DCU-ADAPT-modPB at the GEM’24 Data-to-Text Generation Task: Model Hybridisation for Pipeline Data-to-Text Natural Language Generation
Chinonso Cynthia Osuji, Rudali Huidrom, Kolawole John Adebayo, Thiago Castro Ferreira, Brian Davis
Abstract
In this paper, we present our approach to the GEM Shared Task at the INLG’24 Generation Challenges, which focuses on generating data-to-text in multiple languages, including low-resource languages, from WebNLG triples. We employ a combination of end-to-end and pipeline neural architectures for English text generation. To extend our methodology to Hindi, Korean, Arabic, and Swahili, we leverage a neural machine translation model. Our results demonstrate that our approach achieves competitive performance in the given task.- Anthology ID:
- 2024.inlg-genchal.7
- Volume:
- Proceedings of the 17th International Natural Language Generation Conference: Generation Challenges
- Month:
- September
- Year:
- 2024
- Address:
- Tokyo, Japan
- Editors:
- Simon Mille, Miruna-Adriana Clinciu
- Venue:
- INLG
- SIG:
- SIGGEN
- Publisher:
- Association for Computational Linguistics
- Note:
- Pages:
- 66–75
- Language:
- URL:
- https://preview.aclanthology.org/fix-sig-urls/2024.inlg-genchal.7/
- DOI:
- Cite (ACL):
- Chinonso Cynthia Osuji, Rudali Huidrom, Kolawole John Adebayo, Thiago Castro Ferreira, and Brian Davis. 2024. DCU-ADAPT-modPB at the GEM’24 Data-to-Text Generation Task: Model Hybridisation for Pipeline Data-to-Text Natural Language Generation. In Proceedings of the 17th International Natural Language Generation Conference: Generation Challenges, pages 66–75, Tokyo, Japan. Association for Computational Linguistics.
- Cite (Informal):
- DCU-ADAPT-modPB at the GEM’24 Data-to-Text Generation Task: Model Hybridisation for Pipeline Data-to-Text Natural Language Generation (Osuji et al., INLG 2024)
- PDF:
- https://preview.aclanthology.org/fix-sig-urls/2024.inlg-genchal.7.pdf