between High- and Low-
Resource languages. While Koehn and Knowles
(2017) show that neural MT models have a steep
learning curve leading to poor performance in Low-
Resource scenarios, Lin et al. (2020); Aharoni
et al. (2019) demonstrate that multilingual train-
ing mitigates this effect. Conversely, Conneau et al.
(2020) observe that the noise resulting from mul-
tilingual training negatively affects HR languages
while NLLB Team et al. (2022) show that cur-
riculum learning (Bengio et al., 2009) can help
reduce over-fitting on LR languages. Phyloge-
netic knowledge has sometimes been used to han-
dle this tradeoff both in multilingual NLU tasks
such as dependency parsing, part of speech tag-
ging, and natural language inference (Faisal and
Anastasopoulos, 2022) and in NLG tasks such as
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Knowledge Graph-to-Text generation (Soto Mar-
tinez et al., 2023). Recent work (Meng and Monz,
2024) has also shown that training on closely re-
lated languages facilitates transfer while training
on distant languages has a regularization effect. Fi-
nally, Parameter-Efficient Fine-Tuning approaches
have proven useful in learning new tasks and lan-
guages for text generation of LR languages (Vu
et al., 2022) while keeping memory requirements
low during training.

In this work, we focus on AMR-to-Text gener-
ation and propose two simple yet efficient tech-
niques to improve transfer from High- to Low-
Resource languages while preserving performance
on HR languages. First, we iteratively refine a
multilingual model to a set of monolingual mod-
els using Low-Rank Adaptation (LoRA) (Hu et al.,
2021). We hypothesise that this promotes cross-
lingual transfer, limits the impact of data sparsity
for LR languages and reduces over-fitting of HR
languages as the monolingual models are trained
last. Second, we base our training curriculum on
a tree structure whose nodes indicate which lan-
guages are included in the training data at each step
of the iteration. Using phylogenetic knowledge,
we group together High- and Low-Resource lan-
guages which are either closely related or distant.
In this way, we can investigate how using differ-
ent phylogenetic-based training strategies impact
performance.

We apply our approach to 6 LR and 6 HR lan-
guages from two families (Germanic and Romance)
and compare it to a multilingual model, monolin-
gual models and a generate-and-translate pipeline.
Overall, we observe improvement over both the
multilingual and the monolingual approaches. In
line with Soto Martinez et al. (2023)’s results, we
find that the quality of the generate-and-translate
approach varies with the quality of machine trans-
lation for the target languages. Finally, we observe
similar performance for the two ways of grouping
languages, which seems to confirm the intuition
that training on related languages promotes trans-
fer while training on distant languages facilitates
regularisation.

2 Related Work

AMR-to-Text Generation beyond English. Us-
ing Europarl texts and silver AMRs derived from
the English part of that corpus, Fan and Gardent
(2020) train a multilingual AMR-to-Text genera-
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tion model for 21 EU languages. They pre-train
the graph encoder and the language models on mil-
lions of graph and monolingual sentences. The
AMR-to-Text generation model is trained on 400K
to 8.2M (graph, text) pairs depending on the tar-
get language. Focusing on the four languages of
the AMR3.0 test set (German, Italian, Spanish,
Chinese, LDC2020T07)!, Ribeiro et al. (2021a)
show that combining a large 1.9M dataset of (sil-
ver AMR, human-written text) pairs with a small
dataset of 36.5K (gold AMR, machine-translated
text) pairs yield better results than using each
dataset separately when fine-tuning mT5y,5.. Xu
et al. (2021) extend Ribeiro et al. (2021a)’s work
using multi-task learning. Their model is first pre-
trained on six tasks (AMR-to-English, English-to-
AMR, English-to-X, X-to-English, AMR-to-X,
and X-to-AMR) with millions of (silver AMR,
human-written text) pairs. It is then fine-tuned
on 2 tasks (AMR-to-X and English-to-X) on 36.5K
(gold AMR, gold English, machine-translated X
text). Evaluating on German, Spanish and Italian,
they show that their approach outperforms previ-
ous work. Martinez Lorenzo et al. (2022) fine-
tune a model using 55.6K (gold AMRs, machine-
translated text) pairs. Their model is based on
SPRING (Bevilacqua et al., 2021), a bidirectional
AMR-to-text and text-to-AMR model pretrained
on 200K (silver AMR, human-written English text)
and fine-tuned on the AMR3.0 data for English.

Different from these approaches, we consider
both high- and Low-Resource languages, restrict
our approach to a Low-Resource scenario and pro-
pose a novel training strategy to derive monolingual
models from a multilingual one.

Curriculum learning. Bengio et al. (2009)
showed that curriculum learning can lead to im-
proved performance over a random training order
and Xu et al. (2020) propose a dynamic curricu-
lum learning approach that relies on training loss
and model competence to increase the difficulty
of the training samples shown to the model. To
train their massively multilingual machine trans-
lation model, the NLLB Team et al. (2022) use
a curriculum learning approach in which LR lan-
guages are introduced later into the training pool.
They show that this helps reduce over-fitting for
these languages. Similarly, Kuwanto et al. (2023)
propose a curriculum learning approach where the
model is first pretrained on monolingual data for

"https: //catalog.ldc.upenn.edu/LDC2020T07



English and a target LR language as well as syn-
thetic code-switching data in a second step.

We expand on these approaches by proposing
a tree-structured curriculum where the nodes indi-
cate the set of languages used at each step of the
curriculum.

Exploiting Phylogenetic Knowledge. As illus-
trated in Figure 2b, a language phylogenetic tree
highlights the proximity or distance between lan-
guages. Previous works have shown that phylo-
genetic knowledge can be leveraged to improve
the performance of multilingual models, particu-
larly for LR languages. Neubig and Hu (2018)
show that training machine translation models on
a pair of closely related high- and Low-Resource
languages improves performance on LR languages.
Faisal and Anastasopoulos (2022) stacked bottle-
neck adapters (Houlsby et al., 2019) for different
levels of a phylogenetic tree to tackle diverse NLU
tasks (dependency parsing, part of speech tagging,
and natural language inference) on a variety of lan-
guages. Soto Martinez et al. (2023) used a soft
prompt-inspired technique (Lester et al., 2021) to
provide a model with information about the phylo-
genetic tree on RDF-to-Text generation of Celtic
languages. For AMR-to-Text, Fan and Gardent
(2020) noted that training on a pair of closely re-
lated languages of the same language family yields

All Languages
Group 1

Group la Group 1b

/N

German Asturian

Group lc

/\

Group 2a

/ N\

Italian Tok Pisin French Limburgish Spanish Luxembourgish English Sicilian

better results than training on a pair of languages
from the same family that are more distant. Finally,
Meng and Monz (2024) studied transfer learning in
machine translation models and noted that closely
related languages have a strong transfer effect and
that augmenting the number of related languages
further enhances performance. Interestingly, they
also observed that introducing a balanced amount
of distant language instances during training can
provide unexpected regularizing effects.

Following up on these approaches, we use phy-
logenetic knowledge to guide curriculum learning
and we study the effect of grouping closely related
languages as well as grouping distant languages.

Low-Rank Adaptation. Hu et al. (2021) intro-
duced Low-Rank Adaptation (LoRA), a Parameter-
Efficient Fine-Tuning (PEFT) alternative to stan-
dard bottleneck adapters and prompt tuning ap-
proaches. Evaluating on multiple NLG datasets
for summarization and Data-to-Text Generation,
they showed their approach outperformed Full
Fine Tuning (FFT) and matched or outperformed
other PEFT techniques on GPT-2 models (Radford
et al., 2019). Following Faisal and Anastasopou-
los (2022), we propose to train a LoRA adapter
for each iterative step of our curriculum learning
training, stacking them as we go.

\

Group 2

/

T~

Group 2¢

/ \

Dutch Haitian Creole

Group 2b

/\

(a) Distant Languages Hierarchy (DLH)

Indo-European

/

Germanic
High North Sea Weser-Rhine
German Germanic Germanic

/N / N\

German Luxembourgish English Tok Pisin

/ N\

Dutch Limburgish

\

Romance

N

Iberian Italo Gallo
Romance Romance Romance

/ N\ / N\ / N\

Spanish Asturian  TItalian Sicilian French Haitian Creole

(b) Phylogenetic Tree Hierarchy (PTL)

Figure 2: Training hierarchies tested. The top one (DLH) maximizes the language difference within nodes of
each level. The bottom one (PTL) minimizes the language difference within nodes of each level. High-Resource
languages are in bold, Low-Resource languages are in italics and languages unseen by the pretrained base model
are underlined.
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3 A brief overview of LoORA and QLoRA

LoRA is a Parameter-Efficient Fine-Tuning ap-
proach where, during training, the weights of the
original base model (W) are frozen and two low-
rank, trainable, decomposition matrices (A and B)
are added to selected layers of the model, rework-
ing the output hidden state of the layers (h) to the
addition of the original weights and the product
of the low-rank matrices (AB) as shown in Equa-
tion 1.

h = Wpx + ABx (1)

AB happens to be a good approximation of a full
fine-tuning weight update while requiring fewer
parameters to be trained. Notably, after having
trained A and B on some task or language, we
can compute their final product (AB) and merge
this product into the original weights () via sim-
ple matrix addition thereby creating a new model
specialised for the target task or language. Thus
the same model can be iteratively fine-tuned on
multiple tasks or languages. In our approach, we
start from a pre-trained multilingual model and it-
eratively derive 12 monolingual models from this
initial model in 4 steps, starting by fine-tuning this
model tuned on 12 languages (Step 0) and itera-
tively fine-tuning models for 6, 2 and 1 languages
(Steps 1, 2 and 3).

By merging the weights of the original model
with the parameters learned in the LoRA matri-
ces, the final models have no inference overhead,
which distinguishes LoRA from other PEFT ap-
proaches. Furthermore, since LORA matrices are
smaller than the base model, LoRAs for multiple
tasks or languages can be trained and switched
faster and without requiring as much storage space
as other approaches.

Another advantage of LoRA adaptation is that
it lowers the memory requirements for fine-tuning
very large models compared with full fine-tuning.
To further reduce memory requirements during
training, Dettmers et al. (2024) proposed QLoRA,
where unquantized LoRA modules are applied to a
quantized model. While training quantized weights
is unstable (Wortsman et al., 2023), only training
the few unquantized weights of the LoRA module
makes this approach stable.

4 Task

We aim to verbalise AMR graphs into both high-
and Low-Resource languages. To factor out the im-
pact of training data size, we keep this size constant
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across languages restricting the number of distinct
training instances per language to 31K, the Lower
bound set by the language with fewer resources.
In this way, differences between languages can
be traced back to differences between models and
training strategies rather than to the size of the
available data for each language.

For our experiments, we select a combination of
6 Low- and 6 High-Resource languages (as classi-
fied by the NLLB Team et al. (2022)). We select
these languages so that they can be grouped in a
balanced phylogenetic tree (see Figure 2b). Table 1
includes further information about the selected lan-
guages noting in particular, how much training data
per language was seen by our underlying pretrained
mT5),e base model.

Language Code H/L % PT Data
German DEU High 3.05%
Luxembourgish | LTZ  Low 0.68%
English ENG High 5.67%
Tok Pisin TPI Low 0.00%
Dutch NLD High 1.98%
Limburgish LIM Low 0.00%
Spanish SPA  High 3.09%
Asturian AST  Low 0.00%
Italian ITA High 2.43%
Sicilian SCN  Low 0.00%
French FRA  High 2.89%
Haitian Creole HAT Low 0.33%

Table 1: Target languages, their ISO 639-3 code,
whether they are high- or Low-Resource (H/L) lan-
guages, and how much of the base model pretraining
data (PT Data) they cover.

S Hierarchical QLoRA (HQL)

To mitigate the effects of data scarcity (over-fitting)
and multilingual training (noise), we propose a
variation of curriculum learning that leverages both
phylogenetic knowledge and the modularity and
memory efficiency of LoRAs to iteratively refine a
base multilingual model into a set of monolingual
models.

Base Model. Our base model is mT5;ge (Xue
et al., 2021)2, a multilingual encoder-decoder
model which we extend with LoRA modules to
support modular Parameter-Efficient Fine-Tuning
and 4-bit quantization to reduce memory footpring
during training.

Refining Models. We learn 12 monolingual mod-
els by iteratively fine-tuning a model trained in

2https://huggingface.co/google/mt5-1large



12 languages in four steps as follows. In the first
step (Level 0), the base model (MT5y,ge) is fine-
tuned on 12 languages using LoRA fine-tuning.
The resulting model — which is created by merging
mT5,e’s weights with the A and B matrices as
explained above — is then fine-tuned on two sets
of 6 languages yielding two 6-language models,
each trained with a separate LoORA module (Level
1). We repeat this process twice: first, fine-tuning
the two 6-language models into 6 bilingual models
(Level 2) and second, fine-tuning each of the bilin-
gual models into 12 monolingual models (Level 3).
Algorithm 1 in Appendix A specifies our training
strategy in more detail.

Choosing Language Groups. Which set of lan-
guages should be used at each step of the iteration?
Our training strategy follows a four-level deep tree
where each node in the tree determines the set of
languages used for fine-tuning the parent model.
Based on previous work, we compare the effect of
two training hierarchies as shown in Figure 2.

Meng and Monz (2024) showed that balanced
amounts of data from distant languages during
training can act as a regularizing factor. Accord-
ingly, our first strategy consists in increasing the
average distance between languages for each node
in our training hierarchy. This produces the Distant
Languages Hierarchy depicted in Figure 2a.

Conversely, multiple previous studies have
pointed to the benefits of training multilingual mod-
els on closely related languages (cf. Section 2).
Based on this, our second training hierarchy fol-
lows the phylogenetic tree shown in Figure 2b
where at each level of the hierarchy, the correspond-
ing LoRA module is trained on smaller, less diverse
and more closely related groups of languages. Un-
der this Phylogenetic Tree Hierarchical QLoRA
(PTHQL) approach, the expectation is to increase
the transfer learning and reduce the noise of other
languages as training progresses.

6 Experimental Setup

6.1 Data

As parallel (AMR, text) data only exists for a re-
stricted set of languages, we use both machine
translation and AMR-parsing to create multilingual
training and test data.

Training Data. The AMR 3.0 dataset (Knight,
Kevin et al., 2020)? includes 55.6K (gold AMR,

Shttps://catalog.ldc.upenn.edu/LDC2020T02
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human-written text) pairs where the texts are in
English. We create training data for our target
languages using machine translation and language
identification scores as follows. First, we trans-
late the English texts to our target languages us-
ing a 4-bit quantized NLLB-3.3B model (NLLB
Team et al., 2022)*. Second, we filter the machine-
translated texts using the GlotLID (Kargaran et al.,
2023)° language identification model and remov-
ing all instances with a score less than 0.5. Third,
we keep the top 31K instances for each language
so that the quantity of training data is the same for
all languages. This yields a dataset of 31K (gold
AMR, machine-translated texts) for each of our
target languages except English where texts are
human-written.

In addition, we create a small parallel dataset for
all our target languages where the AMR are silver
and the texts are human-written. We derive this
dataset from the FLORES-200 dataset of parallel
texts (NLLB Team et al., 2022) and obtain silver
AMR graphs by parsing the English texts of this
dataset using AMR3-structbart-L (Drozdov et al.,
2022)°. Since FLORES-200 does not include train-
ing data, we used the validation data for training.
We then split the test data in half to create two small
validation and test sets.

Test Data. We evaluate on (gold AMR, human-
written text) for English, German, Spanish and
Italian using LDC2020T07 (Damonte and Cohen,
2018; Damonte, Marco and Cohen, Shay, 2020)7,
which is a subset of AMR3.0 with gold AMR
graphs and human translated and corrected texts.
For the remaining 8 languages, we used our subset
of the FLORES-200 test set of 506 (silver AMR,
human-written text) pairs. While we could instead
have used (gold AMR, machine-translated texts)
derived from AMR3.0, we prefer to use silver AMR
graphs paired with human-verified sentences. The
rationale behind this decision is that the noise intro-
duced by an AMR parser when producing the silver
AMR graphs will be uniform across all tested lan-
guages, whereas the noise that machine-translated
silver sentences have would vary across languages
given the uneven performance of machine transla-
tion models. Table 2 summarizes the size and type

*https://huggingface.co/facebook/nllb-200-3.
3B

5https://github.com/cisnlp/GlotLID

®https://github.com/IBM/
transition-amr-parser/

"https://catalog.ldc.upenn.edu/LDC2020T07



of our data.

Dataset Quality Instances per Language

AMR  Text Train Test  Valid
FLORES-200 | Silver Gold 997 506 506
AMR 3.0 Gold  Silver | 30000 1000 1000
AMR3.0 Gold  Gold N/A 1371 N/A

Table 2: Our final datasets after preprocessing.

6.2 Training

Implementation Details. All our experiments
are done using mT5jge as the underlying base
model via the Transformers ® library. We use the
PEFT ° library to handle the LoRA implementa-
tion. The model is quantized to 4-bit precision for
memory efficiency. Following (Dettmers et al.,
2024), we apply LoRA to all linear layers of the
model as this was shown to improve performance.
Both Rank and Alpha are set to 256 using Rank-
Stabilized scaling, these high values are selected
given the model’s need to learn both an entirely new
task (AMR-to-Text vs Spam Correction) as well as
generate into scarcely seen and previously unseen
languages. As pointed out by Hu et al. (2021) new
languages and tasks might require much higher
ranks. The base model contains around 1.2B pa-
rameters and introducing the LoRA adds almost
300M new trainable parameters.

Training Scheme. We use a batch size of 8
and a maximum length per training instance of
256 tokens, which is similar to the values chosen
by Ribeiro et al. (2021a) while keeping the total
batch size as a power of 2 which benefits the train-
ing speed. This limit implies the truncation of
around 8% of tokens on the input sequence but
does not affect the output sequences.

To factor out the impact of training data size, we
train each model on the same amount of data. For
each language, we have 30 997 distinct instances
and we train for one epoch on each level of the
training hierarchy. Thus LO models are trained on
371964 (=30997 x 12) unique instances, L.1 mod-
els on 185982 instances, L2 on 61 994 instances
and L3 on 30997 instances. Hence by the end
of the training, each monolingual model has seen
650937 instances in total, with unique instances be-
ing seen 4 times across models, which is equivalent
to 4 epochs on the full dataset.

8https ://huggingface.co/docs/transformers
https://huggingface.co/docs/peft
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It is worth noting that, given the modularity of
LoRAs and the way we can reuse the intermediate
levels in the training of the new ones, the total num-
ber of instances used for training all 12 monolin-
gual models is 1487 856. In comparison, without
our approach, directly fine-tuning 12 monolingual
models that have seen 650 937 instances would re-
quire training on 7 811 244 instances (= 650937 x
12). As explained in section 5, we consider two
training hierarchies, the Distant Languages Hier-
archy and a Phylogenetic Tree Hierarchy. A sum-
mary of all training hyperparameters can be found
in Table 5 in Appendix B.

6.3 Models

We compare our approach with previous work and
with three strong baselines.

6.3.1 Previous Work

F&G (Fan and Gardent, 2020) is an Encoder-
Decoder multilingual model that supports 21 High-
and Medium-Resource languages. The encoder in-
cludes structural embeddings and the model was
fine-tuned on (silver AMR, human-written text)
pairs with data sizes ranging from 400K to 8.2M
pairs depending on the target language.

Ribeiro (Ribeiro et al., 2021a) is a mT5pase
model that supports 4 HR languages and was
fine-tuned on millions of (silver AMR, human-
written text) and tens of thousands of (human AMR,
machine-translated text) pairs for each target lan-
guage.

Xu (Xu et al., 2021) consists of 3 Transformer
models trained separately on 3 HR languages us-
ing multi-task pretraining on 6 tasks (AMR-to-
English, English-to-AMR, English-to-X, X-to-
English, AMR-to-X, and X-to-AMR) with mil-
lions of (silver AMR, human-written text) pairs.
The models are then fine-tuned on 2 tasks (AMR-
to-X and English-to-X) on 36.5K (gold AMR, gold
English/machine-translated X text).

Martinez (Martinez Lorenzo et al., 2022) the
mBART],rge model trained separately on 4 HR lan-
guages. We use the version trained on plain AMR
inputs which was trained for up to 30 epochs on
55K (gold AMR, machine-translated text) pairs.

6.3.2 Baselines

Monolingual QLoRA (MonoQL). 12 monolingual
models obtained by fine-tuning mT5y,r,. On each
language separately using LoRA. We expect this
model to perform worse than ours, particularly



on LR languages, due to the limited training data
which can lead to either a lack of generalization or
to over fitting. Each final model of our HQL ap-
proach has seen 650937 instances during training
(subsection 6.2). To allow for a fair comparison,
we train each MonoQL model with that many in-
stances.

Multilingual QLoRA (MultiQL). Fine-tuned
mT5ae using LORA on data from all 12 languages.
We expect this model to perform worse than ours
due to the noise from the language mix. Since our
HQL models are trained on 1487 856 instances (cf.
subsection 6.2), we let this multilingual model train
up to that many instances.

Generate and Translate (Gen&Trans). We gen-
erate from AMR-to-English using the English
MonoQL. Then we translate that output into the
target languages with the same model used to gen-
erate our silver data (4-bit quantized NLLB-3.3B).
We expect this model to mirror the uneven quality
of machine translation models, performing well in
HR but less well in LR languages.

6.4 Metrics

Following NLLB Team et al. (2022), we use BLEU,
a simple surface-based metric that does not rely
on training data, which is an advantage when
dealing with multiple languages, particularly low-
resource ones. We compute the scores with Sacre-

High-Resource languages
| | | |

30 - N
)
-
m 20 5
(]| " alll ||"| |I|" | |
SPA

DEU ENG NLD ITA FRA

02 MonoQL B 8 MultiQL B B Gen&Trans
s DLHQL 0 PTHQL

BLEU (Post, 2018)!'? and the default settings (in-
cluding /3a tokenizer) for comparability with previ-
ous works. We also report Chrf++ and BLEURT !
scores in Appendix C, however we discuss mostly
BLEU given its widespread use in the past, being
the only metric available on all previous works that
use the same test as we do. We compute statisti-
cal testing via paired bootstrap resampling (Koehn,
2004) for BLEU and ChrF++ and Wilcoxon signed-
rank test (Wilcoxon, 1945) for BLEURT-20 and
report them on Appendix D.

7 Results

We report results obtained when generating from
both Silver and Gold AMR comparing our ap-
proach with previous works and baselines and ex-
amining results on both High- and Low-Resource
languages.

HQL outperforms or is on par with mono and
multilingual baselines (Silver and Gold AMRs).
On silver AMRs, HQL models are consistently bet-
ter than both the mono and the multilingual base-
lines, except for Tok Pisin (Figure 3, Table 3, Fig-
ure 4). Statistical tests (Appendix D) confirm that
the difference is statistically significant in most
cases. On gold AMRs, the results are more mixed.

Ohttps://github.com/mjpost/sacrebleu
11ht'cps: //github.com/google-research/bleurt

Low-Resource languages
| | | |
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BLEU
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LIM*
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0@ MonoQL B 8 MultiQL B B Gen&Trans
s DLHQL 0§ PTHQL

Figure 3: BLEU score on our sub set of FLORES-200 test data. *Languages unseen by the mT5j,,. base model.

Model DEU ITZ ENG TPI NLD LIM SPA AST ITA SCN FRA HAT
MonoQL 12.2 86 292 129 9.3 47 11.0 9.5 9.3 6.1 150 10.0
MultiQL 11.6 88 307 112 102 40 121 8.6 105 59 149 105
Gen&Trans* | 164 106 292 112 129 49 142 119 142 52 231 116
DLHQL 142 109 363 116 124 51 139 119 132 83 198 124
PTHQL 15,0 115 359 118 123 50 135 120 133 81 200 125

Table 3: BLEU score on our sub set of FLORES-200 test data. *English Gen&Trans is simply the result of MonoQL.
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Figure 4: Average score (Y axis) across all 12 languages vs. total instances seen during training (X axis) for 3
metrics on our subs set of FLORES-200 test data. HQL models include results on all the intermediary levels of the

hierarchy.

Our models outperform on Italian and German but
not on English and Spanish - this is likely due to
both languages being among the most represented
in the pretraining data of the base model (Table 1).

HQL outperforms the Gen&Trans Baseline on
all LR languages. While the Gen&Trans base-
line outperforms our models on most HR languages
(except English), our approach outperforms the
Gen&Trans models on all LR languages (Figure 3).
This shows the benefits of HQL for LR languages
where MT yield low quality texts while our stacked
LoRA approach seems to enhance transfer. Simi-
lar results are seen on other metrics (Appendix C)
where HQL comes ahead in most LR languages.

We also see that two languages previously un-
seen by the base model (Tok Pisisn and Asturian)
show a transfer effect as they perform on par with
LR languages present in the base model’s training
data. For Limburgish and Sicilian, we conjecture
that the low scores result from the low-quality of
the machine translation as evidenced by the poor
performance of the Gen&Trans baseline on these
languages.

HQL optimizes faster than the three baseline
models and on average, outperforms them all.
Figure 4 plots the average BLEU, Chrf++, and
BLEURT-20 score for all 12 languages against
the number of instances seen during training. We
see that already at level L2, our HQL models out-
perform all three baselines (monolingual, multilin-
gual, Gen&Trans ) on two of the metrics despite
seeing fewer total training instances. The graph
also shows that each new level of the hierarchy
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improves performance.

HQL performs on par with previous work (Gold
AMRs). Table 4 compares our results with pre-
vious works on Gold AMRs. In HR Romance lan-
guages, our HQL approach outperforms all pre-
vious works, in English, the score is close to the
best-performing model and in German, our model
underperforms both Xu’s and Lorenzo’s approach -
possibly due to differences in training data size and
the impact of multi-task learning.

Model DEU ENG SPA ITA
F&G 153 249 217 19.8
Ribeiro 20.6 — 307 264
Xu 25.7 — 314 284
Martinez 232 448 346 29.0
MonoQL 182 49.2 38.6 22.7
MultiQL 198 429 341 272
Gen&Trans* 28.0 49.2 39.6 338
DLHQL 212 442 374 292
PTHQL 228 434 372 29.7

Table 4: BLEU score on LDC2020T07 test data.
English Gen&Trans is simply the result of MonoQL.

HQL performs well compared to previous works
despite being trained on fewer data. In previ-
ous work, F&G, Ribeiro and Xu trained on 400k
to 8.9M synthetic training pairs per language while
the Martinez model is trained for up to 30 epochs
on close to 55K monolingual instances. In contrast,
our models are trained on 4 epochs and less than
31K instances per language. Despite this, our mod-
els come close to and in some cases, outperform
those previous approaches, while also enabling sup-
port for LR languages.



Distant vs. Close Languages. We observe al-
most no significant difference when training on
distant (DLHQL) vs. closely related (PTHQL)
languages. While this could confirm Meng and
Monz (2024)’s observation that both are useful in
inducing transfer and regularisation respectively,
this could also be due to the restricted size of our
training tree since because of computation con-
straints, we limited ourselves to a small number of
languages which induces a strong overlap of train-
ing data between the two hierarchies: 100% on LO
and L3, 50% on L1 and L2, for a total training
overlap of 81%. To further evaluate the difference
between this approaches, future studies could re-
duce the overlap by selecting a larger hierarchy or
by starting with a reduced number of instances and
increasing their number as the training progresses
through the levels.

8 Conclusion

We proposed a novel approach for multilingual
AMR-to-Text generation and showed that it sig-
nificantly outperforms fully monolingual and fully
multilingual approaches. We demonstrated that, on
LR languages, it can outperform a Gen&Trans ap-
proach, despite most training data being machine-
translated. We compared different techniques for
selecting a training hierarchy and found that, while
the Phylogenetic approach usually achieves better
results than the distant languages approach, differ-
ences were not significant.
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10 Ethical Considerations

While there have been significant advances in mul-
tiple NLP tasks over the last couple of years, these
benefits tend to focus on High-Resource languages.
By researching how to improve performance over
a more diverse set of languages we hope to make
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the field more inclusive and democratize the tech-
nology. This seems to us particularly relevant in
Graph-to-Text tasks, which help verbalize text into
more languages. Despite all these advantages, we
are still aware of the shortcomings of these tech-
nologies. Current models are capable of generat-
ing inaccurate text and misleading users in High-
Resource languages, and they remain even more
unreliable on Low-Resource tasks.

Supplementary Materials Availability State-
ment: All the required code and data can be
obtained, although some of the data is not free.
Our source code for training the models can be
found at https://gitlab.inria.fr/wsotomar/
HQL-Hierarchical-QLoRA. The NLLB-200-3.3B
model used for Machine Translation is avail-
able at https://huggingface.co/facebook/
nllb-200-3.3B. The AMR3-structbart-L. seman-
tic parser is available at https://github.com/
IBM/transition-amr-parser/. The Flores-200
data is available at https://huggingface.co/
datasets/facebook/flores. The AMR 3.0
dataset (LDC2020T02) is available at https:
//catalog.ldc.upenn.edu/LDC2020T02. AMR
3.0 - 4 Translations dataset (LDC2020T07) is
available at https://catalog.ldc.upenn.edu/
LDC2020T07.
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Abstract

Argument generation is a challenging task in
natural language processing, which requires
rigorous reasoning and proper content orga-
nization. Inspired by recent chain-of-thought
prompting that breaks down a complex task
into intermediate steps, we propose AMERI-
CANO, a novel framework with agent interac-
tion for argument generation. Our approach
decomposes the generation process into sequen-
tial actions grounded on argumentation theory,
which first executes actions sequentially to gen-
erate argumentative discourse components, and
then produces a final argument conditioned on
the components. To further mimic the human
writing process and improve the left-to-right
generation paradigm of current autoregressive
language models, we introduce an argument
refinement module that automatically evaluates
and refines argument drafts based on feedback
received. We evaluate our framework on the
task of counterargument generation using a sub-
set of Reddit/CMYV dataset. The results show
that our method outperforms both end-to-end
and chain-of-thought prompting methods and
can generate more coherent and persuasive ar-
guments with diverse and rich contents.

1 Introduction

Argument generation is an essential task in nat-
ural language processing with wide applications,
such as debates and essay writing (Toulmin, 2003).
In this work, we study counterargument gener-
ation which aims to generate persuasive argu-
ments to refute a given proposition on a contro-
versial topic (Hua and Wang, 2018; Alshomary and
Wachsmuth, 2023). However, generating counter-
arguments poses significant challenges for both
humans and machines as it requires a profound
comprehension of the original proposition, the abil-
ity to present a valid standpoint from an opposing

* Work was done while Hou Pong was at the University
of Macau.
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Proposition: People shouldn't change gender

Counterargument:

®lIndividuals should not be prohibited from changing their
gender, as it is a personal choice that ought to be respected and
constitutes a fundamental aspect of one’s identity.]

(@ [Denying someone the right to undergo a gender transition
infringes upon their basic human rights, as it disregards their
autonomy and deprives them of their freedom to make
decisions about their own body and identity. Research has
demonstrated that the positive effects of gender transition
have significantly increased in recent years, due to
advancements in surgical techniques and enhanced social
support.]

@ |[This is a fundamental human
right that must be acknowledged and protected].

Figure 1: Sample counterargument that refutes the proposi-
tion. The argument structure consists of components including

@ a claim serving as the main statement to attack the proposi-
tion, @a reasoning that supports the claim, @ a concession
responding with potential rebuttals and @ a conclusion.

perspective, and the competence to provide rig-
orous reasoning to justify the claim (Antaki and
Wetherell, 1999; Grote et al., 1997; Walton et al.,
2008; Wang et al., 2017).

Recent large language models (LLMs) have ex-
hibited remarkable capabilities in addressing var-
ious tasks with human-alike result (Brown et al.,
2020a; Ouyang et al., 2022; OpenAl, 2023; Chowd-
hery et al., 2022). However, the token-level au-
toregressive generation paradigm makes LLMs fall
short of dealing with complicated tasks involv-
ing multiple actions due to the lack of high-level
planning ability (Bubeck et al., 2023). Prior work
shows that chain-of-thought (CoT) prompting can
significantly boost the LLMs’ ability on complex
reasoning tasks by encouraging the model to de-
compose the task into a sequence of intermediate re-
sults (Wei et al., 2022). Later work further imposes
automatic decision-making and action-executing to
break down complex tasks leveraging LLMs (Shinn
et al., 2023; Yao et al., 2022; Sun et al., 2023a).

Proceedings of the 17th International Natural Language Generation Conference, pages 82—102
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Although the above methods achieve good per-
formance in solving reasoning tasks, they still face
challenges when applied to argument generation.
Generating arguments not only requires rigorous
reasoning but also demands deliberate discourse
structures to enhance overall coherence and per-
suasion (Musi et al., 2018; Hua and Wang, 2020).
As shown in Figure 1, a counterargument com-
prises several discourse components, and generat-
ing a strong argument needs both to produce high-
quality components and to properly organize the
components to ensure overall quality. Neverthe-
less, decomposing the goal of argument generation
into intermediate actions remains a non-trivial task.
Moreover, the left-to-right single-pass generation
paradigm of current LLMs hinders them from track-
ing back and revising in previously generated text.
This limitation potentially depletes the soundness
and coherence of the generated argument (Wang
et al., 2018; Madaan et al., 2023; Hu et al., 2022a).

In this work, we propose AMERICANO, a novel
framework for argument generation with discourse-
driven decomposition and agent interaction, where
a generation agent first produces an argument
draft, and then an evaluation agent and refine-
ment agent iteratively produce feedback and revise
the draft. Inspired by argumentation theory and
argumentative discourse structure (Van Eemeren
and Grootendorst, 2004; Green, 2010; Palau and
Moens, 2009), our argument generation agent de-
composes the goal into predefined actions and se-
quentially generates each argumentative discourse
component. Specifically, given a proposition and
the goal of generating a counterargument, the se-
quential actions aiming to create high-quality dis-
course components include: (1) a claim action that
produces a strong claim to refute the proposition;
(2) a reasoning action that generates and revises a
detailed logical reasoning to support the claim; (3)
a concession action that creates potential acknowl-
edgements of the original proposition. Following
the generation of these intermediate discourse com-
ponents, an argument generation action is executed
to organize the intermediate contents and generate
a final counterargument.

To further mitigate the drawback of left-to-right
generation and incorporate feedback, we propose
an argument refinement module with two agents -
an evaluation agent and a refinement agent. Specif-
ically, the argument draft is first evaluated by the
evaluate agent to provide verbal feedback signals,
and then the feedback is passed to the refinement
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agent to revise the draft. This process can be con-
ducted iteratively until the evaluator is satisfied
with the result. Both agents are operated by prompt-
ing LLMs without any model training. This is also
akin to the human writing process of first compos-
ing a draft and then revising the draft (Flower and
Hayes, 1981) to improve the quality.

We evaluate our framework on the task of zero-
shot counterargument generation, with a subset of
propositions collected from Reddit/CMV dataset.
We leverage both LLM-based automatic evaluation
and human evaluation to validate the model out-
puts. The results show that our method is able to
produce high-quality counterarguments with better
coherence and persuasiveness compared with end-
to-end prompting and CoT prompting. Moreover,
our system can generate more diverse results than
baseline methods. Data and Code are available at:
https://github.com/Derekkk/LLM4ArgGen.

2 Argument Generation with
Discourse-driven Sequential Actions

The overall framework is shown in Figure 2, which
consists of three agents that collaboratively perform
task decomposition and refinement for argument
generation. We first introduce the generation agent.

Argument generation can be modeled as p(y|x),
where x is an input proposition and y is an out-
put counterargument. However, directly model-
ing this probability presents significant challenges,
as generating arguments necessitates appropriate
high-level planning, rigorous reasoning, and proper
content organization. Instead of directly prompt-
ing LLMs for argument generation, we decom-
pose the goal into a sequence of actions based
on argumentative discourse structure (Stab and
Gurevych, 2014; Madnani et al., 2012; Wambs-
ganss and Niklaus, 2022). Each action tackles a
subproblem based on the internal structure of an
argument, which typically includes: a claim as the
central statement the writer is trying to argue, a
reasoning to support the claim, and an optional
concession/acknowledgement to address potential
dissenters and improve persuasion. !

Driven by this, we break down the genera-
tion into sequential actions that first generate the
components and then produce a final argument:
p(ylz) = p(yla,r, c,x)p(alr, ¢, z)p(r|c, z)p(c|x),
where c, r, a denotes claim, reasoning and acknowl-

'We do not explicitly include a conclusion as the main
claim can often be restated as the conclusion.
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Claim Generation Generation
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Generation

Argument Generation I_

Claim: Individuals shouldn’t
be prohibited from changing
their gender [...]

Reasoning: Denying someone
the right to undergo a gender
transition infringes [...]

Concession: Although some
may argue that changing
one’s gender [...]

Argument: [...] Thisis a
fundamental human right
that must be [...]

Sequential R R N
Actions 1 >a; > a3 >a,
Decomposed Argument Generation
Argument Refinement Module
Refinement Agent Evaluation Agent __
Criteria
[...] Research has demonstrated that the »| The counterargument is wlenztitoithe - relevance
ositive effects of eender transition have proposition and [...] H(?wever, to make the - logic <
P g argument more persuasive, the writer could - coherence
significantly increased |[...] « provide examples of [...]  persuasion

Figure 2: Overview of our framework. The generator first decomposes the task into a sequence of actions and produces an initial
result. Then, a refinement module with two agents iteratively provides feedback and revises the result.

Single Claim Generation

I Task: Given a proposition and several claims which try to refute the

1 L .

| proposition. Please select the best claim that can be used to generate a
I counterargument against the proposition.
1
1
1
1

Proposition: {_proposition_}
Claim 1: {_claimi_} \n Claim 2: {_claim2_}\n ...

Figure 3: Prompts for claim generation.

edge/concession respectively. Such modeling re-
duces the complexity of p(y|z). All the actions
are conducted by prompting the same LLM (M),
eliminating the costly model training.

2.1 Claim Generation Action

The claim is the central component of an argument.
For counterarguments, it should express a different
stance regarding the proposition. As shown in Fig-
ure 3, we prompt M to generate a potential claim.
However, multiple valid claims may exist given an
input proposition. Therefore, instead of executing
the action only once, we prompt M multiple times
to produce a set of claims and then introduce a
claim reranking step to select the best one.

For claim reranking, we again utilize M to rank
the claims based on the potential to generate a per-
suasive argument. To reduce variance and improve
the self-consistency of the ranking, we further in-
troduce a majority voting strategy by prompting
M multiple times and selecting the claim that is
ranked as topmost with the highest frequency. This
simple strategy has proven effective in other tasks
such as CoT prompting (Wang et al., 2022).

Task Instruction

Background: Given a proposition: {_proposition_}
We want to generate a counterargument to refute the proposition.

Reasoning Generation

Prompt
e e e "
! Now you are given a claim of the counterargument, please generate a detailed :
—, reasoning with coherent logic flow to support the claim. |
Claim: {_claim_} I

Reasoning Refinement

Prompt for feedback generation
-

Given a claim for the counterargument and a reasoning to support a claim.
Claim: {_claim_} \n Reasoning: {_reasoning_}

and whether needed further refinement: 1. logically coherent; 2. persuasive; 3.
clear and easy to understand; 4. well support the claim.

1 1
I I
| |
: Please provide feedback whether the reasoning satisfies the following aspects
I I
| |

[ . . .
1 Given a claim for the counterargument, a reasoning to support a claim, and a
1 feedback on the reasoning. Claim: {_claim_} \n Reasoning: {_reasoning_}

1

1

1

_’: \n Feedback: {_feedback_} :
1

: Please refine the reasoning based on the feedback.

Figure 4: Prompts for reasoning generation.

2.2 Reasoning Generation Action

Reasoning generation action aims to produce a
comprehensive reasoning conditioned on both
proposition (x) and the previously generated claim
(¢). Asillustrated in Figure 4, we first employ M to
create an initial reasoning using the concatenation
of the task instruction and prompt. Additionally,
we leverage an off-the-shelf NLI model? to verify
that generated reasoning entails the claim.
However, generating high-quality reasoning re-
quires strict logical inference and internal consis-
tency, which is difficult to achieve by only prompt-
ing LLMs once. Therefore, we leverage M as a

2https://huggingface.co/MoritzLaurer/
DeBERTa-v3-large-mnli-fever-anli-ling-wanli
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Argument Generation
Task Instruction
: Background: Given a proposition: {_proposition_}

| We want to generate a counterargument to refute the proposition.

! Generate a persuasive and coherent counterargument leveraging the given
| claim, reasoning and concession to refute the given proposition.

: » Stance: The counterargument should be against to the given proposition;

| * Coherence: The counterargument should be well-structured and organized
! in a coherent manner. Use appropriate transitions to connect the ideas;

: * Clarity: Do not just copy the given contents, but summarize and

| reorganize the contents to make the counterargument clear and persuasive;
1

Figure 5: Prompts for argument generation.

critic to provide feedback and reinforce the genera-
tor to progressively revise the reasoning. We em-
ploy pre-defined criteria as verbal prompts, address-
ing aspects including logical coherence, persuasive-
ness, and whether the reasoning makes sense and
well supports the claim. The generator then mod-
ifies the reasoning by additionally consuming the
feedback. This process is conducted iteratively
until no feedback is required or the maximum num-
ber of iterations is reached. This ensures a strong
reasoning is generated, which can be utilized to en-
hance the subsequent counterargument generation.

2.3 Concession Generation Action

Concessions are considered as an argumentative
strategy that enhances persuasion in discourse stud-
ies (Mann and Thompson, 1988; Musi et al., 2018;
Antaki and Wetherell, 1999; Wolfe et al., 2009). A
concession, or acknowledgement, is typically em-
ployed to produce trust and fortify one’s position
by addressing potential dissenters in an argument.

This action aims to generate a concession based
on the proposition, the previously generated claim,
and reasoning. Similarly, we utilize M for con-
cession generation. As the concession should not
weaken the original counterargument, we include
the following instruction in the prompt:

"Note that the goal of the concession is not to
weaken the claim and reasoning, but to produce
trust and make the counterargument more convinc-
ing and persuasive to the audience.”

This instruction has proven effective in our initial
experiments. The full prompt is in the Appendix B.

2.4 Counterargument Generation Action

Thus far, we have generated all the essential compo-
nents of an argument, including a claim, reasoning
and concession. Next, we generate the final coun-
terargument based on these components. This step
requires properly understanding the components
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and effectively organizing the content to produce
a coherent outcome. We again rely on M to exe-
cute the action. As shown in Figure 5, besides the
task instruction and prompt, we further include pre-
defined requirements on aspects including stance,
coherence, and clarity, to enhance overall perfor-
mance and effectiveness.

3 Argument Refinement Module

Previous work has shown that producing an output
on a single attempt is challenging for both ma-
chines and human beings (Hua and Wang, 2020;
Hu et al., 2022a; Wang et al., 2018). Conventional
autoregressive language models produce outputs
from left to right at the token level, lacking the
capacity to edit and revise previously generated
content. Drawing inspiration from the human writ-
ing process that involves first creating an initial
draft and subsequently refining it, we propose an
argument refinement module to mimic this process.
As illustrated in Figure 2, this module comprises an
evaluation agent and a refinement agent. The eval-
uator first provides feedback on the current draft,
and then the refinement agent takes the feedback
and revises the draft. Two agents interact with
each other interatively to formalize an optimization
process for generation.

3.1 Evaluation Agent for Feedback
Generation

Given a proposition and an initial counterargu-
ment draft, the evaluation agent first provides feed-
back on improving the counterargument. First, a
valid counterargument should possess an opposing
stance compared with the original proposition, and
hence we leverage the same NLI model as in the
reasoning generation to compute the relationship
class 5,4 between the proposition and the counter-
argument. This result will be used in later steps if
the predicted label does not correspond to "CON-
TRADICTION".

Furthermore, we leverage M to assess the coun-
terargument draft and generate feedback. The eval-
uation criteria for counterargument include aspects
of relevance, logical consistency, coherence of
structure, and persuasion. These elements are
fundamental aspects for constructing a solid argu-
ment. In future work, we plan to explore the in-
tegration of additional aspects into the refinement
module. The detailed prompts can be found in the
Appendix B.



3.2 Refinement Agent

The refinement agent takes as input the feedback
and generates a revised version of the counterargu-
ment in each iteration. Concretely, it first verifies
the stance based on the prediction of the NLI model:
if the NLI label is not "CONTRADICTION", it first
utilizes M to adjust the draft so that its stance
aligns with a valid counterargument that attempts
to refute the original proposition, with the prompt:
"The stance is wrong. The counterargument should
be against the statement.". Subsequently, it refines
the counterargument by addressing the feedback
from the evaluator to enhance the overall quality.
The two agents work together in a loop until the
evaluator is satisfied with the result. In practice,
we bound the process by a maximum number of
iterations.

Our refinement module distinguishes itself from
Self-refine (Madaan et al., 2023) in the way that
they leverage the same LLM instance to serve as the
generator, evaluator, and revisor, without any task
decomposition. In contrast, our generation agent
features a sequence of actions designed to produce
high-quality initial results, offering a superior start-
ing point for the refinement process, ultimately
resulting in enhanced efficiency and effectiveness.

4 Experiment Setup and Evaluation

4.1 Task Setup

We evaluate our framework on the task of counterar-
gument under a zero-shot setting, where the model
is asked to generate a counterargument to refute a
given proposition on a controversial topic. We ran-
domly sample 50 propositions from Reddit/CMV
dataset (Hua et al., 2021; Hu et al., 2022b), which
is a counterargument generation dataset with sam-
ples collected from Reddit/ChangeMy View. All
propositions are in the politics and policy domains.
The full list of input propositions are in Table 24.

4.2 Model Implementations and Baselines

As we study zero-shot argument generation, we
compare our model with recent instructional LLM:s.
We use GPT-3.5 (text-davinci-003) as the base
LLM. We consider the baselines: (1) End-to-end
generation (E2E) which directly prompts the LLM
to generate a counterargument without any interme-
diate steps; (2) Plan-based CoT generation (Plan-
CoT) that first generates a chain of plans as inter-
mediate content planning, and then produces the
counterargument based on the plan; (3) Our model
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Task Instruction

You are a lecturer of the writing class. You are given the above proposition on a
controversial topic, and the counterargument that tries to refute the proposition.
You need to carefully read the proposition and the counterargument, and
evaluate the counterargument based on the criteria:

Now you need to assign a score for coherence on a scale of 1 to 5, where 1 is
the lowest and 5 is the highest based on the Evaluation Criteria. Note, you
should be very strict when giving the score.

=

- Language and rhetoric

- Addressing opposing viewpoints
- Credibility

- Overall effectiveness

Criteria of coherence Criteria of persuasion

- Clarity
- Relevance

- Logical consistency
- Validity of reasoning

Figure 6: LLM-based automatic evaluation.

variant without refinement module. All the base-
line models use the same GPT-3.5 version as our
framework. More details are in Appendix A.

4.3 Evaluation Metrics

We employ both automatic and human evalua-
tions in our experiments. Automatically evaluating
open-ended text generation tasks is a challenging
task (Celikyilmaz et al., 2020). Recent work has
shown that leveraging LLMs to conduct reference-
free text generation evaluation aligns well with
human preference (Liu et al., 2023; Fu et al., 2023).
Therefore, we propose a LLM-based counterargu-
ment evaluation method leveraging GPT-4 (Ope-
nAl, 2023) to judge the ouptuts.

4.3.1 LLM-based Automatic Evaluation

In our LLM-based evaluation, we focus primarily
on two aspects: coherence and persuasion. These
two aspects are essential elements of a good ar-
gument with clear definitions and criteria, making
them well-suited for assessments based on LLMs.
Concretely, we leverage GPT-4 to evaluate coher-
ence and persuasion by scoring the outputs on a
scale of 1 to 5, with the higher score signifying su-
perior quality. To reduce randomness, we evaluate
each sample 5 times and average the scores.

The prompts used for evaluation are designed
with specific task instructions and a comprehensive
list of detailed criteria, depicted in Figure 6. For
coherence, we concentrate on assessing both logi-
cal and discourse coherence, measuring the score
jointly based on clarity, relevance to the proposi-
tion, logical consistency and soundness of reason-
ing. For persuasion, we appraise the outputs ac-
cording to language and rhetoric usage, the ability

3We do not include reference-based metrics due to the
open-ended nature of argument generation, where multiple
valid arguments may exist for the same input.



to address opposing viewpoints, credibility of evi-
dence, and the overall effectiveness to persuade the
audience. Each aspect comes with a detailed expla-
nation. To improve stability, we prompt model to
first generate a detailed rationale and then predict
the score. More details are in Appendix C.

4.3.2 Human Evaluation

For human evaluations, we hire three proficient En-
glish speakers as judges to evaluate output quality.
Following prior research (Hua et al., 2019, 2021),
we evaluate on the following aspects: Appropriate-
ness-measures if an output is clear, readable and
logical consistent; Content Richness-represents
the amount of informative talking points; and Over-
all Quality. Given an input proposition and several
model outputs, the judges are asked to rank the
outputs according to each aspect. In addition, we
ask the judges to identify Valid counterarguments
of high quality, focusing on the intrinsic merits of
an output as a standalone, compelling argument,
rather than its relative ranking against others. We
select 30 random instances for evaluation. More
details and the guidelines are in Appendix G.

5 Results and Analysis

5.1 Automatic Results

The LLM-based evaluation results on coherence
and persuasion are displayed in Figure 7. As can
be seen, our method outperforms all baselines in
terms of persuasion and coherence, demonstrating
the effectiveness of our framework in generating
high-quality arguments.

Specifically, for coherence, we observe that de-
composing the generation (Ours w/o Refine) results
in reduced coherence compared with E2E. One
possible reason is that generating a final argument
based on argumentative discourse components re-
quires a deep understanding of each component
and proper content organization, posing challenges
when executing the argument generation action
only once. Especially, our decomposed generation
tends to produce longer outputs, * further compli-
cating the task of generating a coherent result in a
single step. However, incorporating the refinement
module significantly boosts the coherence score,
proving the importance of the refinement module
in improving the overall coherence. For persuasion,
both our model and the decomposed generation

*We provide additional analysis on the impact of output
length in Appendix E.
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Figure 7: Automatic results on coherence and persuasion by
GPT4-based evaluation. A larger score means better quality.

achieve higher scores compared to E2E and Plan-
CoT. The manual inspections show that our model
outputs tend to include more talking points in the
arguments, thus making the results more persua-
sive. This is further proved by the higher content
richness scores of our model variants in human
evaluations, as shown in Table 1.

5.2 Human Evaluation Results

The human evaluation results are shown in Table 1.
As the evaluation of appropriateness, informative-
ness and overall quality are ranking-based, we con-
vert the ranks into scores determined by subtracting
its position in the ranking from the total number
of candidates, with higher scores indicating better
quality. Given that there are four models evaluated,
the scores range from 1 (indicating the lowest rank)
to 4 (indicating the highest rank). We also present
the percentage of times the result is considered the
top one for each aspect.

First, Oursyy/, refine 'S results are ranked higher
on all aspects compared with E2E and PlanCoT.
This demonstrates that breaking down the E2E gen-
eration helps to maintain high-quality discourse
components, ultimately leading to improved qual-
ity of final arguments. Second, the better content
richness of our decomposed generation indicates
that our model can produce outputs with more infor-
mative talking points to support the claim. This can
be attributed to the reasoning generation action’s
ability to revise reasoning and make it stronger.
Third, our discourse-driven sequential actions are
more effective at improving the results compared
with PlanCoT’s content-based plans, making them
better suited for argument generation.

By incorporating the refinement module to fur-
ther reinforce the generation process, the results
exhibit substantial improvements across all aspects
except for validity. Our manual inspection by
checking model outputs reveals that, on the one
hand, the refinement module can reorganize argu-
ment content and reform the draft to achieve a bet-



Method Appropriateness (1) Content Richness (1) Overall Quality (1) % Validity (1)
E2E 1.81/6.7% 1.54/0.0% 1.78 1 4.4% 45.00%
_PlanCoT - 200/144% 1.7476.7% __ __ 299/100% _  53.33%
Oursyo Refine 3.00/34.4% 3.16/32.2% 3.03/ 28.9% 91.67 %
Ours 3.12/44.4% 3.44*%/ 61.1% 3.31%/ 56.7% 86.67%

Table 1: Human evaluation results. For appropriateness, informativeness, and overall quality, the first score is computed based
on the relative ranking position, and the second value represents the frequency of the output being ranked as the topmost. For
validity, we present the percentage of results that are deemed to be generally strong arguments of high quality. (*: significantly

better than all comparisons with p < 0.05, using Welch’s t-test)

Dist-Bigrams Dist-ContentWords
240 90
160 60
80 ’_‘ H 30 H H
0 0

O E2E O PlanCoT

o Oursy/o Refine. @ Ours

Figure 8: Average number of distinct bigrams (Dist-Bigrams)
and content words (Dist-ContentWords).

ter discourse structure, increasing the readability
and coherence of the argument. On the other hand,
during the refinement process, the model tends to
add more detailed examples to support the claim,
enhancing content richness and overall persuasion.

We also ask human judges to determine whether
a generated result qualifies as a valid high-quality
counterargument. While only 45% of E2E genera-
tion results are considered valid, introducing CoT
improves the outcomes, showing that decompos-
ing complex goals is beneficial. Oursyo Refine With
discourse-driven actions achieves significantly bet-
ter results, with almost 92% of samples considered
valid counterarguments, validating the effective-
ness of incorporating discourse information into
sequential actions. Interestingly, our full model
with refinement scores approximately 87% in valid-
ity, which is slightly lower than Oursy/o Refine- The
manual inspection reveals that, occasionally, the
refinement process may introduce redundancies to
the outputs and diminish overall readability, thus
leading to a reduced validity. However, incorporat-
ing the refinement module is useful for ensuring
that the generated arguments maintain the correct
stance (i.e., refuting the input) and overall coher-
ence, as direct generation may not always guaran-
tee this. Further improvements to the refinement
module are left for future work.

5.3 Analysis on Qutput Diversity

We follow previous work and analyze output diver-
sity by calculating the average number of distinct
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Figure 9: Frequent discourse markers in outputs.

bigrams (Li et al., 2016) and content words in each
output. The results are in Figure 8. Our method
generates the most distinct bigrams and content
words, demonstrating its ability to produce more
diverse outputs. In contrast, E2E produces the least
diverse outputs. We hypothesize that this may re-
sult from the fact that an LLM trained with RLHF
tends to produce safer outputs without directly op-
timization for diversity. After applying chain-of-
thought, PlanCoT generates more diverse results.
Leveraging our discourse-driven actions further im-
proves scores, indicating that decomposing argu-
ment generation based on discourse components
effectively enhances output diversity and content
richness. We also present commonly generated
verbs and nouns in Appendix F.

5.4 Further Analysis on Discourse

Usage of Discourse Markers. Discourse mark-
ers are key features for modeling coherence (Call-
away, 2003; Grote and Stede, 1998) in various
tasks (Eckle-Kohler et al., 2015; Sharma et al.,
2019; Samy and Gonzélez-Ledesma, 2008). We
adopt the discourse markers from Sileo et al. (2019)
and extract frequent discourse markers that appear
more than 10 times for each model, and present the
results alongside their frequency in Figure 9.
While only 4 common discourse markers are
observed in the E2E results, applying chain-of-



Proposition: The fact that voting isn’t mandatory is a good thing.

Claim: Voting should be mandatory because it is a civic duty that ensures that the people’s voices are heard and that their opinions are
represented in goyvernment. o ) o ) o
Reasoning: [...] (UMandatory voting is a way of ensuring that all citizens are engaged in the electoral process and that their voices are

taken into consideration when decisions are being made. @It also helps to reduce the influence of special interests and ensures that the

government truly reflects the will of the people. - Furthermore, mandatory voting can help to reduce the influence of money in politics by
ensuring that all citizens are represented and can participate in the democratic process. [...]

Concession: While it is true that mandatory voting can ensure that the voices of all citizens are heard, it is important to consider how to
make the process accessible and fair for those who are unable to vote due to physical or financial limitations.

Counterargument: The fact that voting isn’t mandatory is not a good thing. ®Mandatory voting should be implemented because it is a
fundamental part of democracy and is an essential way to ensure that citizens are engaged in the electoral process and their voices are taken

into consideration when decisions are made. @@ requiring citizens to vote, it can help to reduce the influence of money in politics, as more
people are participating in the democratic process and their opinions are being represented. - ’Additionally, mandatory voting can help to
ensure that the government truly reflects the will of the people, as all citizens have an equal say in the political process.

However, it is important to consider how to make the process accessible and fair for those who are unable to vote due to physical or financial
limitations. For example, measures such as providing transportation to and from polling stations, offering absentee ballots, and introducing

flexible voting hours can help to make the process easier and more accessible for those who have difficulty voting in person. Additionally,
lawmakers should focus on creating laws that promote fairness and accessibility for all citizens, regardless of their socio-economic status.

Overall, mandatory voting is a way to guarantee that all citizens have a voice in the political process and to ensure that the government
is truly representative of the people’s wishes. By implementing measures that make the voting process easier and more accessible for all

citizens, mandatory voting can help ensure that everyone is given an equal chance to participate and have their voices heard

Figure 10: Sample output of our method with the intermediate discourse components.
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thought increases the usage of more markers.
This is consistent with previous observations that
chain-of-thought contributes to improved diversity.
Moreover, both our methods, with or without re-
finement, leverage significantly more discourse
markers. Compared with E2E and PlanCoT, our
model variants employ discourse markers such as
"though" and "regardless" because of the inclusion
of concession components. Furthermore, the use of
"for example" implies that our model variants learn
to include more examples to support the claim,
making the overall argument more persuasive.

Analysis of RST Tree. The discourse structure
provides insight into the high-level organization of
text. Following Hua and Wang (2020), we analyze
the Rhetorical Structure Theory (RST) tree of the
generated arguments. Concretely, we utilize an off-
the-shelf discourse parsing tool (Ji and Eisenstein,
2014) to convert the arguments into RST trees and
analyze the depth of the trees, illustrated in Fig-
ure 11. As can be seen, our model variants yield
arguments with deeper structures. Moreover, a
noticeable diversity in depth can be observed, span-
ning a broader spectrum compared to both E2E
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and PlanCoT models. This further implies that our
model can produce arguments with more diverse
patterns and complicated structures.

5.5 Sample Output Analysis

We present a sample output with intermediate re-
sults in Figure 10. Given a proposition, our sequen-
tial actions first properly generate each discourse
component and then organize them to form a co-
herent argument. Moreover, the final argument
conforms to the discourse components and faith-
fully reflects each reasoning point, further indicat-
ing the strong controllability of the decomposed
generation. It also implies our model’s potential
to be applied to interactive writing wherein users
could modify intermediate components and let the
model organize the contents and generate final re-
sults. We leave this to future work. Notably, during
the refinement process, our model effectively adds
examples in the concession part to strengthen the
whole argument. This proves that our refinement
process can gradually improve the results. In addi-
tion, the underlined discourse markers in the final
argument show that our model can properly utilize
discourse markers and generate coherent outputs.
More samples can be found in Appendix H.

6 Related Work

Task Decomposition and Reasoning. LILMs
have achieved impressive results in solving vari-
ous tasks with prompting (OpenAl, 2023; Brown
et al., 2020b; Anil et al., 2023; Bubeck et al., 2023).
However, the token-level left-to-right generation
process limits the model’s ability to tackle more



complex tasks (Bubeck et al., 2023). To further
improve model ability on complex reasoning tasks,
recent work involves sampling intermediate rea-
soning steps (Wei et al., 2022; Nye et al., 2021;
Wang et al., 2022) or decomposing the complicated
goal into actions (Sun et al., 2023b; Hao et al.,
2023; Zhou et al., 2022; Chen et al., 2023). In this
paper, we focus on the specific task of argument
generation and decompose the goal into a sequence
of predefined actions based on the argumentative
theory to generate each discourse component.

Argument Generation. Argument generation re-
quires text planning, logical reasoning, and con-
tent organization (Carenini and Moore, 2006; Hua
and Wang, 2018). Hua et al. (2019) propose a
planning-based model with a retrieval module for
counterargument generation. Schiller et al. (2021)
utilize keywords to control the content of argu-
ments. Bao et al. (2022) introduce a dual-decoder
model to improve content planning. Different from
previous work, we leverage LLMs and introduce a
framework with multi-agents for counterargument
generation. Our method effectively decomposes ar-
gument generation into subproblems and prompts
LLMs for each action without model training.

Feedback and Refinement for Text Generation.
Previous work refines text generation by directly
revising outputs without feedback (Wang et al.,
2018; Hu et al., 2022a) or masking contents with
low probability (Hua and Wang, 2020). Recent
work utilizes LLMs to provide feedback and re-
inforce language agents to improve model per-
formance (Shinn et al., 2023; Sun et al., 2023a;
Madaan et al., 2023; Liang et al., 2023). In this
work, we introduce a refinement module with
specifically designed criteria for argument refine-
ment. Different from Madaan et al. (2023) which
uses only one LLM instance for generation, evalua-
tion, and refinement, our system consists of multi-
ple agents that decompose generation with sequen-
tial actions, thus providing a better starting point
for the refinement module and further encouraging
divergent thinking of LLMs.

7 Conclusion

In this work, we present a novel framework for
argument generation with agent interaction. Our
framework consists of a generation agent that de-
composes argument generation into a sequence of
predefined actions driven by argumentative theory
to produce a draft, and then a refinement module
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with an evaluator and a refinement agent to itera-
tively provide feedback and refine the draft. All
parts are implemented leveraging LLMs with zero-
shot prompting. Both automatic and human evalua-
tions show that our framework can generate more
coherent and persuasive results with better diversity
in counterargument generation.

Limitations

Argument generation is a challenging task in natu-
ral language processing. In this work we propose
a multi-agent based framework utilizing LLMs for
counterargument generation. However, there are
several limitations of our work. First, in our system,
the refinement module only revises the argument
draft without directly modifying the actions in the
generation agent (i.e., claim, reasoning, conces-
sion). The feedback can be incorporated to further
improve actions for initial argument draft gener-
ation. Second, debating is an interactive process
where two sides can interactively debate with each
other in a conversational way. Future work might
study interactive argumentation with multiple de-
bating agents. Third, our in-depth analysis shows
that the system occasionally generates arguments
with unverified or speculative evidence. Such in-
stances highlight a critical area for future improve-
ment, specifically the integration of fact-checking
methods to enhance the reliability of the generated
arguments. Finally, in our experiments, GPT-3.5
1s used as the base model. However, other LLMs,
particularly smaller models (e.g., 7B and 13B mod-
els), can also be incorporated to further showcase
the effectiveness of our framework.

Ethics Statement

We recognize that our framework may generate fab-
ricated and potentially harmful content due to the
systematic biases of pre-training using heteroge-
neous web corpora and the open-ended generation
characteristics of the argumentative text genera-
tion tasks. As our method utilizes large language
models and does not require model training, the
generated outputs may contain harmful and biased
contents as the generation of language models can
not be fully controlled. Argument generation is
an open-ended generation task with objective opin-
ions. Therefore, we urge the users to carefully
examine the ethical influence of the generated out-
puts and cautiously apply the system in real-world
applications.
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absolutely, accordingly, actually, additionally, admittedly, afterward,
again, already, alternately, alternatively, although, altogether, amaz-
ingly, anyway, apparently, arguably, as a result, basically, because
of that, because of this, besides, but, by comparison, by contrast,
by doing this, by then, certainly, clearly, coincidentally, collectively,
consequently, conversely, curiously, currently, elsewhere, especially,
essentially, eventually, evidently, finally, first, firstly, for example,
for instance, fortunately, frankly, frequently, further, furthermore,
generally, gradually, happily, hence, historically, honestly, hope-
fully, however, ideally, immediately, importantly, in contrast, in fact,
in other words, in particular, in short, in sum, in the end, in the
meantime, in turn, incidentally, increasingly, indeed, inevitably, ini-
tially, instead, interestingly, ironically, lastly, lately, later, likewise,
locally, luckily, maybe, meaning, meantime, meanwhile, moreover,
mostly, namely, nationally, naturally, nevertheless, next, nonetheless,
normally, notably, obviously, occasionally, oddly, often, on the con-
trary, on the other hand, once, only, optionally, originally, otherwise,
overall, particularly, perhaps, personally, plus, preferably, presently,
presumably, previously, probably, rather, realistically, really, recently,
regardless, remarkably, sadly, second, secondly, separately, seri-
ously, significantly, similarly, simultaneously, slowly, sometimes,
soon, specifically, still, strangely, subsequently, suddenly, suppos-
edly, surely, surprisingly, technically, thankfully, then, theoretically,
thereafter, thereby, therefore, third, thirdly, though, thus, together,
traditionally, truly, truthfully, typically, ultimately, undoubtedly, un-
fortunately, unsurprisingly, usually, yet

Figure 12: List of discourse markers for result analysis.

A Experimental Details

In our experiments, all modules of our methods and
baselines are implemented by prompting GPT-3.5
(text-davinci-003) > as the based LLM. For hyper-
parameters, we set temperature as 0.7 and top-p
as 1, the maximum tokens are set as 2048. For
claim generation, we set the number of claims to
be generated as 5. We set the maximum of iteration
for refining reasoning and final argument as 3 and
1 respectively, considering the cost of API. For
automatic evaluation, we use GPT4 (gpt-4-0314) ©
as the base model.

Discourse Markers. For the result analysis on
discourse markers, we select markers from Sileo
etal. (2019). Some common markers such as "and",
"or" are removed from the list. The complete list is
presented in Figure 12.

B Detailed Prompts

Here we provide detailed prompts for each module.
Specifically, the prompt for concession generation
is presented in Figure 15. For the argument refine-
ment module in our framework, the detailed prompt
for the evaluation agent is presented in Figure 17,
and the detailed prompt for the refinemnt agent in
shown in Figure 18.

The prompt for PlanCoT is presented in Fig-
ure 16. For PlanCoT, we match the content of

5https://platform.openai.com/docs/
model-index-for-researchers

6https://platform.openai.com/docs/models/
gpt-4
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Method Coherence Persuasion
E2E 3.84 3.64
PlanCoT 3.83 3.58
Ours 3.87 3.78

Table 2: GPT4-based automatic evaluations of generated
arguments under length constraints.

Method Overall Quality

E2E 24.7%
Ours 51.7%
PlanCoT 17.8%
Ours 70.0%

Table 3: Pairwise human evaluations on overall quality. We
report percentage of times the results considered as better.

Counterargument as the final results, and do not
use the plan in our experiments.

C Automatic Evaluation with GPT4

For GPT4-based automatic evaluation as described
in Section 4.3.1, the prompts used for evaluation
are designed with specific task instructions and a
comprehensive list of detailed criteria, as in Fig-
ure 6. We present the detailed criteria for coherence
and persuasion in Figure 19. The description of the
criteria is concatenated with the task instruction as
the final prompt.

In our initial experiments, we find that the GPT-4
predictions are not very stable. This observation is
consistent with prior work (Shen et al., 2023; Wang
et al., 2023). To mitigate this problem, instead
of directly prompting GPT-4 to predict a score,
we first ask it to provide a detailed rationale on
evaluation, and then predict the score, which is
similar to chain-of-thought prompting (Wei et al.,
2022). By this strategy, we find the stability of
predictions improves by a large margin.

Another observation is that when evaluating co-
herence, GPT-4 evaluator tends to prefer shorter
results or longer outputs with multiple paragraphs.
This is a possible reason that in Figure 7, our de-
composed generation receives a lower score on co-
herence compared with E2E. However, our model
with refinement achieves a higher coherence score,
as during the refinement process, the refinement
agent tends to produce longer outputs with more
paragraphs (e.g., average 2.44 paragraphs for ours
v.s. 2.12 paragraphs for ours w/o refine). We leave
further analysis to future work.
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ments under length constraints.

Method Persuasion Coherence
Ours 3.72 4.27
BowPlan 1.63 1.79
ContentPlan 1.23 1.45

Table 4: Model results compared with supervised baselines.

D Additional Experiments with
Supervised Models

Previous work on argument generation mainly uti-
lizes smaller models with supervised method (Hua
et al., 2019; Hua and Wang, 2018). In this work,
we do not include methods before GPT due to two
reasons: (1) We focus on zero-shot argument gen-
eration, while the previous method (e.g., BART,
T5) requires supervised training; (2) The signif-
icant difference in model scales compared with
previous methods would lead to an unfair com-
parison. For the reference, we include two strong
(supervised) planning-based methods on long-form
text generation: BowPlan (Kang and Hovy, 2020)
and ContentPlan (Hua and Wang, 2020). Specif-
ically, BowPlan is a Seq2seq model that predicts
keywords as the global plan to guide the surface
generation. ContentPlan is a two-step generation
method where a planner first produces high-level
plans, and then a generator consumes the plans and
generates final outputs. We adopt the CMV dataset
from Hua and Wang (2020) for model training,
and ensure there is no overlap between the training
set and test set used in our paper. We use Bart-large
as the base model. The automatic results evaluated
by GPT4 are shown in Table 4. Our model signif-
icantly outperforms both baselines and generates
more persuasive and coherent outputs, demonstrat-
ing our model effectiveness for argument genera-
tion.
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E Analysis on Model Performance Under
Length Constraints

In our experiments, we do not impose specific
length constraints on the generated outputs due to
the open-ended nature of the argument generation
task. Our model variants with decomposed genera-
tion tend to produce longer outputs than baseline
methods (i.e., on average 310 words for our model
v.s. 120 words for E2E). In this section, we fur-
ther analyze the influence of introducing length
constraints by specifying the desired output length.
In particular, we explicitly include “counterargu-
ment in around 300 words” in the prompts for all
methods and further analyze the results. By doing
so, the average output lengths of our model, E2E,
and PlanCoT change to around 378, 303, and 240
words, respectively.

The GPT4-based automatic scores are shown in
Table 2. As can be seen, our model outperforms
both E2E and PlanCoT in terms of coherence and
persuasion scores. The results are consistent with
the observations where no length constraints are
imposed. These findings confirm that our approach,
with decomposed generation and subsequent refine-
ment, is highly effective in producing high-quality
outputs.

We then conduct human evaluations of the model
outputs using pairwise comparison. Specifically,
we ask three human annotators to rate the over-
all quality of the outputs. Given an input, they
are shown two outputs, with one generated by our
model and one generated by a baseline method,
presented in random order. They are asked to se-
lect which one is better, and ties are allowed if the
outputs are not distinguishable. The results are
summarized in Table 3. Our model results are con-
sidered as better with more times than both base-
lines, underscoring our model effectiveness even
when operating under length constraints.

Discourse Diversity. We also analyze the output di-
versity by visualizing the RST trees of outputs. As
shown in Figure 13, although E2E generates signif-
icantly longer outputs under length constraints, the
distribution of RST tree depth is still less diverse
compared to our model. This further demonstrate
our model ability to produce outputs with greater
diversity in rhetorical structure.

F Visualization of Common Words

We present the visualization top 50 most common
verbs and nouns of our model-generated results
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Figure 14: The top 50 most common verbs and nouns in the arguments generated by our method.

Background:
Given a statement: [_proposition_]

We want to generate a counterargument to refute the statement.

Task:

Given a claim and a reasoning of the counterargument, we want to
generate a short and brief concession to deal with potential dissenters
and predict problems that might weaken the claim and reasoning.

Claim: [_claim_]
Reasoning: [_reason_]

Note: the goal of the concession is not to weaken the claim and
reasoning, but to strengthen them by demonstrating that you have
considered multiple perspectives and can respond to opposing view-
points effectively. By acknowledging valid points from the opposing
side, you build credibility and show that you are open to a fair and
balanced discussion. A potential solution might be included in the
concession. The concession should be in one sentence.

Concession:

Figure 15: Prompt for concession generation.

Task:
Given a proposition: _proposition_

‘We want to generate a coherent and persuasive counterargument to
refute the proposition. You should first generate a brief plan, and
then produce the counterargument based on the plan. The output
should be in the format of:

Plan:the generated plan here

Counterargument: the generated counterargument here

Figure 16: Prompt for PlanCoT.

with word cloud, as displayed in Figure 14. The
larger word means the higher frequency. Overall,
we can see that our model can generate quite di-
verse surface formats in the results. Notably, most
nouns are policy-relevant, and this is because our
dataset is in the politics and policy domains.

G Details for Human Evaluation

Three human judges were hired to conduct the eval-
uation, all of whom are proficient English speakers
with at least a Bachelor’s degree. We presented 30

Proposition: [_proposition_]
Counterargument: [_argument_]

Task: Assume you are a professional writer. Given the statement and
the counterargument aiming to refute the statement, please evaluate
the counterargument based on the following aspects:

* Relevance: The counterargument should directly address the main
claim or statement being challenged, rather than introducing tangen-
tial or irrelevant points;

* Correct Stance: The counterargument should have a different
stance, in order to refute the given statement;

* Logical consistency: The counterargument should be logically
consistent and not contain any contradictions or fallacies that weaken
its credibility;

* Coherence of structure: The counterargument should have a clear

and well-structured progression, with each idea logically flowing
from the one before it;

* Persuasiveness: The counterargument should be strong enough
to successfully challenge the original statement, which means it
should be backed up by solid evidence, clear reasoning, and logical
consistency.

Please return a one-paragraph suggestion on how to improve it based
on the above criteria.

Suggestions:
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Figure 17: Prompt for evaluation agent in the refinement
module.

random samples for human evaluation. To mini-
mize bias, we anonymized the model names and
presented the outputs in a random order. The an-
notation process spanned two days, allowing all
participants enough time to complete their evalua-
tions. We evaluate model outputs on the following
aspects:

* Appropriateness: whether the content is ex-
pressed clearly, without ambiguity, vagueness, or
grammatical errors; whether it has a good over-
all structure and strong readability, and the overall
logic is smooth, consistent, and complete, with
no internal contradictions or incoherence, and the
main conclusion can be strongly supported by sub-
arguments;



Proposition: [_proposition_]
Counterargument: [_argument_]
Feedback: [_feedback_]

Task: Assume you are a professional writer. Given the statement, a
counterargument on the opposing stance to refute the statement, and
a feedback on how to improve the counterargument. Please revise
the counterargument based on the feedback.

Revised counterargument:

Figure 18: Prompt for refinement agent in the refinement
module.

* Content Richness: whether the output is abun-
dant, with sufficient points and evidence to effec-
tively understand and refute the original input per-
spective; whether the expression is diverse, with
varied diction and different forms of argumenta-
tion;

* Overall Quality: this is a general assessment
that whether you think the output ranks higher than
all other candidates.

Beside the above ranking-based aspects, human
annotators are asked to evaluate the Validity of
each output independently, determining whether it
constitutes a high-quality and valid argument that
effectively refutes the input proposition.

H Additional Sample Outputs

We present additional examples with different
model outputs from Figure 20 to Figure 23.
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Coherence:

* Clarity: The counterargument should be expressed clearly, with a well-defined structure that is easy to follow. Ambiguity or vagueness
can detract from the argument’s coherence;

* Relevance: The counterargument should directly address the proposition and stay focused on the topic. Irrelevant points or anecdotal
evidence can detract from its coherence;

* Validity of reasoning: Evaluate the clarity and coherence of the counterargument’s reasoning. Is the line of reasoning easy to follow?
Does it present a clear cause-and-effect relationship or logical progression? A well-structured and coherent counterargument should
present a logical flow of ideas;

* Logical consistency: Assess the counterargument for internal consistency. It should not contain any contradictory statements or
logical fallacies that undermine its coherence. Look for logical connections and coherence between the counterargument’s claims,
evidence, and reasoning

Persuasion:

* Language and rhetoric: The counterargument should effectively use persuasive language and rhetoric techniques, such as appeals to
logic, emotions, or ethics, to sway the reader’s opinion;

* Addressing opposing viewpoints: A persuasive counterargument should acknowledge and address the main points of the given
proposition, demonstrating an understanding of the opposing view and refuting it effectively;

* Credibility of evidence: The counterargument should be supported by credible evidence or sources. Unsupported claims or anecdotal
evidence will not be as persuasive as a counterargument based on solid evidence;

* Overall effectiveness: The counterargument should effectively challenge the initial proposition and provide a convincing alternative
viewpoint, and is likely to persuade the reader to reconsider their initial position.

Figure 19: Specific criteria for GPT4-based automatic evaluation on coherence and persuasion.

Proposition: The fact that voting isn’t mandatory is a good thing.

E2E: Mandatory voting could help to increase voter turnout, which is important for achieving a fair and representative democracy. Low
voter turnout can lead to a government that does not accurately reflect the interests of the people, and can result in policies that are not
beneficial for all citizens. Mandatory voting could also help to ensure that all voices are heard and that all perspectives are taken into
consideration.

PlanCoT: The fact that voting isn’t mandatory may lead to a decrease in voter turnout, which can have negative effects on our democracy.
Mandatory voting can ensure that all citizens take part in the democratic process, and that no one’s opinion is silenced. Furthermore, the
government has a responsibility to ensure that all citizens are informed about the importance of voting and the issues at stake, which can
encourage more citizens to vote. Ultimately, voting is a crucial part of any democracy, and making it mandatory ensures that everyone has a
say in the political process.

Oursy/o Refine: The fact that voting isn’t mandatory is not a good thing. Mandatory voting should be implemented because it is a civic duty
that ensures that the people’s voices are heard and that their opinions are represented in government. It is a fundamental part of democracy
and is an essential way to ensure that citizens are engaged in the electoral process, their voices are taken into consideration when decisions
are made, and that the government truly reflects the will of the people. Furthermore, mandatory voting can help to reduce the influence of
money in politics by ensuring that all citizens are represented and can participate in the democratic process. While it is true that mandatory
voting can ensure that the voices of all citizens are heard, it is important to consider how to make the process accessible and fair for those
who are unable to vote due to physical or financial limitations. Ultimately, mandatory voting is a way to guarantee that all citizens have an
equal say in the political process and that the government is truly representative of the people’s wishes.

Ours: The fact that voting isn’t mandatory is not a good thing. Mandatory voting should be implemented because it is a fundamental part of
democracy and is an essential way to ensure that citizens are engaged in the electoral process and their voices are taken into consideration
when decisions are made. By requiring citizens to vote, it can help to reduce the influence of money in politics, as more people are
participating in the democratic process and their opinions are being represented. Additionally, mandatory voting can help to ensure that the
government truly reflects the will of the people, as all citizens have an equal say in the political process.

However, it is important to consider how to make the process accessible and fair for those who are unable to vote due to physical or financial
limitations. For example, measures such as providing transportation to and from polling stations, offering absentee ballots, and introducing
flexible voting hours can help to make the process easier and more accessible for those who have difficulty voting in person. Additionally,
lawmakers should focus on creating laws that promote fairness and accessibility for all citizens, regardless of their socio-economic status.

Overall, mandatory voting is a way to guarantee that all citizens have a voice in the political process and to ensure that the government
is truly representative of the people’s wishes. By implementing measures that make the voting process easier and more accessible for all
citizens, mandatory voting can help ensure that everyone is given an equal chance to participate and have their voices heard.

Figure 20: Sample output of different model outputs.
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Proposition: The increase in gender and sexuality vocabulary is not needed and ultimately hurts social progress on the topic.

E2E: The increase in gender and sexuality vocabulary is absolutely necessary and is an important step in helping to advance social progress
on the topic. By expanding our language and terminology to accurately reflect the diversity of gender and sexuality, we are creating a more
inclusive environment that allows people to identify and express themselves authentically. This in turn can lead to greater acceptance,
understanding, and respect of all gender and sexuality identities. Additionally, the use of more specific language can lead to better and more
effective conversation about the topic, allowing for deeper understanding and openness to different perspectives.

PlanCoT: The increase in gender and sexuality vocabulary is actually essential for social progress on the topic. It allows us to be more
precise in our language, which in turn allows us to better understand each other and progress in our discussions. For example, the introduction
of terms such as non-binary, gender fluid, and genderqueer has been crucial in allowing us to move away from the binary of male and
female, and to recognize and appreciate the spectrum of gender identities and expressions. This has led to more inclusive and understanding
conversations, and a greater respect for gender and sexual minorities.

Furthermore, the increased language can help to empower individuals, as it provides them with the words to express and identify their own
gender and sexuality. This can be especially important for those who have felt invisible in the past, and it can create a sense of connection
and understanding amongst members of the community.

Though there may be some drawbacks to increased language, such as confusion or misinterpretation, these drawbacks are far outweighed by
the benefits. As language evolves, so do our understandings of gender and sexuality, and this is essential for making progress on the topic.

Oursyyo Refine:

The given proposition that the increase in gender and sexuality vocabulary is not needed and ultimately hurts social progress on the topic is
false. Anincrease in gender and sexuality vocabulary is crucial to promoting social progress on gender and sexuality topics, as it allows people
to more accurately and effectively communicate their ideas and identities. By introducing new terms and expanding existing ones, individuals
can more accurately and effectively communicate their thoughts, feelings, and identities. This helps to eliminate misunderstandings and
create a more inclusive and open dialogue. For example, by introducing terms such as “non-binary” and “genderqueer”, individuals who
don’t identify with traditional gender labels are able to express their gender identity in a more accurate way. This helps to create a more
inclusive and accepting environment for people to discuss gender and sexuality issues. Furthermore, the use of new and more precise
language allows individuals to better explain and articulate their thoughts and feelings, which can lead to more meaningful conversations
and a better understanding of the issues at hand. By increasing gender and sexuality vocabulary, we can create a more open and accepting
dialogue and move closer to achieving social progress on these issues.

However, it is also important to recognize that some people may find it difficult to understand and embrace these new terms. Thus, it is
important to create accessible resources that explain these terms in a non-threatening and easy to understand way. This can help to ensure
that individuals have the tools they need to understand and accept the new terms, and to participate in meaningful conversations about gender
and sexuality issues.

In conclusion, an increase in gender and sexuality vocabulary is essential to fostering social progress on gender and sexuality topics. It is a
critical tool for allowing individuals to more accurately and effectively communicate their ideas and identities, which can lead to more
meaningful conversations and a better understanding of the issues at hand. Therefore, it is clear that the increase in gender and sexuality
vocabulary is not only needed, but also beneficial in promoting social progress on the topic.

Ours: The given proposition that the increase in gender and sexuality vocabulary is not needed and ultimately hurts social progress on the
topic is false. An increase in gender and sexuality vocabulary is essential to promoting social progress on gender and sexuality topics, as it
allows people to more accurately and effectively communicate their ideas and identities. By introducing new terms and expanding existing
ones, individuals can more accurately and effectively communicate their thoughts, feelings, and identities, and eliminate misunderstandings.
This can lead to more meaningful conversations and a better understanding of the issues at hand. For example, by introducing terms such as
“non-binary” and “genderqueer”, individuals who don’t identify with traditional gender labels are able to express their gender identity in
a more accurate way. This helps to create a more inclusive and accepting environment for people to discuss gender and sexuality issues.
Additionally, studies have found that the more precise language used to discuss gender and sexuality topics is associated with higher levels
of acceptance of diverse gender identities and sexual orientations.

Furthermore, the use of new and more precise language allows individuals to better explain and articulate their thoughts and feelings, which
can lead to more meaningful conversations and a better understanding of the issues at hand. By increasing gender and sexuality vocabulary,
we can create a more open and accepting dialogue and move closer to achieving social progress on these issues. However, it is also important
to recognize that some people may find it difficult to understand and embrace these new terms. Thus, it is important to create accessible
resources that explain these terms in a non-threatening and easy to understand way, like glossaries or guides. This can help to ensure that
individuals have the tools they need to understand and accept the new terms, and to participate in meaningful conversations about gender
and sexuality issues.

In conclusion, an increase in gender and sexuality vocabulary is essential to fostering social progress on gender and sexuality topics. It is a
critical tool for allowing individuals to more accurately and effectively communicate their ideas and identities, which can lead to more
meaningful conversations and a better understanding of the issues at hand. Furthermore, the evidence shows that the more precise language
used to discuss gender and sexuality topics is associated with higher levels of acceptance of diverse gender identities and sexual orientations.
Therefore, it is clear that the increase in gender and sexuality vocabulary is not only needed, but also beneficial in promoting social progress
on the topic.

Figure 21: Sample output of different model outputs.
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Proposition: I don’t think the duty of child raising should belong to the biological parents.

E2E: While it is true that in some cases, parents may not be the best suited to raise a child, it is important to remember that biological
parents are often the most prepared to do so. They typically have a strong bond with their child due to their genetic connection and can
provide the necessary emotional, physical, and financial support for their child’s development and growth. Additionally, biological parents
often have a better understanding of their child’s specific needs and can make decisions that are in the best interest of their child. Thus, while
it is important to consider alternative options for child-raising, it is generally in the best interest of the child to be raised by their biological
parents.

PlanCoT:

Biological parents have a unique connection to their children that cannot be replicated by anyone else. They understand their children better
and are better equipped to provide the emotional support and guidance needed to raise healthy, well-adjusted children. When the duty of
child raising is not handled by the biological parents, there might be a lack of understanding and emotional connection, which can lead
to the child feeling neglected or not understood. This, in turn, can have a detrimental effect on the child’s development and well-being.
Therefore, it is important that the duty of child raising still belongs to the biological parents, as they are in the best position to provide the
love and support needed to raise a healthy and happy child.

Oursy/o Refine: 1 strongly disagree with the proposition that the duty of child raising should not belong to the biological parents. The
biological parents are uniquely suited to provide the best possible upbringing for their children, and as such, it is their responsibility and
privilege to fulfill the duty of child raising.

The biological parents have a unique understanding of their children’s physical and mental needs, which enables them to provide the best
possible care. For example, parents will be able to recognize the signs of illness or distress in their children quicker than anyone else,
and be able to provide the right type of care in a timely manner. Furthermore, parents are in the best position to provide the emotional
and psychological support that children need to grow and develop. Parents will be able to tailor the type of guidance and discipline to the
individual needs of their children, and provide an environment that will best nurture them and help them to reach their full potential. Thus, it
is the unique privilege and responsibility of the biological parents to fulfill the duty of child raising.

That said, I acknowledge that there may be cases in which non-biological parents may provide similar or even better care for a child, and in
those cases, it may be appropriate to entrust the duty of child raising to them. This does not, however, negate the fact that, in most cases, it is
the biological parents who are best suited to provide the best possible upbringing for their children, and therefore it is their responsibility
and privilege to fulfill the duty of child raising.

Ours: I strongly disagree with the proposition that the duty of child raising should not belong to the biological parents. The biological
parents are uniquely suited to provide the best possible upbringing for their children, and as such, it is their responsibility and privilege
to fulfill the duty of child raising. The biological parents have a unique understanding of their children’s physical and mental needs that
enables them to provide the best possible care. For example, parents are more likely to recognize signs of distress in their children quicker
than anyone else due to their familiarity with their children’s behaviors, and they can provide the right type of care in a timely manner.
Furthermore, parents are in the best position to provide the emotional and psychological support that children need to grow and develop. As
such, parents are able to tailor the type of guidance and discipline to the individual needs of their children, and provide an environment that
will best nurture them and help them to reach their full potential.

To further illustrate this point, research has shown that children who grow up with both biological parents experience better physical
and mental health outcomes, higher levels of educational achievement, and better economic success later in life. This is further proof of
the unique role that biological parents have in providing the best possible upbringing for their children. Thus, it is the unique privilege
and responsibility of the biological parents to fulfill the duty of child raising. That said, I acknowledge that there may be cases in which
non-biological parents may provide similar or even better care for a child, and in those cases, it may be appropriate to entrust the duty of
child raising to them. Nonetheless, in most cases, it is the biological parents who are best suited to provide the best possible upbringing for
their children, and therefore it is their responsibility and privilege to fulfill the duty of child raising.

Figure 22: Sample output of different model outputs.
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Proposition: There shouldn’t be a death penalty for any crime but there should be a death option.

E2E: The death penalty should remain as a punishment option for some of the most serious crimes, as it serves as a deterrent to potential
offenders and sends a clear message that certain actions will not be tolerated. By introducing the death option, we are sending the wrong
message to would-be criminals, and it would encourage more people to commit serious crimes. Furthermore, the death option is not an
effective way of achieving justice, as it does not allow for the possibility of rehabilitation or redemption for those who have committed a
crime.

PlanCoT: The death penalty should not be an option for any crime. Firstly, it is uncertain whether it is an effective deterrent for crime.
Studies have shown that the death penalty does not have a greater effect than other punishments, such as life imprisonment, in reducing
crime rates. Secondly, there is a risk of wrongful executions, as mistakes can be made in the judicial process. Finally, while it may be argued
that for some serious crimes imprisonment is not an appropriate punishment, attention should instead be directed to reforming the legal
system to provide alternative forms of justice.

Oursy/o Refine: The death penalty is an essential part of any justice system, and should remain as a punishment for serious crimes. There
is no place for a ’death option” which would undermine the seriousness of serious criminal acts. The death penalty provides a clear and
unambiguous deterrent for serious criminal acts, and ensures that those who commit such acts are held accountable for their actions. It
also serves as a powerful symbol of the justice system’s commitment to protecting society from the most serious offenders. Without the
death penalty, there is a risk that offenders could escape appropriate punishment for their crimes. The death option proposed in the original
statement would undermine the seriousness of serious criminal acts and create a loophole for those who commit them to escape punishment.
It would also reduce the deterrent effect of the death penalty, as offenders would know that they could opt for the death option and avoid the
full consequences of their actions. This could lead to more crime and a less safe society.

While we should consider alternative sentencing options that provide a fair punishment while also protecting society from further harm, the
death penalty is an important part of any justice system. It is essential that those who commit serious crimes are held accountable for their
actions, and the death penalty serves as a powerful signal of the justice system’s commitment to upholding the law. There is no place for a
‘death option’ which would undermine the seriousness of serious criminal acts and create a loophole for those who commit them to escape
punishment. Therefore, the death penalty should remain as a punishment for serious crimes, and any attempt to introduce a ‘death option’
should be strongly opposed.

Ours:The death penalty is an essential part of any justice system, and should remain as a punishment for serious crimes. It serves
as a powerful symbol of the justice system’s commitment to protecting society from the most serious offenders, and provides a clear
and unambiguous deterrent for serious criminal acts. Furthermore, the death penalty ensures that those who commit such acts are held
accountable for their actions. Introducing a ’death option’ would undermine the seriousness of serious criminal acts and create a loophole for
those who commit them to escape punishment. It would also reduce the deterrent effect of the death penalty, as offenders would know that
they could opt for the death option and avoid the full consequences of their actions. This could lead to more crime and a less safe society.

Moreover, the death option proposed could also have a negative impact on society by providing less of an incentive for rehabilitation.
Offenders may become less likely to seek rehabilitation if they know that they can opt for the death option and avoid the full consequences
of their actions. This could lead to further criminal activity and a less safe society.

Therefore, while we should consider alternative sentencing options that provide a fair punishment while also protecting society from further
harm, the death penalty is an important part of any justice system. It is essential that those who commit serious crimes are held accountable
for their actions, and the death penalty serves as a powerful signal of the justice system’s commitment to upholding the law. There is no
place for a ‘death option” which would undermine the seriousness of serious criminal acts and create a loophole for those who commit them
to escape punishment. Therefore, the death penalty should remain as a punishment for serious crimes, and any attempt to introduce a ‘death
option’ should be strongly opposed.

Figure 23: Sample output of different model outputs.
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- I think suicide should be a human right

- The US should strictly enforce border security to prevent illegal entry

- Starting a cult should not be protected as free speech

- The majority of the public are too apathetic / uneducated to vote rationally. Democracy is no longer the solution to effective governance.
- Both conservative and liberal economies can work very well, and the devil is in the details.

- The minimum wage should be directly attached to housing costs with low consideration of other factors.

- There is no defensible reason to prefer children of your own genetic material to adopting them.

- Bartenders should be able to refuse liqour service to pregnant women.

- Democracy, as it stands today, is an insufficient form of government and we need to find a replacement

- The U. S. should establish a system whereby other countries can be admitted to the union.

- Employees should not always be blamed for ignoring / inaction on a case of sexual harassment within their company / institution

- The American education would benefit from abolishing public schools and moving to a privatized system, with the government helping
those who cannot afford the private schools.

- It is the moral responsibility of a free nation to annihilate those that perpetrate human rights abuses

- Drunk driving should not be a crime itself.

- The increase in gender and sexuality vocabulary is not needed and ultimately hurts social progress on the topic

- Some type of basic understanding exam should be required for anyone who wants to vote.

- I don’t think the duty of child raising should belong to the biological parents.

- The whole debate of whether addiction is a choice or disease is pointless and should simply be labeled as bad.

- Poor people must have the choice to be poor, otherwise they are inherently inferior

- CMV :’undocumented immigrant’is a nonsense term from the left and anyone entering the country illegally ( without granted asylum )
should be deported

- Having children is unethical

- There shouldn’t be a death penalty for any crime but there should be a death option.

- I Think Groups That Exclude Based on Skin Color or Gender are Supremacy Groups

- People who falsely accuse of rape should get equal prison time as rapists do.

- The fact that voting isn’t mandatory is a good thing.

- We should not have laws that govern our own safety

- All bigotry is wrong and immoral, no matter the perpetrator.

- We can get Offended by Media or Ideas ALL we want, but we should NEVER Advocate Suppression of those Ideas or Deletion of that
Media

- Within the window that women have to biologically abort, men should be able to financially abort from their paternal responsibilities.

- Having sex with people who are emotionally unavailable due to their commitment to a relationship, knowingly that they are, shouldn’t be
considered a morally corrupt act.

- basic universal income is useless, due to supply and demand and inflation

- Legal history and politics aside, where you are born has no relevance to citizenship

- Voting Rights Should be Accorded by Residency not Nationality

- There should be 3 and only 3 gendered pronouns.

- Countries should not support eating disorder legislation.

- Selectively breeding animals with genetic defects should be illegal

- The worse the current migrant situation gets, the better the long - term prospects for our immigration system.

- Voting data that segments the voters by gender / race should not be made public.

- It is usually better for governments to offer tax holidays to attract business than to not attract the busines

- Private hospitals should be outlawed.

- Suicide should be legal

- Corporations are inherently evil and society would be better without them.

- Paying taxes cannot be considered virtuous because it is compulsory.

- Women who’ve been sexually assaulted should take justice into thier own hands.

- Carrying a gun for self - defense as opposed to pepper spray is unnecessary and possibly less safe / effective

- All labels to identify activists or certain groups of people in general ( ex. Feminist, ANTIFA, Alt - Right, Liberal ) are hurting society more
than they are helping.

- Torture is sometimes acceptable

- Victimless Crimes Shouldn’t Be Illegal

- Monogamy is not the most realistic outcome in many long - term relationships

- Social media sites policing discussions is a mistake

Figure 24: List of input propositions sampled from Reddit/CMYV dataset (Hua et al., 2021; Hu et al., 2022b).
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Abstract

In this paper, we generate and compare three
types of explanations of Machine Learning
(ML) predictions: simple, conservative and uni-
Sfying. Simple explanations are concise, conser-
vative explanations address the surprisingness
of a prediction, and unifying explanations con-
vey the extent to which an ML model’s predic-
tions are applicable.

The results of our user study show that (1) con-
servative and unifying explanations are liked
equally and considered largely equivalent in
terms of completeness, helpfulness for under-
standing the AI, and enticement to act, and
both are deemed better than simple explana-
tions; and (2) users’ views about explanations
are influenced by the (dis)agreement between
the ML model’s predictions and users’ estima-
tions of these predictions, and by the inclu-
sion/omission of features users expect to see in
explanations.

1 Introduction

The increased accuracy of Machine Learning (ML)
models has led to their widespread adoption by de-
cision makers in vital domains, such as healthcare
and finance. This highlights the need for explana-
tions of the outcomes of these models to support
decision making by practitioners and end users.
To generate explanations, we adopt the human-
centered view in (Biran and McKeown, 2017),
whereby an explanation is “not about the model, but
about the evidence that led to the prediction” (ac-
cording to the model). Our explanations are aimed

“Work done while the author was at Monash University.

Gholamreza Haffari
Dept. of Data Science and Al
Faculty of Information Technology
Monash University, Australia
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Table 1: Features and their values for an instance in the
Car Evaluation dataset (top part), and explanations for
the prediction made by the Al: features and values are
italicised, predicted outcomes appear in boldface italics,
and unifying information is shaded.

Feature: Value Feature: Value
Buying price: high  Maintenance cost:  high
Number of doors:  four  Seating capacity: four
Luggage boot size:  big  Safety rating: medium

Simple explanation
The Al system deems this car accepfable mainly because it
has a seating capacity of four and a medium safety rating.
Conservative explanation
Even though this car has a high buying price, the Al system
deems this car acceptable mainly because it has a seating
capacity of four and a medium safety rating. However, if
this car had a seating capacity of two, then the Al system
would deem it unacceptable.
Unifying explanation
The AT system deems this car acceptable mainly because it
has a seating capacity of four and a medium safety rating. In
fact, 85 out of 100 cars with a seating capacity of four
and a medium safety rating are deemed acceptable by the
Al system.

at non-expert users, whose goals are to obtain a
basic understanding of the reasons for a prediction,
and to decide on a course of action. Specifically,
we generate three types of explanations, simple,
conservative and unifying,! and examine their in-
fluence on the achievement of these goals.

Table 1 illustrates these explanations for our ML
model’s prediction for an instance in the Car Eval-
uation dataset (Dua and Graff, 2017), which con-
tains features and feature values of cars, and their
acceptance status (acceptable or unacceptable).

A simple explanation implements Ockham’s Ra-
zor. It presents the most influential feature values

'These terms and their meaning are sourced from the liter-
ature on Explanatory Virtues (Kuhn, 1977; van Cleave, 2016).
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that lead to a predicted outcome. These explana-
tions are the baseline in our evaluation (Section 4).

A conservative explanation decreases the degree
to which we find an outcome surprising (increases
its expectedness). It comprises a simple explana-
tion plus a concessive-contrastive and a counterfac-
tual component — the former acknowledges fea-
ture values that would normally yield an outcome
that differs from the predicted one, and the latter
mentions the fewest changes required to get the
not-predicted outcome. These components have
strong support in the eXplainable Artificial Intelli-
gence (XAI) literature (Biran and McKeown, 2017;
Guidotti et al., 2019; Maruf et al., 2023; Miller,
2019; Sokol and Flach, 2020; Stepin et al., 2020;
van der Waa et al., 2018).

Finally, a unifying explanation conveys the ex-
tent of the coverage of a prediction to other entities
— in our case, these are instances that have the same
influential feature values as those of the instance
at hand (but may differ with respect to other val-
ues). It comprises the simple explanation plus a
component that communicates the proportion of in-
stances with the same influential feature values and
the same predicted outcome as the current instance.
This type of explanation has been considered only
in (Buginca et al., 2020).

In this paper, we offer new algorithms for gen-
erating simple, conservative and unifying explana-
tions of the outcomes of logistic regression models.
These models, which are widely used in healthcare
and the social sciences, are considered transparent,
i.e., they are “interpretable by a Machine Learn-
ing expert or a statistician” (Biran and McKeown,
2017). It is important to explain the predictions
of transparent models because (1) these models
are commonly used as local surrogate explainer
models that approximate neural networks for an in-
stance of interest (Section 2); (2) transparent mod-
els are employed when the data are insufficient for
neural models; and (3) even if transparent models
are understandable by ML experts, they may be
unclear to lay practitioners and end users.

We conducted a user study to evaluate our ex-
planations. Our main findings are that conserva-
tive and unifying explanations are deemed largely
equivalent, are liked more than simple explanations,
and are deemed more complete, more helpful for
understanding the AI’s reasoning and more entic-
ing to act than simple explanations. Also, users’
views about explanations are influenced by the
(dis)agreement between the Al’s predictions and

users’ estimates of these predictions, and by the
inclusion/omission of features users expect to see
in explanations.

This paper is organised as follows. Section 2
discusses related work, Section 3 describes our
explanation-generation algorithms. Our user study
appears in Section 4 and its results in Section 5.
Section 6 discusses key findings and future work.

2 Related research

The sub-field of XAI focuses on explaining the
predictions made by ML models. In particular,
neural networks have received a lot of attention,
owing to their superior performance on one hand,
and their opaqueness on the other hand.

Transparent models as local surrogate explainers.
Linear regression, decision rules and decision
trees have been used to this effect. Under linear
regression, an explanation is cast as a linear
combination of the input features of a model,
where the coefficients are learned by perturbing
the features in the local neighbourhood of an
instance of interest (Ribeiro et al., 2016), or by
approximating a feature’s Shapley value (Kokalj
et al., 2021; Lundberg and Lee, 2017). The
explanations generated by these systems comprise
feature attributions that represent the contribution
of important features to a model’s prediction.
Looking at decision rules, Ribeiro et al. (2018)
search for the smallest set of “anchor rules” that
describes the largest part of the input space and
respects a precision threshold. The works that ap-
proximate the local neighbourhood of an instance
via decision trees specify this neighbourhood in
different ways; they also consider contrastive and
counterfactual explanations (Guidotti et al., 2019;
van der Waa et al., 2018).

Transparent models in their own right. There
has also been research on directly explaining the
predictions of two main types of transparent mod-
els, viz decision trees and linear classifiers, such as
logistic regression and linear SVMs. Decision trees
differ from linear models in that in decision trees,
the contributions of feature values to a prediction
are contextualised in light of the contributions of
other feature values, and only the features that are
relevant to a prediction appear in the path from the
root of the tree to that prediction. In contrast, in
linear models, the contributions of feature values
are independent of each other, and all the feature
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values contribute to the outcome, generally to dif-
ferent extents.

The predictions made by decision trees are gen-
erally explained by tracing the path from the root to
a predicted outcome (Guidotti et al., 2019; Stepin
et al., 2020). In addition, contrastive and/or coun-
terfactual explanations have been generated to en-
hance the explanations of decision tree predic-
tions (Maruf et al., 2023; Sokol and Flach, 2020;
Stepin et al., 2020). Looking at linear classifiers,
Biran and McKeown (2017) incorporated unex-
pected effects of individual features in their expla-
nations of the predictions of a logistic regressor,
but they did not consider unexpected predictions,
as done in our concessive-contrastive explanations.
Ustun et al. (2019) solved a discrete optimisation
problem to generate a list of actionable changes
in feature values that would cause a linear classi-
fication model to yield a desired outcome. Their
approach aims to provide recourse to people who
have been disadvantaged by such a model, rather
than conveying the fewest changes that yield a dif-
ferent outcome.

3 Generating Explanations

Our explanation-generation algorithms receive
three main inputs: an instance &, a logistic regres-
sion model denoted fg, and an outcome y predicted
by the model for the instance in question; the in-
stance = comprises features {xj,...,xx}, each
associated with a value. In this section, we spec-
ify the logistic regression classifier employed in
our research, and describe algorithms that generate
simple, conservative and unifying explanations for
the outcomes produced by this classifier.

3.1 Logistic regression model

Since our dataset comprises only categori-
cal features, we used a one-hot vector rep-
resentation, such that the logistic regression
model learns a weight for each feature value,
{z11,.. S IN1,---sTNmy s Where
m,; denotes the number of values associated with a
particular feature z;, fori =1,..., N.

For a multinomial classification problem (one
versus the rest), this yields a model fg parame-
terised by an intercept 3. for each class c (the
intercepts are collectively denoted as B), and coef-
ficients for each feature value for each class ¢, 8. =
{/30,1,17 s 7/80,1,m1; s 7BC,N,17 s 7BC,N,mN}-

For a binary classification problem, fg contains
parameters (intercept and the coefficients for each

-5 Llmys - -

Table 2: Classes, features and feature values (in de-
scending order of desirability), logistic regression coef-
ficients and intercept for the Car Evaluation dataset; fea-
ture values of the sample car from Table 1 are shaded.

Classes Acceptable, Unacceptable
Feature Feature values and coefficients
Buying price low  medium  high  very high
094 062 —-045 —1.11
Maintenance cost  low medium  high  very high
0.68 058 —0.29 —0.97
Number of doors  five four three two
0.25 0.19 0.10 —0.54
Seating capacity  four > four two
1.48  1.28 —2.76
Luggage boot size  big  medium small
0.43 0.19 —0.63
Safety rating high  medium low
1.64 094 —2.58
Intercept —1.67

feature value) only for the positive outcome; the
parameters of the negative outcome are obtained by
negating the parameters for the positive outcome.
The intercept represents the log odds of the positive
outcome for the reference feature values — for our
one-hot vector representation, this corresponds to
0 for each feature value. For instance, the intercept
—1.67 in Table 2 means that a car where all feature
values are absent or unknown has a probability of

e—1.67

——% = 0.158 of being acceptable.

T4e—167 —

3.2 Generating simple explanations

Intuitively, the feature values of interest for ex-
plaining a prediction are those having positive co-
efficients for that prediction. To obtain this set of
feature values, we first separate the feature values
with positive and negative coefficients, and then
sort the feature values with positive coefficients
in descending order, starting with the most posi-
tive. The simplest explanation comprises Zgimp —
the smallest set of feature values with positive co-
efficients that can overcome the net effect of the
feature values with negative coefficients and a neg-
ative intercept in order to yield the predicted out-
come. This reasoning is formalised in Algorithm 1
(Appendix A).

As an example, consider the feature values of
the Car Evaluation dataset and their coefficients in
a binary logistic regression model (Table 2), and
the feature values of the sample car from Table 1
(shaded in Table 2). Those with positive coeffi-
cients are: number of doors (four), seating capac-
ity (four), luggage boot size (big) and safety rating
(medium). Buying price (high) and maintenance
cost (high) have negative coefficients. After sorting
the feature values with positive coefficients, we get:
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seating capacity > safety rating > luggage boot size
> number of doors. The minimal set of feature
values that can overcome the intercept and the fea-
ture values with negative coefficients is Zsmp =
{seating capacity (four), safety rating (medium)}.

After the feature values Zm, have been se-
lected, an explanation is produced by the fol-
lowing programmable template: “The Al system
deems this car Phrase,,;;com.(y) mainly because it
has Phrasef,qure(Zsimp)”, where Phrase ucome(y) is a
function that articulates an outcome (e.g., “accept-
able”), and Phrasefqu(Zsmp) is a function that
articulates a list of feature values (e.g., [mainte-
nance cost: low = “low maintenance cost”]) in
decreasing order of importance for a prediction.?
The resultant text appears in Table 1.

3.3 Generating conservative explanations
Conservative explanations account for outcomes
that appear surprising in light of background knowl-
edge (Schupbach and Sprenger, 2011; van Cleave,
2016). For instance, this happens in the car do-
main when a car with a high buying price and high
maintenance cost is deemed acceptable (Table 1).
Our conservative explanations address such sur-
prises by including two components: concessive-
contrastive and counterfactual. The concessive-
contrastive component acknowledges feature val-
ues that would normally lead to an outcome that
differs from the predicted one. These feature values
are overcome by the feature values in the simple ex-
planation, which explain the surprising (predicted)
outcome. The counterfactual component conveys
minimal changes in feature values that would yield
the outcome that was not predicted.

Algorithm 2 (Appendix A) presents our proce-
dure for generating a conservative explanation for
a prediction made by a logistic regression classi-
fier. First, we obtain the feature values that lead
to the predicted outcome, i.e., those in the simple
explanation (Zgmp); next, we derive the feature val-
ues for the concessive-contrastive component (Z.);
and then we determine the feature values for the
counterfactual component (Zf).

Concessive-contrastive component (Algorithm 4,
Appendix A). We first find the feature values
whose coefficients disagree with the prediction, i.e.,
those with negative coefficients for the classifier of
class y. We then select the most influential of these
feature values as follows: (i) sort the feature values

We eschew varying the generated text, e.g., by using Large
Language Models, as this may vitiate the experiment.

with negative coefficients in ascending order, start-
ing with the most negative; and (ii) choose the fea-
ture value with the most negative coefficient, and
all feature values with coefficients within 100 x 7%
of the most negative coefficient, where 7 is a tun-
able parameter. For our experiments, we set 7 to
0.75, which means that we include feature values
whose coefficients are 75% or more of the most
negative coefficient. This value of 7, which was
empirically obtained, enables us to balance the in-
fluence of feature values and the number of feature
values included in the concessive-contrastive com-
ponent of an explanation.

To illustrate, let’s revisit the sample car in Ta-
ble 1. As seen in Table 2, the feature values that
have negative coefficients are high buying price
(—0.45) and high maintenance cost (—0.29). Since
0.29<7 x 0.45, .. = {buying price (high)}.

Counterfactual component (Algorithm 5, Ap-
pendix A). We find the minimal number of changes
in feature values that yield an unsurprising (not pre-
dicted) outcome 1’3 — this approach is appropriate
for logistic regression models, which assume that
features are independent.

To determine the impact of all possible changes
in the value of a feature on achieving the unsurpris-
ing outcome ¢/, for each feature, we compute the
difference between the coefficient for each value
not in z and the coefficient of the value in z based
on the classifier for 3/; this yields a list of differ-
ences denoted 4,/. A positive § means that we are
moving towards the unsurprising outcome y’, while
a negative ) means that we are moving away from
y'; hence, we consider only positive ds. To propose
the minimal number of changes, we first sort the
features in descending order of their maximum po-
tential impact (largest §), and within each feature,
we sort the change in value in ascending order of
6. That is, we start with the smallest change in the
maximum-impact feature.

To illustrate, consider the changes depicted in
Table 3, which decrease the acceptability of our
sample car. After sorting the features in descending
order of their highest J, we get: seating capacity
(4.24) > safety rating (3.52) > luggage boot size
(1.06) >number of doors (0.73) >maintenance cost
(0.68) > buying price (0.66). We select seating ca-
pacity, and start by replacing the value four with

3We minimise the number of changes, rather than the mag-
nitude of change, because the relative importance of different

features (e.g., seating capacity versus maintenance cost) and
feature values depends on users’ priorities.
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Table 3: Changes in feature values that would make the
sample car less acceptable, and “gain” towards unac-
ceptability (6).

Feature Value change(s) %) (%)

buying price high = very high (0.66)
maintenance cost high = very high (0.68)

number of doors four = three (0.09); two (0.73)
seating capacity four = > four (0.20); two (4.24)
luggage boot size big = medium (0.24); small (1.06)
safety rating medium = low (3.52)

‘> four’. Since this does not change the prediction,
we replace it with rwo, which makes the car unac-
ceptable. Hence, Z.s = {seating capacity (two)}.
If the car had still been acceptable, we would have
proceeded to safety rating, and so on.

Composing the explanation. After selecting the
feature values Zmp, Tcc and Ter, an explanation
is produced by the following template: “Even
though this car has Phrasesqu(Zcc), the Al sys-
tem deems this car Phrase,,..m.(y) mainly because
it has Phraseaur.(Tsimp). However, if this car had
Phrasef,qu.(Zcr), then the Al system would deem it
Phrasecome(yy').” Table 1 shows the resultant text.

3.4 Generating unifying explanations
Unifying explanations embody an inductive reason-
ing style. They indicate the extent of the applicabil-
ity of an ML model’s predictions to other entities
which are similar to the instance at hand.
Algorithm 3 (Appendix A) presents our pro-
cedure for generating these explanations. First,
we obtain the feature values that lead to the pre-
dicted outcome, i.e., those in the simple explana-
tion (Zsmp). Next, we find the N gimp training in-
stances that have the feature values mentioned in
the simple explanation of the current instance, and
determine how many of these training instances
have the same predicted outcome as the current in-
stance, 7z, - A unifying explanation is produced
by a programmable template that presents the
simple explanation followed by the proportion of
Nizgmp,y OUL Of the reference training instances 7z,
“The Al system deems this car Phraseucome(y)
mainly because it has Phrasesque(Zsimp). In
fact, Phrase,u, (N, ys Magn,) cars that have
Phrasefaure(Zsimp) are deemed Phrase ucome(y) by
the Al system”, where Phrase, o (M, s Mg, ) 15

. 113 1 iy 4 99 * :
articulated as “100 x —2¥ out of 100" if the ratio
T sim,

is less than 1, and as “all 100 otherwise. We use
proportion out of a referent, rather than percentage,
in line with the recommendations in (Gigerenzer,
2003); the referent is set to 100 to avoid presenting

referents of different magnitudes for different cars,
which may introduce a ratio bias (Spiegelhalter,
2017). The resultant text appears in Table 1.

4 Experimental Setup

We consider two research questions:
RQ1: How do the three types of explanations
compare to each other in terms of completeness
(no missing information), presence of mislead-
ing/contradictory/irrelevant information, users’ un-
derstanding of the AI’s reasoning for a predicted
outcome, and enticement to act on the predic-
tion (Hoffman et al., 2018), and the extent to which
an explanation is liked?
RQ2: Which independent variables influence
users’ views about the three types of explanations?
We first describe our dataset and classifier, fol-
lowed by the user study and our results.*

4.1 Dataset and logistic regression model

We chose the Car Evaluation dataset from the
UCI Machine Learning Repository (Dua and Graff,
2017), owing to the general accessibility of its do-
main and concepts — this dataset has relatively few
features, and users are familiar with their semantics.
The difficulty faced by users when predicting the
acceptability of a car pertains to understanding the
combined impact of several feature values, which
may have opposite effects on an outcome.

The Car Evaluation dataset was pre-processed
as described in Appendix B, yielding a balanced
binary dataset comprising 518 acceptable cars and
518 unacceptable cars. The dataset was split into
80% training and 20% test sets using proportional
sampling.

We trained a binary logistic regression model
with the features shown in Table 2, using the API
provided by scikit-learn (Pedregosa et al., 2011);
the coefficients of this model appear in Table 2.
This model achieved an accuracy of 96.26% and
95.67% on the training and test set respectively.
We did not cross-validate, as average classifier ac-
curacy is tangential to this research.

4.2 User study

After signing a consent form, participants filled a
demographic questionnaire and proceeded to the
body of the survey.

*We have addressed the recommendations for human eval-
uation in (Howcroft et al., 2020). The experiment and data are
available here.
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4.2.1 Survey design

The design of the survey was similar to that
in (Maruf et al., 2023). The survey began with a
narrative immersion, where participants were told
that they have a car dealership, and are trialing an
Al system to help them predict whether a car was
acceptable or unacceptable for sale at their dealer-
ship. Participants were then shown the features and
values that are input to the Al, and asked which fea-
tures were important to them in order to determine
the acceptability of a car; this was followed by a
brief account of how an Al system makes predic-
tions (Figure 1, Appendix C). To set up a baseline
for users’ pre-existing beliefs, next, participants
were shown a test car, and for each feature value of
this car, they were asked whether it should make
the car more (un)acceptable for the Al; they were
then asked to estimate the Al-predicted outcome
for the test car, and to enter their confidence level
in this estimate.

In the main part of the survey, participants were
shown four car scenarios in random order. To detect
unreliable responses, we inserted an attention ques-
tion after each scenario, where users had to indicate
whether a neutral statement about background in-
formation in the scenario or an explanation was
true or false. A short version of the Matching Fa-
miliar Figures Test (Cairns and Cammock, 1978)
was given between scenarios as a filler.

Scenarios. We chose four car scenarios with di-
verse feature values, where a car was predicted as
acceptable in two scenarios and as unacceptable
in the other two. Each scenario began by showing
the features of a car with their values (Table 1).
For each feature value of the car, users were asked
whether it should make the car more (un)acceptable
for the Al they were then asked to estimate the out-
come predicted by the Al, and to indicate their
confidence in this estimate (Figure 2, Appendix C).
On the next page, users were shown the prediction
made by the logistic regressor, and given three side-
by-side explanations for this prediction: simple,
conservative and unifying (Figure 3, Appendix C).
The side-by-side configuration of these explana-
tions was randomised between scenarios, but all
the participants saw the same configuration for a
given scenario.

Participants’ views about explanations. A 7-
point Likert scale was used throughout our ex-
periment, in line with recent best practice recom-
mendations in (van der Lee et al., 2021). Partici-

Table 4: Descriptive statistics — two options with the
most participants; domain familarity was self-rated.

Question Option #Part. (40)
Gender Male / Female 23/15
Age 25-34 /35-44 17712
Ethnicity Caucasian / East Asian 30/ 6
English proficiency High 40
Education Bachelor / Some college 16/ 14
ML expertise Low / Medium 23717
Domain familiarity ~Average / Good 15/13

pants were asked to enter their level of agreement
(‘Strongly disagree’: 1 to ‘Strongly agree’: 7) with
statements about four attributes of an explanation,
sourced from Hoffman et al.’s (2018) Explanation
Satisfaction Scale: (1) it is complete, (2) it con-
tains misleading/contradictory/irrelevant informa-
tion, (3) it helps understand the AI’s reasoning, and
(4) it entices to act on the prediction (Figure 3, Ap-
pendix C). Participants were then asked to rate how
much they liked each explanation (‘Dislike a great
deal’: 1 to ‘Like a great deal’: 7), and to indicate
which features that had been omitted from the ex-
planations they expected to see, followed by an
attention question (Figure 4, Appendix C).

4.3 Participants

Our survey was implemented in the Qualtrics
platform, and conducted on CloudResearch (Lit-
man and Robinson, 2020) and Connect (a
CloudResearch platform). Participants spent about
25 minutes on the experiment on average, and they
were paid $10 USD. Their responses were validated
based on their answers to the attention questions
and the time they spent on the experiment, yielding
40 valid responses out of 42.°> Table 4 shows de-
scriptive statistics for the 40 retained participants.

5 Results

We addressed the research questions as follows.
(RQ1) We compared the ratings given by users to
the simple, conservative and unifying explanations
for the four explanatory attributes and the extent to
which an explanation was liked (Section 5.1).
(RQ2) We analysed the influence of three indepen-
dent variables on users’ ratings of our explanation
types: acceptance status of a car (acceptable or un-
acceptable), (dis)agreement between the outcome
predicted by the Al and users’ estimates of these
predictions, and whether features expected by users
were omitted from explanations (Section 5.2). Ac-
cording to Lombrozo (2016), explanation length

5The two rejected participants scored 50% on the attention
questions, while most participants scored 100%.
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Table 5: Comparison between ratings of explanation
types: mean (standard deviation); a lower score is better
for Misleading/Contradictory/Irrelevant, and a higher
score is better for the other attributes.

Mean (standard deviation)

Attribute Simple Conservative  Unifying
Complete 3.71(1.72)  5.02(1.85) 4.78(1.79)
Misleading/. .. 2.12(1.37)  2.30(1.52)  2.14(1.39)
Understand AT 4.43 (1.72)  5.64(1.37)  5.58(1.36)
Entice to act 5.13 (1.56) 5.55 (1.54) 5.59 (1.48)
Liked by users  3.40 (1.63)  5.21(1.81)  5.18(1.52)

affects users’ views. However, in our case, length
is highly correlated with explanation type, hence
length was excluded from our analysis.

Statistical significance was calculated using
Wilcoxon rank-sum tests for unpaired variables,
and Wilcoxon signed-rank tests for paired ratings
of different types of explanations. Significance
was adjusted using Holm-Bonferroni correction for
multiple comparisons (Holm, 1979).

5.1 Comparison between explanation types
Table 5 shows the means and standard deviations
of the users’ ratings of the three explanation types
for the four explanatory attributes and the extent
to which an explanation was liked. We performed
pairwise comparisons between the ratings of the ex-
planation types (Wilcoxon signed-rank test; statis-
tical significances appear in Table 9, Appendix D).
Our results indicate that (i) there was no difference
between the explanation types in terms of mislead-
ing/contradictory/irrelevant information; (ii) con-
servative and unifying explanations were deemed
better than simple explanations for the other three
explanatory attributes and the extent to which an
explanation was liked (p-value < 0.001); and
(iii) conservative and unifying explanations were
deemed equivalent for all the explanatory attributes
and the extent to which an explanation was liked,
but there is a trend whereby conservative explana-
tions were deemed more complete than unifying
explanations (0.05 < p-value < 0.1).

Finding 1 Conservative and unifying explanations
are deemed better than simple explanations, and
unifying explanations are deemed largely equiva-
lent to conservative explanations.

Our finding about conservative versus simple ex-
planations is consistent with the results in (Maruf
et al., 2023) about contrastive versus simple ex-
planations. However, our finding about unifying
versus simple explanations is somewhat at odds
with Bucinca et al.’s (2020), where simple explana-
tions were preferred for decision-making tasks.

5.2 Effect of independent variables

Acceptance status of a car. Even though the ac-
ceptance status of a car is domain specific, we con-
sider this variable, as the notions of acceptance
and rejection are general. We split the participant
responses according to the predicted outcome (ac-
ceptable or unacceptable), and for each outcome,
we compared users’ ratings of each pair of expla-
nation types. Our results indicate that the statis-
tical significances obtained from the initial pair-
wise comparisons between explanation types (Sec-
tion 5.1) largely held (Table 10, Appendix D), ex-
cept for enticement to act on the Al’s prediction
of an unacceptable outcome, where conservative
and unifying explanations were deemed equivalent
to simple explanations. Also, the trend whereby
conservative explanations are deemed more com-
plete than unifying explanations is exhibited only
for unacceptable cars.

Finding 2 The predicted outcome had little effect
on the results reported in Finding 1.

(Dis)agreement between the AI’s predictions and
users’ estimations of these predictions. Maruf
et al. (2023) found that contrastive explanations
which address users’ potential expectations are par-
ticularly valuable when an AI’s predictions (made
by a decision tree) disagree with users’ estimates
of these predictions. Here, we determine whether
this finding holds for conservative explanations of
the predictions of a logistic regressor, which have a
contrastive aspect, and whether it extends to unify-
ing explanations. To this effect, we compare users’
ratings of each pair of explanation types for Al Pre-
dict = User Predict and Al Predict # User Predict
(84% and 16% of the responses respectively).

Our results indicate that the statistical signifi-
cances obtained from the initial pairwise compar-
isons between explanation types (Section 5.1) held
when the AI’s predictions agreed with users’ es-
timates of these predictions (Table 6). However,
when they disagreed, conservative and unifying
explanations were statistically significantly better
than simple explanations only for liking an expla-
nation (last row of Table 6). This result, which is
not in line with the findings in (Maruf et al., 2023)
for contrastive explanations, could be partially at-
tributed to the small sample size of Al Predict #
User Predict (35 samples).

Finding 3 Conservative and unifying explanations
are deemed better than simple explanations when
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Table 6: Effect of (dis)agreement between ML model predictions and users’ estimates of these predictions on ratings
of explanations: mean (standard deviation) and statistical significance (Wilcoxon signed-rank test); a lower score
is better for Misleading/Contradictory/Irrelevant, and a higher score is better for the other attributes; statistically

significant results are boldfaced.

Mean (standard deviation)

Statistical Significance

. Al Predict vs . . o s Simple vs  Simple vs  Unifying vs
Attribute User Predict Simple Conservative  Unifying Conse%vative UniI;ying Conserftive
Complete AI=User 3.68 (1.70)  5.06 (1.81) 4.78 (1.76) 6.88E-10 6.42E-10 0.187

Al#User 3.84 (1.86) 4.80(2.08) 4.76 (1.98) 0.819 0.826 1
Misleading/Contra- Al=User 2.05(1.29) 2.21(1.42) 2.06 (1.34) 1 1 1
dictory/Irrelevant ATI#User 2.52 (1.68)  2.76 (1.90) 2.60 (1.63) 1 1 1
Understand Al=User 441 (1.68) 5.69(1.34) 5.64(1.30) 6.89E-12 3.31E-14 1
Al’s reasoning ATI#User 4.52(1.98) 5.40(1.52) 5.24 (1.61) 0.777 1 1
Entice to act AI=User 528 (1.44) 571(1.40) 5.73(1.33) 2.50E-03 4.87E-05 1
Al#User 4.32(1.90) 4.68(1.97) 4.84(2.01) 1 1 1
Liked by users AI=User 346 (1.62) 525(1.79) 5.20(1.53) 1.56E-10 6.60E-15 1
ATI#User 3.04 (1.64) 4.96(1.94) 5.00(1.50) 0.024 4.99E-03 1

the Al'’s predictions agree with users’ estimates
of these predictions, and are deemed at least as
good as simple explanations when the predictions
disagree.

Features omitted from an explanation. Dale and
Reiter (1995) showed that descriptions with su-
perfluous attributes were preferred to minimal de-
scriptions. This prompted us to investigate whether
omitting features that are not influential, but are
expected by users, affects users’ views about ex-
planations. To this effect, we asked participants to
point out features they expected to see, but were
omitted from the explanations for each scenario. At
least 75% of the participants selected buying price
when it was omitted, and each omitted feature was
chosen by at least six participants (Table 11, Ap-
pendix D).

We then compared the ratings of explanations
that omitted expected features with the ratings of
explanations that had no omissions. Since con-
servative explanations contain the largest number
of features, and simple and unifying explanations
contain only features with values that have a pos-
itive impact on a predicted outcome, we consid-
ered only conservative explanations in our analy-
sis. We found that explanations that omit features
expected by users were statistically significantly
less liked and deemed less complete than explana-
tions that include all expected features (Wilcoxon
rank-sum test, p-value < 0.05; Table 7); and
there is a trend whereby explanations that omit
expected features were deemed to be more mis-
leading/contradictory/irrelevant than explanations
that have no omissions (0.05 < p-value < 0.1).
These results indicate that users may perceive some
domain-specific features to be essential, regardless

Table 7: Effect of omitted feature values on ratings of
conservative explanations: mean (std. dev.) and sta-
tistical significance (Wilcoxon rank-sum test); a lower
score is better for Misleading/Contradictory/Irrelevant,
and a higher score is better for the other attributes; sta-
tistically significant results are boldfaced, and trends
(0.05 < p-value < 0.1) are italicised.

Mean (std. dev.) Stat. Sig.

Attribute Omitted Not omitted Omit vs Not omit
Complete 4.84 (1.88) 5.76 (1.52) 0.027
Misleading/. .. 2.42 (1.56) 1.76 (1.14) 0.064
Understand AI 5.58 (1.34) 5.90 (1.49) 0.121
Entice to act  5.48 (1.54) 5.83 (1.53) 0.121
Liked by users 5.05 (1.84) 5.86 (1.56) 0.022

of their influence on the outcome, and omitting
these features from explanations adversely affects
users’ views.

Finding 4 Explanations that omit expected fea-
tures are liked less and are deemed less complete
than explanations that have no such omissions.

6 Conclusion

We have offered algorithms that generate simple,
conservative and unifying explanations for pre-
dictions made by a logistic regressor; and we re-
ported the results of a user study where we evalu-
ated these explanations in terms of the extent to
which they were liked and four explanatory at-
tributes, viz completeness, presence of mislead-
ing/contradictory/irrelevant information, helpful-
ness to understand the AI’s reasoning, and entice-
ment to act on the AI’s prediction. We also consid-
ered the influence of three independent variables on
users’ views about our explanations, viz predicted
outcome, (dis)agreement between the Al’s predic-
tion and users’ estimates of these predictions, and
presence/absence of features users expect to see in
explanations.
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Comparison between explanation types. Our
results show that conservative and unifying expla-
nations are better liked than their simple counter-
parts, and are deemed more complete, more helpful
to understand the AI’s reasoning, and more entic-
ing to act on the AI’s prediction; and that unifying
explanations are deemed largely equivalent to con-
servative explanations. In the future, it would be
interesting to compare an explanation that com-
bines conservative and unifying explanations with
each of these explanation types.

Effect of independent variables. Firstly, the out-
come predicted by the Al has little effect on users’
views about our explanations.

Second, conservative and unifying explanations
are deemed better than simple explanations when
the AI’s predictions agree with users’ estimates
of these predictions. However, when they dis-
agree, conservative and unifying explanations are
only liked better than simple explanations, and are
deemed equivalent for the other attributes. This
result may be partially attributed to the small num-
ber of data points for disagreement. In addition,
these findings with respect to conservative expla-
nations, which have a contrastive component, are
at odds with those in (Maruf et al., 2023), where
contrastive explanations of decision-tree predic-
tions were particularly favoured when the AI’s pre-
dictions and users’ estimates of these predictions
disagreed. This suggests that the factors that af-
fect users’ views about explanations may be more
nuanced than simply having a contrastive aspect,
e.g., whether a contrastive component explicitly
mentions the expectations it is addressing, as done
in (Maruf et al., 2023).

Finally, users have domain-specific expectations
about features that should appear in explanations,
regardless of their effect on the outcome, and not
meeting these expectations adversely affects users’
views about explanations.

Limitations and future work

User study. We could not recruit real users who
were personally engaged with our car-dealership
setting. This is a well-known problem in evaluating
NLG systems, which we tried to mitigate by using
a generally accessible domain, and a narrative im-
mersion at the start of our experiment.

Dataset and algorithms. Our dataset has only
categorical features, which are handled by our one-
hot encoding. In the future, we will adapt our

algorithms to numerical and ordinal features.

Our dataset comprises six variables, each with
3-4 values. This relatively small number is consis-
tent with the state-of-the-art for generating textual
explanations of the outcomes of transparent ML
models (Maruf et al., 2023; Stepin et al., 2020).
However, in the future, our explanation-generation
algorithms should be adapted to handle datasets
with a large number of features — even though
our algorithms select feature values with the high-
est impact, it is possible that when the feature set
is large, the generated explanations could become
quite lengthy.

Our algorithms for generating simple, conces-
sive and counterfactual explanations are linear in
the number of feature values, except for the sort-
ing steps of positive or negative coefficients. Our
algorithm for generating unifying explanations ex-
amines the training instances in the dataset to deter-
mine the model’s predictions for instances with the
same feature values as the instance at hand. How-
ever, sampling can be used, instead of examining
the entire training set.

Our algorithm for generating unifying explana-
tions is model agnostic, while the other algorithms
were developed for logistic regressors. However,
these algorithms are directly applicable to other
feature-attribution models, and are generalisable to
linear classifiers that use linear discriminant func-
tions, such as perceptrons and linear SVMs, and
log-linear models, such as Naive Bayes.

Communicative goals and uncertainty. We con-
sidered two user goals: understanding the AI’s rea-
soning and acting on its prediction. However, ML
models are not 100% accurate, so another impor-
tant goal is to enable users to determine the trust-
worthiness of a prediction (Buginca et al., 2020;
Cau et al., 2023). This goal is related to another
limitation of our work, viz our explanations omit
information about the accuracy of an ML model
— an issue that is investigated in (Zukerman and
Maruf, 2024).
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A Algorithms

Algorithm 1 Generate Simple Explanation

1: z: the feature values of an instance in the test set
2: fg: the logistic regression model

3: y: the model’s prediction for instance &

4: N': the number of features in the dataset

5: procedure GENERATESIMPLE(z, f3, y, IV)

6:

34:
35:
36:

> get coefficients corresponding to the feature values

in z from the classifier of class y
By <+ getcoeff(x, B)
> separate the indices of feature values with positive

and negative coefficients
Index?°® « (), Index™ + ()

ot — > positive coefficients in 87
Zneg < 0 > feature values with negative coefficients
for i < 1to N do

if 8 ; < 0 then
> collect indices of feature values with nega-

tive coefficients
Index"™®? <+ append(Index™*?, i)

> collect feature values with negative co-
efficients
Lneg < append(znega :Cz)
else
> collect indices of feature values with posi-

tive coefficients )
Index?°® < append(Index’°®, i)

> collect positive coefficients
By < append(B5"°°, B3 ;)
end if
end for
> sort Index?°® in descending order of the positive
coefficients
IndexP? "  sort(Index”, B37°°, descend)
141
> get the feature value with the most positive coeffi-
cient
ZTsimp < { get-feature-value(] ndea:’; ”‘Y"mrted, x)}
> iteratively add feature values with positive coeffi-
cients until prediction y is obtained
while fg(Zneg U Zsimp) # y do
1 1+1
Zgimp <— append(Esimp,
get-feature-value(Index?”” sorted |y
end while
return Zsimp

37: end procedure

Algorithm 2 Generate Conservative Explanation

1
2
3
4:
5
6
7

8:
9:

10:
11:

12:

13:
14:
15:
16:

: x: the feature values of an instance in the test set

: fp: the logistic regression model

: y: the model’s prediction for instance &

y': an alternative class (# y) for the counterfactual

: N: the number of features in the dataset

: 7: athreshold for selecting the concessive feature values
: feature-values: the list of feature values in the dataset
{.1B1717 e
procedure GENERATECONSERVATIVE(z, f3, ¥, v, N,
T, feature-values)

,xlyml,...,xN,l,...,xN,mN}

> get coefficients corresponding to the feature values
in z from the classifier of class y
B, + getcoeff(z, By)
< GENERATESIMPLE(z, fg, y, N)
> Algorithm 1
Z.. < GENERATECONCESSIVE(z, N, T, ﬂz)
> Algorithm 4
Zr + GENERATECOUNTERFACTUAL(Z, f3, ¥/,
feature-values) > Algorithm 5
return Zcc, Limp, Lef

:i:simp

end procedure

Algorithm 3 Generate Unifying Explanation

10:
11:
12:
13:
14:

16:
17:
18:
19:
20:

A

x: the feature values of an instance in the test set
fa: the logistic regression model

y: the model’s prediction for instance x

N': the number of features in the dataset

D: a set of training instances

procedure GENERATEUNIFYING(z, fg,y, N, D)

< GENERATESIMPLE(xz, fg, y, N)
> Algorithm 1
> find the instances in D with the same feature values
as Zsimp and the same prediction
Ny = 0 > same feature values
Nagmpy — 0 > same feature values and prediction
for eachz € D do
if Lsimp C Z then
Ny = Magimp T 1
if f3(2) = y then
N gimpry T 1

Tsimp

nmslmp7y
end if

end if
end for
return Tsimp, Nz m,,y> Meimp

end procedure
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Algorithm 4 Generate Concessive Explanation

Algorithm 5 Generate Counterfactual Explanation

1: z: the feature values of an instance in the test set

2: N': the number of features in the dataset

3: 7: athreshold for selecting the concessive feature values

4: B%: coefficients corresponding to the feature values in
from the classifier of class y

5: procedure GENERATECONCESSIVE(z, N, T, B7)

6: > get the indices and corresponding coefficients of
feature values with negative coefficients
7: Index™d « 0, 85" « 0
8: for i < 1to N do
9: if 3 ; < 0 then
10: > collect indices of feature values with neg-
ative coefficients
11: Index"™*? «+ append(Index™*?, i)
12: > collect negative coefficients
13: By + append(By"?, B2 ;)
14: end if
15: end for
16: > sort Index™“? in ascending order of the negative
coefficients
17: Index™8 5" sort(Index™?, B3, ascend)
18: > get the feature value with the most negative coeffi-
cient
19: Zec + {get-feature-value(] ndew'{eg_w"ted, )}
20: > get the feature values whose coefficients >
T X [the most negative coefficient]
21:  fori + 2to||[Index"¢*""|| do
22: it 8570 > |7 x 357°%| then
23: Lo < append(Zec,
24: get-feature-value(/ ndex?eg 'wmd, x))
25: else
26: break
27: end if
28: end for
29: return Z..

30: end procedure

B The Car Evaluation Dataset

This dataset, sourced from (Dua and Graff, 2017),
has 1728 instances and four classes — unacceptable,
acceptable, good and very good, with 70% of the
instances (1210 cars) being unacceptable. In line
with our previous work (Maruf et al., 2023), we
decided to generate a balanced binary classifica-
tion dataset.® This was done by (i) merging the
instances from three classes (‘acceptable’, ‘good’
and ‘very good’) into one class called ‘accept-
able’, which comprises 518 instances; and (ii) ran-
domly removing 692 instances from the unaccept-
able class, which yields 518 unacceptable instances.
We then split these data into 80% training and 20%
test sets using proportional sampling (the final class
breakdown of the training and test sets appears in
Table 8).

®Recall that our algorithms rely on the values of the coef-
ficients generated by a logistic regression model, hence they
also apply to unbalanced datasets — a cost-sensitive logistic
regressor (Zhang et al., 2022) can be used for such datasets.

1: z: the feature values of an instance in the test set

2: fa: the logistic regression model

3: 4/: an alternative class (# y) for the counterfactual

4: feature-values: the list of feature values in the dataset

{.r1717 .. -7x1,m17~ . -733N,17 - -733N,mN}
5: procedure GENERATECOUNTERFACTUAL(Z, fa, v,
Sfeature-values)

6: > for each feature, compute the difference between
the coefficient for each feature value not in  and
the coefficient of the feature value in x based on the
classifier of 3’

7 8,/ < compute-diff-coeff(z, B, feature-values)

8: > sort the features in descending order of their max-
imum positive impact on 3, and for each feature,
sort the values in ascending order of their positive
impact on 7’

9: Lorder < sort-feature-values-positive(z, Jy/,

10: feature-values)

11: Tnew < T

12: Ter < 0 > the counterfactual feature values

13: > replace a current feature value with a different one
until the outcome switches to 7’

14: for x; in £, qer do

15: Tnew < replace-feature-value(Znew, ;)

16: if fg(Tnew) =y then

17: > find the feature values in ., that are

different from those in &

18: s < get-different-values(Zpew, )

19: break

20: end if

21: end for

22: > if the value of a feature in Zr is not the highest
impact one, add the higher impact values of that
feature to Zr

23: Zor +— append(Zes,

24: get-higher-impact-feature-values(Zer, Lorder))

25: return Z.¢

26: end procedure

Table 8: Breakdown of classes for the training and test
sets in the Car Evaluation dataset.

Partition Unacceptable Acceptable Total
Training 416 412 828
Test 102 106 208
Total 518 518 1036
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C Screenshots from the experiment

Background
Arficial Intelligence (Al) systems are used to generate predictions in different domains, such as health, finance and industry. For example, the Al system used in this study
predicts whether a particular car is acceptable or unacceptable to a potential customer.

We are developing a computer system that automatically generates explanations for the predictions made by this Al system. The abjective of our study is to find out which types of
explanations peaple find useful in order to understand and act on the predictions of the Al system. We would appreciate your help in making this determination.

The car sales domain

Pretend that you are a car dealer who is offered cars for sale by different manufacturers. You need to determine whether you will be able to sell these cars to your customer base. If
50, you would deem these cars acceptable, otherwise they would be unacceptable. To help you make these decisions, you are trialing a state-of-the-art Al system that predicts
whether a caris acceptable or unacceptable. The Al system makes these predictions based on the decisions made by, your customers in the past and the six car features in the
table below. The accuracy of the Al system in predicting the acceptability of a car is 96%.

Car features and their possible values from left (make a car more acceptable to your customers) to right (make a car more unacceptable to your customers).

Feature Possible values
More acceptable More unacceptable
Buying price Low Medium High Very high
Maintenance cost Low Medium High Very high
Number of doors Five Four Three Two
Seating capacity More than four Four Two
Size of luggage boot Big Medium Small
Safefy rating High Medium Low

Which of the following features are important to you as a car dealer to determine the acceptability of a car? Select all that apply.

Buying price Maintenance cost Number of doors Seating capacity None of these

0 0 0 0 0 0 0

Size of luggage hoot Safety rating

Al systems make predictions based on trends and patterns they have learned from large amounts of data. Therefore, the reasoning of Al systems may differ from our intuitions,
which are normally hased on our personal experience. In addition, for each situation, an Al system considers the importance of a feature value relative to other feature values, and
hence may determine that some feature values have a higher importance in some situations and a lower importance in other situations. For example, if a car has a seating capacity
of four people, having a low buying price may be deemed very important by the Al system. In contrast, the Al system may consider the buying price to be less important if the car has
a seating capacity of only two people.

Going forward, please bear in mind that our generated explanations are based on the reasoning of our Al system, and may not reflect what you consider important for the
acceptability or unacceptabilty of a car.

Before we describe the main experiment, we want to establish a baseline of your expectations regarding the Al's predictions (initially, these expectations are likely to be based on
your opinions as a car dealer). To do this, we will show you the feature values of a test car and ask your expectation about whether an Al should deem this car acceptable or
unacceptable, and which feature values should be considered important for this decision. Your answers will not affect our perceptions about you.

Figure 1: Background information; narrative immersion for the survey; features and feature values of a car;
description of the reasoning of Al systems; preamble to the experiment.
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CarlD 77:

This car has the following features and corresponding values.

Feature Value
Buying price High
Maintenance cost ery high
INumber of doors Two
Seating capacity Four
Size of luggage boot Small
Safety rating High

For each feature value of CarlD 77, indicate whether it should make this car more acceptable or more unacceptable for the Al (you may also select Can't decidle).

Buying price = High v
Maintenance cost = Very high v
Number of doors = Two v
Seating capacity = Four v
Size of luggage boot = Small v
Safety rating = High v

As a car dealer, what is your expectation regarding the Al's prediction for CarlD 77 given its feature values?
O Acceptable
O Unacceptable
O Can'tdecide

Indicate how confident you are about your estimate of the Al's prediction for CarlD 77.

0 10 20 30 40 50 60 70 80 90 100

My Confidence

Please proceed to the next page to see the Al's prediction for CarlD 77 and our explanations.

Figure 2: First page of a car in the main survey: background information about the car; question about whether
the feature values of the car should make it more (un)acceptable for the Al; question about estimating the AI’s
prediction and indicating the confidence level if the estimated outcome is ‘acceptable’ or ‘unacceptable’.
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Table 9: Comparison between ratings of explanation types: mean (standard deviation) of ratings, and statistical
significance (Wilcoxon signed-rank test); a lower score is better for Misleading/Contradictory/Irrelevant, and a
higher score is better for the other attributes; statistically significant results are boldfaced, and trends (0.05 <
p-value < 0.1) are italicised.

Mean (standard deviation) Statistical Significance
Attribute Simple  Conservative  Unifying Cgi::frl\?arii/e S[ljr:llﬁcl}i;gg CLL Iﬁgxi:;i
Complete 371(1.72) 5.02(1.85) 4.78 (1.79) 6.73E-11 5.46E-11 0.084
Misleading/Contradictory/Irrelevant  2.12 (1.37)  2.30(1.52)  2.14 (1.39) 1 1 1
Understand Al’s reasoning 443 (1.72) 5.64(1.37) 5.58(1.36) 5.06E-13 1.08E-14 1
Entice to act 5.13(1.56) 5.55(1.54) 5.59(1.48) 8.56E-04 1.31E-05 1
Liked by users 340(1.63) 521(1.81) 5.18(1.52) 3.58E-13 3.30E-15 1

Table 10: Effect of the acceptance status of a car on ratings of explanation types: mean (standard devia-
tion) of ratings, and statistical significance (Wilcoxon signed-rank test); a lower score is better for Mislead-
ing/Contradictory/Irrelevant, and a higher score is better for the other attributes; statistically significant results are
boldfaced, and trends (0.05 < p-value < 0.05) are italicised.

Mean (standard deviation) Statistical Significance
. Acceptance . . o s Simple vs  Simple vs  Unifying vs
Attribute Stéll)tlls Simple  Conservative  Unifying Consfrvative UniI;ying Conserftive
Complete Acceptable 4.01 (1.62) 5.21(1.84) 5.21(1.60) 1.89E-04 9.37E-06 1
Unacceptable 3.40 (1.77) 4.82(1.84) 4.35(1.86) 3.14E-06 6.25E-05 0.057
Misleading/ Acceptable  2.06 (1.19) 2.14(1.38) 2.14(1.42) 1 1 1
Contradictory/Irrelevant ~ Unacceptable 2.18 (1.52) 2.46 (1.64) 2.15(1.36) 1 1 0.607
Acceptable 4.72 (1.54) 5.90(1.08) 5.91(0.87) 3.14E-06 8.06E-08 1

Understand AI’s reasoning

Unacceptable 4.14 (1.85) 5.38(1.58) 5.24(1.66) 1.39E-06 1.25E-06 1

Entice to act Acceptable  5.06 (1.52) 5.54(1.62) 5.76 (1.36) 0.020 1.63E-05 1
Unacceptable 5.20 (1.61)  5.56 (1.46)  5.42 (1.60) 0.337 1 1

Liked by users Acceptable  3.80 (1.50) 5.31(1.65) 5.50(1.29) 9.45E-06 1.65E-09 1
Unacceptable 3.00 (1.66) 5.10(1.96) 4.85(1.66) 2.81E-07 5.57E-09 1

D Experimental results Table 11: Number of users who expected to see a fea-

ture that was omitted from our explanations for each
Table 9 displays the means and standard deviations  scenario; a feature that was mentioned in our explana-

[TRL]

of the users’ ratings of the three explanation types  tions for that scenario is denoted by “-.

with respect to the four explanatory attributes and ~ Car # Carl6 Car53  Car77  Car80
. . . Feature / Outcome accept accept unaccept unaccept
the extent to which an explanation was liked, and Buying price — — 30 o)
the statistical significance of the results (Wilcoxon  Maintenance cost - - - 12
signed-rank test). Table 10 displays the same rat-  Number of doors 8 14 12 6
. broken d dine to th t ¢ Seating capacity - - - -
ings broken down according to the acceptance sta- ;0040 oot size 15 13 _ 6
tus of a car. Table 11 shows the features expected  Safety rating - 17 - -

by users that were omitted from conservative ex-
planations for each car scenario.
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Abstract

Traditional extractive summarization treats the
task as sentence-level classification and re-
quires a fixed number of sentences for extrac-
tion. However, this rigid constraint on the num-
ber of sentences to extract may hinder model
generalization due to varied summary lengths
across datasets. In this work, we leverage the
interrelation between information extraction
(IE) and text summarization, and introduce a
fine-grained autoregressive method for extrac-
tive summarization through semantic tuple ex-
traction. Specifically, we represent each sen-
tence as a set of semantic tuples, where tuples
are predicate-argument structures derived from
conducting IE. Then we adopt a Transformer-
based autoregressive model to extract the tuples
corresponding to the target summary given a
source document. In inference, a greedy ap-
proach is proposed to select source sentences to
cover extracted tuples, eliminating the need for
a fixed number. Our experiments on CNN/DM
and NYT demonstrate the method’s superiority
over strong baselines. Through the zero-shot
setting for testing the generalization of models
to diverse summary lengths across datasets, we
further show our method outperforms baselines,
including ChatGPT.

1 Introduction

The objective of automatic text summarization is
to condense the content of an original document
while preserving its essential information. Existing
summarization techniques can be categorized into
two main approaches: extractive and abstractive
methods (Ge et al., 2023b). Abstractive methods
aim to generate new sentences, often referred to
as paraphrased sentences, to compose a summary
(Widyassari et al., 2020), while extractive tech-
niques generate summaries by selecting and ex-
tracting salient sentences directly from the source
text (Kasture et al., 2014).

In this study, we focus on extractive summa-
rization, primarily formulated as sentence-level

classification. This task typically involves a
greedy method to derive binary labels for sen-
tences in a source document, indicating their inclu-
sion or exclusion in the summary (Nallapati et al.,
2017). Nevertheless, previous research (Zhou et al.,
2020) demonstrates the drawbacks of this sentence-
centric granularity for extraction as it can introduce
redundancy and unnecessary information into the
output.

Besides, during inference, a fixed-length cutoff
or threshold is often applied to restrict the sentence
length of the output summary. This practice is in-
herently limited as it fails to accommodate the vary-
ing characteristics of different documents, which
may necessitate extractive summaries of different
lengths. For instance, a long document may need
more sentences to comprehensively cover its salient
information, whereas a short document may suffice
with a more concise representation. Additionally,
in real-world applications, expecting users to spec-
ify the exact number of sentences to be extracted
when utilizing a summarization system may not be
always feasible or practical.

Motivated by the shortcomings outlined above,
we present a new fine-grained autoregressive ap-
proach for extractive summarization via semantic
tuples extraction. To this end, we exploit the inher-
ent interdependence between information extrac-
tion (IE) and text summarization as both tasks share
a common objective: extracting accurate informa-
tion from unstructured texts in alignment with a
user’s specific requirements and presenting the ex-
tracted information in a concise manner (Grishman
et al., 1999). While summarization aims to present
this information in natural language sentences, IE
aims to transform relevant information into struc-
tured representations (Ji et al., 2013).

To effectuate this integration, we first use an IE
tool to convert each sentence into a semantic mean-
ing representation based on predicate-argument
structures (Surdeanu et al., 2003), which we call
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semantic tuples in this work. We identify these
semantic tuples corresponding to the target sum-
mary as the objective of extraction. Leveraging a
Transformer-based autoregressive model (Vaswani
etal., 2017), we train the model to extract the target
semantic tuples from each source document. This
can encourage the model to concentrate on salient
information at a more granular level compared to
conventional approaches that perform extraction at
the sentence level. During inference, we introduce
a greedy strategy to select source sentences that
cover the extracted semantic tuples, avoiding the
requirement to specify a fixed number of sentences
for extraction.

By following standard evaluation protocols, we
demonstrate that our proposed method outperforms
competitive baselines on CNN/DM and NYT. Fur-
thermore, to highlight the advantage of our ap-
proach, we examine the impact of fixed sentence ex-
traction requirements on model generalization un-
der a zero-shot setting. This involves assessing the
model’s performance on a different dataset, where
the anticipated summary lengths deviate from those
in the training data. In contrast to baselines that
consistently output summaries of the same length
for different documents, our method excels due
to its capacity to dynamically extract sentences to
cover the identified semantic tuples.

We also compare the proposed approach to using
ChatGPT (Brown et al., 2020). To do this, we pro-
vide ChatGPT with a prompt without specifying the
number of sentences to extract. The results reveal
the low performance of ChatGPT in this task —a
revelation consistent with recent work (Zhang et al.,
2023). Upon manual examination of the extrac-
tive summaries output by ChatGPT, we discovered
that ChatGPT tends to optimize recall by selecting
more sentences than expected. While ChatGPT has
demonstrated commendable capabilities across a
diverse spectrum of tasks, our observations sug-
gest that current fine-tuning approaches on smaller
models may still present promising avenues for
enhancing extractive summarization performance.

Our contributions can be summarized as follows:

* We introduce a new, fine-grained, autoregres-
sive method for extractive summarization by
using semantic tuples extraction.

* Leveraging the extracted semantic tuples, we
present a greedy strategy for selecting sen-
tences to construct extractive summaries. No-
tably, our approach avoids the convention of

necessitating a predetermined number of sen-
tences for extraction.

* Through extensive experiments, we empiri-
cally demonstrate the superior efficacy of our
method over competitive baselines. Our ap-
proach excels under the demanding zero-shot
setting.

* We test ChatGPT for extractive summariza-
tion and uncover that ChatGPT’s performance
is inferior in this task. Our findings signify the
ongoing significance of exploring mainstream
fine-tuning approaches for future research.

2 Related Work

2.1 Extractive Summarization

Extractive summarization, an NLP task with
decades of exploration, has been approached with
a wide array of methods. Sequential neural models,
which use diverse encoders such as recurrent neural
networks (Cheng and Lapata, 2016; Nallapati et al.,
2017; Xiao and Carenini, 2019), and pre-trained
language models (Zhou et al., 2018; Egonmwan
and Chali, 2019; Liu and Lapata, 2019) are fre-
quently adopted for this task. Another trajectory
in research conceptualizes extractive summariza-
tion as a node classification task and solves it by
leveraging graph neural networks to model inter-
sentence relationships (Wang et al., 2020; Zhang
et al., 2022). Despite the sophistication of these
approaches, they are formulated as sentence-level
predictions and require the specification of a fixed
quantity of sentences for extraction. Alternatives
to the sentence-centric focus are text matching
(Zhong et al., 2020; An et al., 2022) and rein-
forcement learning (Narayan et al., 2018b; Bae
et al., 2019), which have been explored through
summary-level formulations. Our approach departs
from these prior undertakings by honing in on a
more refined granularity. Specifically, we extract
semantic tuples, which we consider as semantic
representations of textual content.

2.2 Text Summarization and Information
Extraction

Previous studies of the relationship between infor-
mation extraction (IE) and text summarization have
demonstrated advantages of integrating IE methods
into text summarization, including the capacity to
enhance the overall quality of summarization out-
comes in different domains (McKeown and Kan,
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Figure 1: An overview of the pipeline for semantic tuples extraction from a document.

1999). Furthermore, incorporating IE has improved
the coherence of multi-document abstract summa-
rization (Ji et al., 2013; Li, 2015; Venkatachalam
et al., 2020). In line with our current approach, Lit-
vak and Last introduced a graph-based IE method
for summarization. Their work represents text doc-
uments as an order-relationship graph, where nodes
correspond to discrete words and edges encapsu-
late the sequential precedence of terms within the
text. Our approach diverges from theirs by lever-
aging predicate-argument structures, which accom-
modate varying numbers of arguments. This stands
in contrast to graph-based representations, which
are characterized by a fixed number of elements
within each triplet and are limited in representing
the nuanced semantic meaning of textual content.

2.3 Flexible Extractive Summarization

The inference of extractive summarization models
conventionally entails the extraction of the top-k
most significant sentences from a given document,
determined by predicted sentence scores. Neverthe-
less, employing a fixed value k for all documents
tends to yield summaries of uniform length, thereby
constraining the diversity in summary lengths. Al-
though a few recent investigations (Jia et al., 2020;
Zhong et al., 2020) have sought to generate sum-
maries of variable lengths, their techniques either
necessitate an additional phase of hyperparameter
optimization on validation datasets to identify an
appropriate threshold or frame the problem as a se-
lection of a subset from the top-k sentences. Con-
versely, our approach relies on the extraction of
semantic tuples, which are subsequently matched
to sentences to ensure coverage in a greedy manner.
Therefore we effectively eliminate both the pre-
specification of summary lengths and conducting
hyperparameter search.

3 Fine-grained Semantic Tuples
Construction

In this section, we introduce the process of convert-
ing sentences from text into semantic tuples, which

in our case are fine-grained semantic representa-
tions based on predicate-argument structures (Sur-
deanu et al., 2003). The overall pipeline is shown
in Figure 1. This is different from conventional ap-
proaches for extractive summarization, which rely
on sentences as the primary granularity.

To extract semantic tuples from a given source
document, we employed Stanford CoreNLP (Man-
ning et al., 2014) to first perform coreference reso-
lution, thereby replacing identified mentions (e.g.,
pronouns) with their corresponding entity names.
Subsequently, an IE tool was employed to extract
fine-grained semantic information from the sen-
tences: we conducted a comparative analysis of
different IE systems, including AllenNLP OpenlE
(Stanovsky et al., 2018), Stanford CoreNLP Ope-
nlE (Angeli et al., 2015), knowledge base-based
OpenlE (Huguet Cabot and Navigli, 2021), and
AMR (Zhou et al., 2021). Our selection was based
on factors such as system accessibility and IE per-
formance on summarization datasets. Ultimately,
we chose the OpenlE tool provided by AllenNLP,
which enables us to extract a list of propositions
from each sentence, effectively yielding semantic
tuple candidates. Each semantic tuple is composed
of a single predicate and a variable number of argu-
ments. To ensure the data’s integrity, we excluded
any semantic tuples with arguments exceeding 20
tokens. Moreover, we associated each predicate
with its arguments based on predicted argument
roles, adhering to the conventions established by
Surdeanu et al., where ‘arg0’ denotes the agent,
“argl" refers to the direct object, and “arg2" repre-
sents the indirect object.

However, upon inspecting the results, we noted
that the extracted semantic tuples exhibited certain
inaccuracies in the predicted argument roles, poten-
tially leading to semantic ambiguities. Considering
the high performance of LLMs in various tasks(Ge
et al., 2023a), we leveraged an LLM to identify
the most plausible semantic tuples from all can-
didates to address this concern. Specifically, for
each semantic tuple, we generated permutations by
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exploring all possible argument role assignments,
i.e., “arg0" to “arg2", and concatenated each candi-
date accordingly to form a text representation. For
instance, one candidate semantic tuple {became,
argl: Evnika Saadvakass, arg2: a YouTube sensa-
tion} would have been transformed into "became
Evnika Saadvakass a YouTube sensation".

To find the most appropriate semantic tuple, we
input all candidate texts into an LLM!, calculat-
ing their perplexity. The candidate with the lowest
perplexity was regarded as aligning best with the
language model, thus warranting selection as the
final semantic tuple. Continuing with the previ-
ous example, after querying the language model
with all different combinations, we obtain {arg0:
Evnika Saadvakass, became, argl: a YouTube sen-
sation} as the ultimate result. This pipeline enables
us to enhance the accuracy and reliability of the
extracted semantic tuples, ultimately contributing
to a more robust knowledge representation.

4 Methodology

The overview of the proposed method is shown
in Figure 2. Given a source document X =
{w1, 22, -+, 7x|} consisting of a sequence of sen-
tences x;, we consider each sentence x; to have
a semantic meaning representation in the form
of predicate-argument structures (Surdeanu et al.,
2003), namely semantic tuples. The process of ex-
tractive summarization entails the following steps:

1. Given the source document X and its com-
prehensive set of semantic tuples denoted as
Tran, we first extract the subset T, from Ty,
which corresponds to the target summary.

2. Subsequently, having identified the subset
Twub, We next select the minimum number of
sentences x; from the original source docu-
ment X whose corresponding semantic tuples
cover the subset Ty, thereby constituting the
final output summary.

4.1 Semantic Tuples Extraction

Inspired by the great success of applying
Transformer-based generative model in various IE
and semantic parsing tasks (De Cao et al., 2020;
Bai et al., 2022; Josifoski et al., 2022), we present
an end-to-end autoregressive formulation of seman-
tic tuple extraction.

'We adopted openim-research/open_llama_3b specifically.

4.1.1 Model Training

During the training phase, we initially adopted
the widely-used greedy approach (Nallapati et al.,
2017) to acquire sentence-level ground-truth labels
for a given source document X . These labels indi-
cated which sentences should be extracted as target
sentences to form the summary. Consequently, we
identified semantic tuples corresponding to these
target sentences, which constitute the target subset
denoted as Tyyp. Our goal was to extract Ty, from
the complete set of semantic tuples Ty, which
corresponds to the source document X.

To prepare T, for end-to-end training and lin-
earize it as a target sequence, we introduced a spe-
cial token <sep>> to connect each predicate with its
respective arguments. For instance, the semantic
tuple {arg0: Evnika Saadvakass, became, argl: a
YouTube sensation} was transformed into "Evnika
Saadvakass <sep> became <sep> a YouTube sen-
sation". Additionally, we introduced another spe-
cial token <et> at the end of each semantic tuple
sequence to connect and form the target sequence,
denoted as y.

We used BART (Lewis et al., 2020) as our gen-
erative model. The primary objective of the model
training was to learn the conditional probability
of generating the output sequence y given the
input document X in an autoregressive manner:
Po(ylX) = TI, po(yily<i, X). where 6 repre-
sents the model’s parameters. During training, the
aim was to maximize the conditional log-likelihood
of the target sequences using the cross-entropy loss,
and label smoothing was applied as a regularization
technique (Szegedy et al., 2016).

4.1.2 Constrained Decoding with Local Tries

One challenge with common generative models,
such as BART, is that they generate unrestricted,
free-form text without explicit constraints. Con-
sequently, the trained model may generate invalid
semantic tuples that do not correspond to any se-
mantic tuples present in the complete set Tf,y. To
overcome this issue, previous work in generative
IE and entity retrieval (De Cao et al., 2020; Josi-
foski et al., 2022) has resorted to constrained beam
search, establishing constraints through the use of a
prefix tree (aka trie) (Cormen et al., 2022). Specif-
ically, two distinct tries are constructed in those
prior studies based on all entity names and all rela-
tions. Each node in the trie represents a token from
a predefined vocabulary, and its children encom-
pass all allowable continuations stemming from
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The video was viewed around three million
times and now two years on the young girl has

"j] returned to update the world on her progress. [ **""**"""" 0"
Evnika Saadvakass became a YouTube
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Evnika Saadvakass <sep> became
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Saadvakass’s video <sep> received

Constrained <sep> around three million views <et>
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Figure 2: An overview of the proposed method. Grey solid arrows indicate the data flow during training. Red dashed
arrows represent the additional data flow during inference. The inference consists of three steps: (1) construct
semantic tuples from a source document and build a local trie; (2) run constrained decoding based on the built local
trie to ensure extracted semantic tuples are valid; (3) select sentences from the source document to cover extracted

semantic tuples in a greedy manner.

the prefix defined by traversing the trie from the
root. Using a similar mechanism for our case can
ensure that a traversal from the root to a leaf node
guarantees the generation of a valid predicate or
argument.

Nonetheless, directly applying the aforemen-
tioned strategy cannot ensure the accuracy of gen-
erated semantic tuples for our case. This limitation
arises due to the inherent independence and static
nature of the two pre-built tries, which we refer to
as global tries. Consequently, during the genera-
tion process, the model remains susceptible to pro-
ducing invalid semantic tuples comprising discon-
nected predicates and arguments. For instance, the
model may generate a tuple like { arg0: Chicago,
helps, argl: dog }, wherein the model switches
between two independent tries. To address this
concern effectively, we propose the dynamic con-
struction of a local trie in real time. Specifically,
to generate an extractive summary for a source doc-
ument X, we create a trie that stores all semantic
tuples present in 7yy;. Traversing this trie from
the root to a leaf node guarantees the generation
of a valid and complete semantic tuple. Subse-
quently, we incorporate the constructed tries into
the constrained beam search, following previous
work (De Cao et al., 2020; Josifoski et al., 2022).

4.2 Source Sentence Extraction

During the inference phase, upon identifying Ty,
the task at hand involves mapping Ty, back to

sentences within the source document X to gen-
erate an extractive summary. To achieve this ob-
jective, we have devised a pragmatic and flexible
approach, inspired by the idea of deriving sentence-
level ground-truth labels (Nallapati et al., 2017).
Importantly, our proposed approach does not im-
pose a fixed number of sentences to be extracted,
as is commonly seen in prior methodologies.

Specifically, we adopt a greedy strategy to iter-
atively select one sentence x; at a time, gradually
building a summary. This selection is guided by the
criterion that the semantic tuples of the chosen sen-
tence x; exhibit the most significant overlap with
the elements in Tg,,. After one optimal sentence is
selected at a time, we remove the semantic tuples
that correspond to the selected sentence from Typ.
This process is repeated until 7y, becomes empty,
signifying that the final summary has encompassed
all the identified semantic tuples within Tgp.

S Experiments and Results

We introduced our experimental settings and re-
sults in this section, and included the implementa-
tion details in Appendix Sec. A. Additionally, we
follow previous work in text summarization and
related tasks (Zhang et al., 2023; Ge et al., 2021)
to mainly report ROUGE-1 (unigram), ROUGE-2
(bigram), and ROUGE-L (longest common subse-
quence) scores (Lin, 2004) for evaluation.
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5.1 Datasets

We performed the evaluation on two widely rec-
ognized benchmark datasets: CNN/DM (Hermann
et al., 2015; Nallapati et al., 2016) and the New
York Times Annotated Corpus (NYT) (Sandhaus,
2008):

* CNN/DM comprises news articles from both
CNN and Daily Mail. The summaries are con-
structed from highlighted bullet points. We
used the non-anonymized version and the pro-
vided training, validation, and testing splits.

* NYT consists of 110,540 articles published
by the New York Times. This dataset also
includes summaries authored by library scien-
tists. We processed the dataset as in previous
work (Durrett et al., 2016; Liu and Lapata,
2019) to obtain training, validation, and test-
ing splits.

Additionally, to show that fixing the number of
sentences to extract can influence models’ gener-
alization even in the same domain, we designed
zero-shot experiments, where we trained mod-
els on CNN/DM and tested their performance on
XSum(Narayan et al., 2018a).

* XSum is designed for single-sentence news
summarization, with each summary formu-
lated as an answer to the question "What is the
article about?". The summaries in this dataset
are professionally written and often authored
by the original document’s author(s).

5.2 Baselines

We compared our model with several competitive
baseline methods:

* HIBERT (Zhang et al., 2019) is a hierarchi-
cal Transformer-based model pre-trained on
unlabeled data.

e PNBERT (Zhong et al., 2019) combines
LSTM Pointer with the pre-trained BERT.

¢ BERTSum (Liu and Lapata, 2019) builds the
extractive model based on BERT.

* BERTEXT (Bae et al., 2019) augments BERT
with reinforcement learning to maximize
summary-level ROUGE scores.

* MATCHSUM (Zhong et al., 2020) conceptu-
alizes extractive summarization as a semantic

Model R1 R2 RL

ORACLE 52.59 3124 48.87
LEAD-3 4042 17.62 36.67
HIBERT (2019) 4237 1995 38.83
PNBERT (2019) 42.69 19.60 38.85
BERTEXT (2019) 42776  19.87 39.11
BERTSum (2019) 43.85 2034 39.90
MATCHSUM (2020) 44.22 20.62 40.38
COLO (2022) 44.10 2097 40.19
Ours 4491 21.54 40.61

Table 1: Experimental results on CNN/DM.

text matching problem. It generates candidate
summaries and then finds the optimal sum-
mary that is the most semantically similar to
the source document.

e COLO (An et al., 2022) is a contrastive,
learning-based re-ranking framework based
on a proposed online sampling approach.

We also included the results of an extractive OR-
ACLE as an upper bound, and LEAD-3 baseline
(which selects the first three sentences in a docu-
ment).

5.3 Experimental Results on CNN/DM

The results on CNN/DM are presented in Table 1.
The average number of sentences in our generated
extractive summaries is 4.87 with a variance of
1.83. Notably, our proposed method demonstrates
superior performance compared to other compet-
itive baselines. This superiority can be attributed
to our model’s ability to effectively concentrate
on fine-grained semantic information embedded
within sentences. By leveraging this capability, our
approach is capable of discerning and extracting
salient structured information, a feature that plays
a vital role in the summarization process.

Moreover, it is evident that our novel formula-
tion of extractive summarization, revolving around
the extraction of semantic tuples, holds significant
relevance for Information Extraction (IE) tasks:
Traditional IE tasks typically involve extracting
structured semantic information from sentences,
while our task takes a step further, aiming to ex-
tract salient structured information specifically cor-
responding to target summaries.

We find inspiration in the remarkable achieve-
ments and state-of-the-art performances observed
in performing IE and semantic parsing through
autoregressive methods (De Cao et al., 2020; Josi-
foski et al., 2022; Bai et al., 2022). Consequently,
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Model Rl R2 RL
ORACLE 49.18 3324  46.02
LEAD-3 39.58  20.11 35.78
BERTSum (2019) 46.66 2635 42.62
MATCHSUM (2020) 4632 2607 42.17
Ours 47.87 2670 42.83

Table 2: Experimental results on NYT. For MATCH-
SUM, we used the released BERTSum checkpoint to
generate candidates, and then trained the matching
model on NYT.

Model R1 R2 RL
ORACLE 2562 7.62 18.72
LEAD-2 1440 146 10.59
BERTSum? 2286 4.48 17.16
BERTSum’ 20.04 297 16.77
MATCHSUM' 2150 347 1698

Ours (trained on CNN/DM) 23.07 4.53 17.18

Table 3: Zero-shot testing results on XSum. I repre-
sents we trained the model on XSum and 7§ indicates
we trained the model on CNN/DM. For MATCHSUM,
we used the released BERTSum checkpoint to generate
candidates.

our decision to adopt the autoregressive model fur-
ther contributes to the performance improvement
observed in our model. By building upon the capa-
bilities of autoregressive modeling, our approach
capitalizes on the strengths of this technique, en-
abling enhanced summarization outcomes and un-
derscoring the potential of this approach in extrac-
tive summarization.

5.4 Experimental Results on NYT

The experimental results obtained on NYT are dis-
played in Table 2. Our method generates extrac-
tive summaries of different lengths, with an aver-
age sentence length of 4.01 and a variance of 1.35.
Once again, our model outperforms the considered
baselines, reaffirming the efficacy and potential of
our proposed method. Note that all the baselines
rely on fixed numbers of sentences to be extracted.
However, in more realistic scenarios, users may
not always have prior knowledge of how many
sentences to extract when presented with a new
document.

5.5 Zero-shot Experiments on XSum

To explore the impact of fixed sentence extraction
requirements on the generalization of extractive
models, we formulated zero-shot testing. This set

of experiments enables an investigation of how the
training on one dataset, characterized by certain tar-
get summary lengths, may impact the performance
of the trained model during testing on a different
dataset with different target summary lengths, even
within the same domain. Based on this idea, we
trained models on CNN/DM, where the expected
number of sentences for extraction is 3, and sub-
sequently tested on XSum, which is expected to
extract only 2 sentences.

The results are presented in Table 3. We ob-
served that the baseline BERTSum, trained on
CNN/DM, achieved inferior performance com-
pared to its performance when trained on XSum.
This discrepancy in performance highlights the
challenge of generalization under the zero-shot set-
ting and can potentially be attributed to the different
number of sentences that should be extracted for
the two datasets.

In contrast, our model, trained on CNN/DM,
outperformed the baselines trained on CNN/DM.
We attribute this improvement to the new formu-
lation of extractive summarization adopted in our
approach. Unlike traditional extractive summariza-
tion, our approach encourages the model to focus
on more fine-grained and semantic-structured infor-
mation in the form of semantic tuples. This allows
the model to effectively identify salient semantic
tuples and subsequently map flexible numbers of
sentences to cover these identified elements, en-
hancing the overall performance.

Furthermore, our model’s performance is better
than that of BERTSum trained on XSum, which
further underscores our model’s generalization ca-
pability. This might be particularly useful in real-
world applications where users may not know the
optimal number of sentences to be extracted. Our
approach offers a solution to this problem, address-
ing a crucial aspect often overlooked in previous
work.

5.6 Comparison with ChatGPT

We created a prompt (Appendix Sec. B) to task
ChatGPT? to generate an extractive summary for
a given source document. Unlike the prompts
used by Zhang et al., our prompt does not spec-
ify the number of sentences to extract, allowing
for a meaningful comparison with our method in
scenarios where the number of extracted sentences
is not predetermined.

*We used gpt-3.5-turbo specifically.
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Model R1 R2 RL
CNN/DM

ChatGPT-Ext(2023) 39.25 17.09 25.64
ChatGPT-Ext(ICL)(2023) 42.38 17.27 28.41
ChatGPT 30.23 1290 19.75
Ours 44.51 21.03 4041
XSum

ChatGPT-Ext(2023) 19.85 2.96 13.29
ChatGPT-Ext(ICL)(2023) 17.49 3.86 12.94
ChatGPT 10.50 1.22 4.33
Ours 23.07 493 17.18

Table 4: Comparison results with ChatGPT-based ap-
proaches on CNN/DM and Xsum. ICL refers to in-
context learning.

Model relevance faithfulness
MATCHSUM 1.41 1.83
Ours 1.74 1.87

Table 5: Human evaluation results on samples from
CNN/DM. *p < 0.05

The outcomes are presented in Table 4. The
performance of ChatGPT exhibits notable deficien-
cies on both CNN/DM and XSum. Notably, in
comparison to the findings of Zhang et al., Chat-
GPT’s performance diminishes when the number
of sentences to extract was left unspecified. This
observation underscores the susceptibility of Chat-
GPT’s performance to fixed sentence extraction
requirements, emphasizing the influence of such
constraints on model generalization. Furthermore,
incorporating strategies such as in-context learning
(Brown et al., 2020) has been noted to marginally
enhance performance, although still falling behind
existing baselines.

Inspecting the generated extractive summaries
(for an example see Appendix Sec C), we observed
that ChatGPT demonstrates a proclivity to select an
excessive number of sentences, surpassing the ex-
pected number. For instance, on average, ChatGPT
extracts approximately 8 sentences for CNN/DM,
whereas the expected length is 3 sentences. This
suggests a potential bias of ChatGPT towards opti-
mizing recall at the expense of precision, contribut-
ing to its suboptimal performance. This unexpected
outcome underscores the imperative for future re-
search into more effective strategies to leverage
ChatGPT for extractive summarization.

5.7 Human Evaluation

We performed a human evaluation based on our
model’s outputs and those released by MATCH-
SUM. We randomly sampled 50 test instances from
CNN/DM and focused on two critical aspects: rel-
evance (whether the output summary is relevant
to the source document) and faithfulness (indi-
cating the degree to which the output summary
faithfully represents the source document). Three
proficient English-speaking students scored them
on a scale ranging from O (poor) to 2 (excellent),
and averages were computed for each aspect. The
outcomes are presented in Table 5. We observe
that our method reaches a notably higher relevance
score, with both methods exhibiting comparably
high levels of faithfulness. This outcome further
substantiates the efficacy of our proposed method
in extractive summarization.

6 Conclusion

This study introduces an innovative, fine-grained,
and autoregressive technique for extractive sum-
marization via the extraction of semantic tuples.
Diverging from conventional strategies that focus
on sentence-level extraction, our approach oper-
ates at a more nuanced and semantically-structured
granularity. During the inference process, we use
a greedy approach to select sentences to cover the
extracted semantic tuples, eliminating the neces-
sity to predefine a fixed number of sentences for
extraction. Empirical assessments conducted on
CNN/DM and NYT establish the superior efficacy
of our method compared to competitive baselines.
Furthermore, our investigation into the general-
ization capabilities of our approach within zero-
shot settings highlights its remarkable adaptabil-
ity across diverse summary lengths, outperforming
baseline models and achieving better generaliza-
tion. In addition, we explored the suitability of
prominent large language models for the task of
extractive summarization by evaluating ChatGPT’s
performance in generating extractive summaries.
We found ChatGPT to underperform relative to
baseline models, emphasizing the potential of fine-
tuning-centric methodologies for enhancing sum-
marization performance.

7 Limitations

Our work has the following limitations. First, our
extraction process is based on the output from infor-
mation extraction (IE). Therefore the performance
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and type of IE tools can impact the downstream
semantic tuple extraction. With better and better
performance achieved by SOTA IE, we believe our
approach can also be improved.

Furthermore, our evaluation of LLMs for extrac-
tive summarization only involved ChatGPT, specif-
ically gpt-3.5-turbo. To make the conclusion and
findings more robust, we plan to extend the current
work by including other more recent and powerful
LLMs, such as Llama 2(Touvron et al., 2023).
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A Implementation Details

Models are implemented using Pytorch (Paszke
et al., 2019) and Huggingface transformers (Wolf
et al, 2020). We initialized BART with
facebook/bart-base and trained the model with
AdamW (Loshchilov and Hutter, 2018). We set
the learning rate to 3e — 5, gradient clipping to
0.1, and weight decay to 0.01. The learning rate
was updated using a polynomial decay schedule
with an end value of 0. We set the warm-up step
to 1000, the total training steps to 40000, and the
batch size to 14. During inference, we used Con-
strained Beam Search (Anderson et al., 2017) and
restricted the max length for the input and the out-
put sequence to be 768 and 512, respectively. We
normalized the log probabilities by sequence length.
The training was performed on 8 NVIDIA V100
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GPUs and it took about 30 minutes for one training
run.

B Prompt Design

The prompt utilized for querying ChatGPT is pre-
sented in Table 6. Different from the approach of
Zhang et al. (2023), we omitted the specification
of the number of sentences to be extracted. This
deliberate exclusion facilitates a direct compari-
son with our proposed method under equivalent
experimental conditions.

The extractive summary consists of exact sen-
tences from a given document, and those sen-
tences can serve as the summary of the given
document. Give the extractive summary for the
following article, and represent the extracted
sentences in a list format.

{source document }

Table 6: The designed prompt template for querying
ChatGPT to generate an extractive summary for a given
source document.

C Case Study

We provided an example generated by both our pro-
posed method and ChatGPT using the same source
document in Table 7. The prompt employed for
ChatGPT, as detailed in Table 6, intentionally omit-
ted the specification of the number of sentences to
be extracted. As discussed in Section 5.6, Chat-
GPT tends to select more sentences than the expec-
tation, thereby trading off or sacrificing precision
for recall. In contrast, our method adopts an IE-
based approach that initially extracts fine-grained
semantic tuples. Subsequently, source sentences
are chosen to cover the extracted semantic tuples,
which eliminates the a priori predetermination of
the exact number of sentences for extraction.
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Document

Tony Mowbray will be named as the new manager of Coventry on Tuesday. Mowbray has been
out of work since leaving Middlesbrough in 2013 but has agreed to return to the dugout with
the League One strugglers. Steven Pressley was sacked by the Sky Blues last week after a run
of seven games without a win. Former Middlesbrough manager Tony Mowbray will take over
as the new boss of struggling Coventry. Neil MacFarlane and Dave Hockaday took charge of
Saturday’s win over MK Dons and look set to remain in charge for Tuesday’s game at Barnsley
but Mowbray could be in the stands at Oakwell. Coventry are just above the relegation zone after
their poor run of form and will look to Mowbray to turn things around quickly. Steven Pressley
was sacked by the League One club after they became mired in a relegation battle.

Reference

Tony Mowbray will take over as manager of League One Coventry City. He will replace Steven
Pressley who was sacked last month. Mowbray has been out of work since 2013 when he left
Middlesbrough. He also had spells in charge of Hibs, West Brom and Celtic .

Output Semantic Tuples

Tony Mowbray <sep>been<sep>out of work<et>Tony Mowbray <sep>agreed<sep>to re-
turn to the dugout<sep>Tony Mowbray <sep>leaving<sep>Middlesbrough<et>Tony Mow-
bray <sep>take<sep>as the new boss of Coventry <et>Steven Pressley <sep>sacked <sep>by
the Sky Blues<et>

Our Output Summary

Mowbray has been out of work since leaving Middlesbrough in 2013 but has agreed to return to
the dugout with the League One strugglers. Former Middlesbrough manager Tony Mowbray
will take over as the new boss of struggling Coventry. Steven Pressley was sacked by the Sky
Blues last week after a run of seven games without a win.

ChatGPT

Tony Mowbray will be named as the new manager of Coventry on Tuesday. Mowbray has been
out of work since leaving Middlesbrough in 2013. Steven Pressley was sacked by the Sky Blues
last week after a run of seven games without a win. Former Middlesbrough manager Tony
Mowbray will take over as the new boss of struggling Coventry. Neil MacFarlane and Dave
Hockaday took charge of Saturday’s win over MK Dons and look set to remain in charge for
Tuesday’s game at Barnsley. Mowbray could be in the stands at Oakwell. Coventry are just
above the relegation zone after their poor run of form. The League One club sacked Steven
Pressley as they became mired in a relegation battle.

Table 7: Case study of different settings
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Abstract

While the WebNLG dataset has prompted much
research on generation from knowledge graphs,
little work has examined how well models
trained on the WebNLG data generalise to
unseen data and work has mostly been fo-
cused on English. In this paper, we introduce
novel benchmarks for both English and Russian
which contain various ratios of unseen entities
and properties. These benchmarks also differ
from WebNLG in that some of the graphs stem
from Wikidata rather than DBpedia. Evaluat-
ing various models for English and Russian on
these benchmarks shows a strong decrease in
performance while a qualitative analysis high-
lights the various types of errors induced by
non i.i.d data.

1 Introduction

Knowledge graphs (KGs) describe connections
between entities (e.g., people, places or events)
thereby representing knowledge about the world.
The task of KG-to-Text generation consists in ver-
balising the content of a KG. Much research on
KG-to-Text generation focuses on the WebNLG
dataset (Gardent et al., 2017) often restricting evalu-
ation to the WebNLG test sets. While these include
both seen (in domain) and unseen (out of domain,
OOD) data for English, no unseen test data is avail-
able for Russian. Furthermore, the input graphs all
stem from DBpedia and the texts are often stilted
as they are either crowd-sourced (English data) or
machine translated from the crowdsourced texts
and manually verified (Russian data).

To assess how well current NLG models per-
form on OOD KG-to-Text generation, we create
several novel benchmarks for both English and Rus-
sian which address these shortcomings and differ
from the WebNLG test sets in several ways. First,
they include both English and Russian — WebNLG
only has unseen test data for English. Second,

Claire Gardent
Loria, CNRS
Nancy, France
claire.gardent@loria.fr

they include both DBpedia and Wikidata' graphs —
WebNLG focuses on DBpedia graphs. Third, they
contain various ratios of unseen entities and proper-
ties — this allows for a detailed analysis of how the
type and ratio of unseen data impact performance.

Using these benchmarks, we then assess and
compare several KG-to-Text models. The results
show a strong decrease in performance for all mod-
els compared to results on in domain data. A quali-
tative analysis highlights the various types of errors
induced by OOD data suggesting directions for
further research on KG-to-Text.

2 Related Work

KG-to-Text Generation. The WebNLG chal-
lenges gave rise to different approaches for KG-
to-Text generation, most of the 2020 participat-
ing models being fine-tuned version of T5 (Raf-
fel et al., 2020) or BART (Lewis et al., 2020).
In the WebNLG 2020 challenge (Castro Ferreira
et al., 2020), human evaluation showed that models
which were based on these pre-trained encoder-
decoders produce the best texts in terms of fluency
(e.g., Yang et al. (2020); Agarwal et al. (2020)) but
lacked adequacy on unseen test sets exposing a no-
ticeable drop in performance regarding Relevance
(not all information mentioned in the text is present
in the input graph) and Data Coverage (not all in-
formation present in the input graph is verbalised
by the text).

For Russian, the two best performing models
are Kazakov et al. (2023) and Kumar et al. (2023).
Both models fine-tune a pre-trained model on the
WebNLG data with Kazakov et al. (2023) fine-
tuning the pre-trained FRED (Full-scale Russian
Enhanced Denoiser, 1.7M Parameter) model and
Kumar et al. (2023) mT5,5.. Neither of these
models were evaluated on unseen data.

1https://www.wikidata.org/wiki/Wikidata:
Main_Page

134

Proceedings of the 17th International Natural Language Generation Conference, pages 134-144
September 23-27, 2024. ©2024 Association for Computational Linguistics



Evaluation. Recent work has focused on creating
better evaluation benchmarks for data-to-text gen-
eration. In particular, Mille et al. (2021) introduced
various subtests (subpopulations) for different data-
to-text generation tasks including WebNLG. They
developed subpopulations based on input size and
the uniqueness of subjects, objects, and properties
present in the data. Their study showed that each
of these properties influences the results and that
the level of impact differs between Russian and
English. Similarly, in 2024, a new GEM chal-
lenge on Data-to-Text generation was launched
which includes parallel datasets to WebNLG fea-
turing counterfactual and fictional data.> This
challenge also evaluates data-to-text generation
models on graphs from Wikidata (Axelsson and
Skantze, 2023). These new test sets consist solely
of automatically combined graphs without any ref-
erence verbalizations, which excludes reference-
based evaluation and necessitate human evaluation.

Different from these works, we provide new un-
seen test sets for KG-to-Text generation which in-
clude references in both English and Russian. We
then used these test sets to evaluate the ability of
existing models to generalise to OOD data and to
analyse the types of errors that arise in their output
texts.

3 Creating New Benchmarks for English
and Russian

We aim to create benchmarks which support a fine-
grained assessment of how various types of unseen
items impact generation.

Terminology. An unseen element is a KG ele-
ment (entity or property) not seen in the WebNLG
training/dev data. An unseen category is a DBpe-
dia category which is not part of the 16 categories®
used in WebNLG to create the training data.

We create separate benchmarks depending on
whether the input graph contains unseen entities,
unseen entities and properties or unseen category.
While the latter two benchmarks permit assessing
how well models perform on out of domain data,
the former helps evaluating how much performance
degrades with varying ratios of unseen entities.

For English and Russian, we derive these bench-
marks from the KELM dataset (Agarwal et al.,

2https://gem-benchmark.com/shared_task

3The 16 categories used to anchor WebNLG data are: Air-
port, Astronaut, Building, City, ComicsCharacter, Food, Mon-

ument, SportsTeam, University, WrittenWork, Athlete, Artist,
CelestialBody, MeanOfTransportation, Politician, Company.

2021), a large dataset of (graph,text) pairs created
using distant supervision. For Russian, we addi-
tionally derive benchmarks from the WebNLG data
following a methodology similar to that used to
create the WebNLG unseen test set for English.

KELM. Agarwaletal. (2021) created the KELM
dataset in several steps as follows. First, Wiki-
data triples were heuristically aligned to Wikipedia
sentences yielding a dataset of approximately 6M
noisily aligned (graph, sentence) pairs and c