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Abstract

We study the patent phrase similarity infer-
ence task, which measures the semantic simi-
larity between two patent phrases. As patent
documents employ legal and highly technical
language, existing semantic textual similarity
methods that use localized contextual informa-
tion do not perform satisfactorily in inferring
patent phrase similarity. To address this, we
introduce a graph-augmented approach to am-
plify the global contextual information of the
patent phrases. For each patent phrase, we
construct a phrase graph that links to its focal
patents and a list of patents that are either cited
by or cite these focal patents. The augmented
phrase embedding is then derived from combin-
ing its localized contextual embedding with its
global embedding within the phrase graph. We
further propose a self-supervised learning ob-
jective that capitalizes on the retrieved topology
to refine both the contextualized embedding
and the graph parameters in an end-to-end man-
ner. Experimental results from a unique patent
phrase similarity dataset demonstrate that our
approach significantly enhances the represen-
tation of patent phrases, resulting in marked
improvements in similarity inference in a self-
supervised fashion. Substantial improvements
are also observed in the supervised setting, un-
derscoring the potential benefits of leveraging
retrieved phrase graph augmentation.

1 Introduction

Patents are pivotal to the landscape of innovation,
safeguarding novel ideas and fostering technologi-
cal advancements (Hasan and Tucci, 2010). Conse-
quently, understanding patent phrase similarity be-
comes essential, offering insights into the nuances
of intellectual property and aiding in the patent ana-
lytics applications, such as patent document catego-
rization, patent retrieval, patent litigation analysis
and so on (Tang et al., 2020; Mase et al., 2005;
Hall and Ziedonis, 2007). For example, the United

States Patent and Trademark Office (USPTO), in its
mission to evaluate and grant patents, could lever-
age the patent phrase similarity task to streamline
the examination process, identify prior art more
efficiently, and ensure the distinctiveness of newly
filed patent applications (Gao et al., 2022).

Patent documents employ legal and highly tech-
nical language, featuring context-dependent terms
that can deviate significantly from colloquial us-
age and may vary between different documents.
For instance, while a common term like "smart-
phone" might be easily recognized in everyday lan-
guage, in patent documents it might be referred
to as a "handheld electronic communication de-
vice", "mobile telecommunication apparatus", or
even a "portable digital assistant with wireless ca-
pabilities". Consequently, prevailing semantic tex-
tual similarity approaches, such as Sentence-BERT
(Reimers and Gurevych, 2019) or SimCSE (Gao
et al., 2021), which focus on general text and rely
on localized contextualized information for text
representation, fall short in inferring patent phrase
similarity. Additionally, obtaining a substantial col-
lection of annotations from experts for supervised
training presents significant challenges: the pro-
cess is not only costly but also demands in-depth
domain knowledge of the patent innovation land-
scape. The intricate interplay between technically
nuanced terms and the scarcity of labels renders the
task especially challenging. A significant research
gap persists: How can one effectively infer phrase
similarity within the complex language of patents,
especially in the absence of training labels?

To address this challenge, we introduce a
retrieval-based graph augmentation method to ef-
fectively capture phrase representations. Our ap-
proach is inspired by the strategies employed by
real-world patent experts. For a given patent phrase,
we begin by extracting a subgraph from the vast
patent universe, such as those registered in the
USPTO patent database. The derived subgraph
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comprises two node types: the phrase node and the
patent node. A connection exists between a phrase
node and a patent node if the phrase is present in the
patent, and patent nodes interlink based on citation
relationships. Hence, for a patent phrase such as
"handheld electronic communication device", this
subgraph might encompass related patents related
to "portable telecommunication gadget". Concur-
rently, it could also surface interrelated phrases
such as "wireless signal transceiver" and "hand-
held digital communicator". Such related patents
and phrases provide a broader context, enabling
a deeper understanding of the focal phrase. The
information from its focal patent serves as the local
context, whereas the extracted phrase graph offers
a global context. This extracted phrase graph is
subsequently processed through a graph attention
network (GAT) (Veličković et al., 2018) to obtain
its representative embedding. The final contextual-
ized embedding of a patent phrase is a combination
of its textual contextualized embedding and its as-
sociated phrase graph embedding. To address the
issue of label scarcity, we utilize a self-supervised
learning objective that capitalizes on the phrase
graph’s topology, facilitating the training of both
the textual contextualized embedding and the graph
learning parameters in an end-to-end manner.

We evaluate the proposed Retrieval Augmented
Patent Phrase Similarity (RA-Sim) on a large patent
phrase similarity dataset (Aslanyan and Wether-
bee, 2022). In comparison with existing textual
semantic similarity approaches—such as word
embeddings (Word2vec (Mikolov et al., 2013),
Glove (Pennington et al., 2014), FastText (Bo-
janowski et al., 2017)), contextualized embed-
dings (BERT (Devlin et al., 2019), RoBERTa (Liu
et al., 2019)), and semantic similarity embeddings
(Sentence-BERT (Reimers and Gurevych, 2019),
Contriever (Izacard et al., 2022), SimCSE (Gao
et al., 2021))—our RA-Sim method achieves sub-
stantial improvements on inferring patent phrase
similarities in a self-supervised manner. Ablation
studies and additional analyses further elucidate
how RA-Sim enhances the patent phrase similarity
inference task. Moreover, RA-Sim, when evalu-
ated in supervised learning setting, consistently out-
performs state-of-the-art methods. This highlights
the potential advantages of incorporating retrieved
graph for contextualized embedding augmentation.
We release the codes for RA-Sim, enabling innova-
tion and patent research scholars and practitioners
to integrate it into their analytics pipeline.

2 Related Work

Our work is related to several lines of literature.
Semantic Textual Similarity. Semantic Textual

Similarity (STS) is a classic natural language pro-
cessing task. Word2Vec (Mikolov et al., 2013),
FastText (Bojanowski et al., 2017) train word-
level embeddings unsupervisedly, which can be
used for similarity inference. BERT (Devlin et al.,
2019) and RoBERTa (Liu et al., 2019) pretrain lan-
guage model, which provide powerful embeddings
for similarity inference. Additionally, SBERT
(Reimers and Gurevych, 2019) leverages dual-
tower architecture to enhance sentence-level em-
beddings. SimCSE (Gao et al., 2021) proposes a
self-supervised loss for similarity, by taking dif-
ferent views of the same sentence as contrastive
postive (Jaiswal et al., 2020). Usually, their em-
beddings are evaluated on Semantic Textual Sim-
ilarity datasets (Agirre et al., 2012, 2013, 2014,
2015, 2016; Cer et al., 2017). Recently, domain-
specific semantic similarity tasks have drawn atten-
tion due to the potentially unique characteristics of
domain language for similarity (Liu et al., 2024).
Patent phrase similarity inference also imposes
some unique challenges. Firstly, methods that per-
form well for general text, such as SBERT and
SimCSE, and even domain-specific model Patent-
BERT (Srebrovic and Yonamine, 2020), perform
poorly due to the interplay of technical language
and phrase brevity, implying a need for domain-
specific modelling. Moreover, labelling patent
phrase similarity requires a high expertise in un-
derstanding the patent landscape, which is often
lacking in practice, resulting in label absence for
model training.

Retrieval-based NLP Generation. A growing
body of research incorporates a retrieval system
for NLP generation tasks (Asai et al., 2023; Yo-
gatama et al., 2021; Borgeaud et al., 2022; Zhong
et al., 2022; Tang and Yang, 2024). Specific appli-
cations include question answering (Kumar et al.,
2016; de Masson D’Autume et al., 2019; Chen
et al., 2023), dialogue (Fan et al., 2021) and other
traditional NLP tasks (Lewis et al., 2020). No prior
work has utilized a retrieval module for the tasks
in patent domain.

Graph Learning for Patent Analysis. Graph
neural networks (Kipf and Welling, 2017; Hamilton
et al., 2017; Veličković et al., 2018) have been
used for analyzing patents (Tang et al., 2020; Fang
et al., 2021; Siddharth et al., 2022; Zuo et al., 2022)
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or other technical text like customer requirements
(Shbita et al., 2023). The potential of graph is still
underexplored in patent phrase similarity inference.

This paper presents the first self-supervised
framework for patent phrase similarity inference,
by retrieving a domain graph to amplify the global
contextual information for patent phrases.

3 Retrieval Augmented Patent Phrase
Similarity

Patent phrases typically employ legal and highly
technical language and may deviate significantly
from colloquial usage. Moreover, patent phrases
are typically short, containing only a few tokens.
This brevity makes it even more challenging to
meaningfully represent them due to the lack of con-
textual information. For example, consider the tech-
nical phrases "acid absorption" and "chemically
soaked" from the Patent Phrase Similarity dataset
released by Google (Aslanyan and Wetherbee,
2022). Even though these two phrases don’t share
any words, patent experts rate them as domain-
related, assigning a similarity score of 0.25 on a
scale of [0,1]. Conversely, the phrases "acid absorp-
tion" and "acid reflux" are rated as "not related"
with a similarity score of 01.
Design Rationale: To enhance patent phrase simi-
larity inference, we propose to integrate additional
contextual information to bolster phrase represen-
tations. There are two primary avenues to augment
this contextual information. First, the patents in
which a phrase appears can offer crucial context
to elucidate the phrase’s meaning. Second, the
citation network linking the patents can further re-
fine the representations of these patents, which,
in turn, enriches the contextual understanding of
the associated phrases. Building on this premise,
we introduce a retrieval-augmented patent phrase
similarity method, termed RA-Sim. The design
framework of RA-Sim is illustrated in Figure 1.

3.1 Constructing Patent-Phrase Universe
We begin with a patent database that includes
granted patents along with their citation informa-
tion. In this study, our emphasis is on the U.S.
granted patent data from USPTO. It’s worth noting
that while our focus is on U.S. patents, RA-Sim
is not exclusive to them and can be generalized to
patents granted in other jurisdictions as well.

1This task is challenging, as evidenced by GPT-4’s ratings:
it deems "acid absorption" and "acid reflux" to be more similar
than "acid absorption" and "chemically soaked".

Formally, we have a set of N patents V . For the
i-th patent vi ∈ V , its text (e.g., patent abstract) is
denoted as di. We represent Ec ∈ RN×N as the ad-
jacency matrix indicating citation relations between
patents. Regarding the citation relation, Ec

ij = 1 if
patent vi cites patent vj , or 0 otherwise. In our con-
text, the USPTO patent dataset contains 7,619,250
utility patents with 102,674,056 citations.

The original patent database does not include a
specific list of phrases associated with each patent.
Given our emphasis on patent phrase similarity,
we augment the patent citation graph with phrase
nodes. For the sake of efficiency, we employ the
Rapid Automatic Keyword Extraction (RAKE) al-
gorithm (Rose et al., 2010) to extract key phrases
from the patent set V . This process yields a set of
M phrase U . We present some phrase examples in
Appendix E.1.

After obtaining the patent set V and phrase set
U , we establish relations between these two sets.
Specifically, for a given patent phrase u ∈ U ,
we utilize a retrieval algorithm to fetch the top-
k patents from the patent set V . Following prior
work (Zhong et al., 2022), we adopt BM25 as the
retrieval algorithm, due to efficiency and capabil-
ity2. We denote Er ∈ RN×M as the adjacency
matrix, indicating the relationships where a patent
is retrieved based on a patent phrase query. The
retrieval examples are shown in Appendix E.2.

In the patent-phrase universe, there are two types
of nodes: the phrase node and the patent node. A
connection is established between a phrase node
and a patent node if the phrase appears in the
patent. Additionally, patent nodes are intercon-
nected based on their citation relationships. These
associated patents and phrases offer a broader con-
text, enabling a deeper understanding of the focal
phrase. The patent phrase universe is denoted as
G = (U ,V,D, Er, Ec).

3.2 Phrase Representation Augmentation with
Phrase Ego Graph

The semantic information of a patent phrase retains
a wealth of knowledge pertinent to phrase similarity
inference. Without loss of generality, let’s denote
a textual encoder f that maps a patent phrase u to
a d-dimensional numerical vector hfu, i.e., f(u) 7→
hfu ∈ Rd,∀u ∈ U . For instance, one can choose
BERT (Devlin et al., 2019) or RoBERTa (Liu et al.,

2We also examine different retrieval systems like Doc2Vec
(Le and Mikolov, 2014) and Contriever (Izacard et al., 2022),
among which BM25 performs the best.

1879



Focal 
Phrase

Phrase Ego Graph

Text 
Encoder

GAT Encoder

Return

Focal Phrase Text
Patent Text One
Patent Text Two...

On-Node Text

Patent-Phrase Universe

+

Positive Phrase
Anchor Patent
Negative Phrase

Augmented 
Embedding

Phrase
Textual Embedding

Phrase Graph 
Embedding

BWD Pass
FWD Pass

Nodes' Textual 
Embeddings

Retrieve

Return

Focal Phrase Node

Positive Patent
Anchor Patent
Negative Patent

Non-Focal Phrase Node
Patent Node

Non-Focal Phrase Emb
Patent Emb

Figure 1: Design framework of RA-Sim: An ego graph for a phrase is retrieved from the patent-phrase universe to
complement the contextual information for a patent phrase. Two self-supervised objectives, namely the retrieval
contrastive loss and the citation contrastive loss, are employed to train the text and the graph encoders jointly.

2019) as the textual encoder.

Furthermore, for a patent phrase u ∈ U , we re-
trieve its corresponding ego graph from the patent
phrase universe, referred as phrase ego graph,
Gu = (Uu,Vu, Er

u, Ec
u), using a recursive neighbor

sampling approach. Specifically, to generate the
ego graph for the patent phrase u, we follow these
steps: 1). Initialize a node set that includes only u
and an empty edge set; 2). Sample neighbors for
each node within the node set. Add the resulting
neighbor nodes to the node set and their correspond-
ing neighboring edges to the edge set; 3). Repeat
step 2 for a predetermined number of iterations. By
iteratively expanding both the node set and edge set,
we construct a patent phrase ego graph, Gu, com-
prising patents where the focal phrase u is present,
along with a set of related patents referenced within
those patents.

We subsequently employ a graph neural network
g to transform Gu to a d-dimensional vector g(Gu).
In essence, g functions as a readout operation in
graph neural networks (Kipf and Welling, 2017;
Hamilton et al., 2017; Veličković et al., 2018), i.e.,
g(Gu) 7→ hgu ∈ Rd. This fixed-size representa-
tion hgu encodes the ego-graph information of focal
patent phrase u, which provides an augmentation
to its textual representation.

Finally, the retrieval-augmented phrase embed-

ding for ϕ(u) is modelled as follows:

ϕ(u) = f(u)⊕ g(Gu), (1)

where ⊕ is element-wise addition. For two given
patent phrases of interest, the similarity between
them is measured by the cosine similarity of corre-
sponding augmented embeddings.

3.3 Phrase Ego Graph Representation
In this section, we discuss how to map a phrase u’s
ego graph Gu to a fixed-size representation g(Gu).
Initialize Node Embeddings by Textual Encoder.
Recall that the nodes in Gu are either patent phrases
or patent texts. Therefore, we reuse the text encoder
f to map the patent phrase node i ∈ Uu and patent
node j ∈ Vu in Gu to its initial embeddings:

h(i)0 = f(i),∀i ∈ Uu, h(j)0 = f(j), ∀j ∈ Vu.
(2)

Graph-based Transformation. We then use
Graph Attention Network (GAT) (Veličković et al.,
2018) to recursively performing feature transfor-
mation on the ego graph Gu. Detailed GAT trans-
formation can be found in (Shi et al., 2021). Note
that the graph-based transformation is architecture-
agnostic and can use other GNN architectures as
well. We use GAT to model the two relations in the
ego graph, including retrieval relation and citation
relation, respectively in l-the layer, as follows.
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For a given phrase node i in ego graph, we ag-
gregate neighbors features associating with the i’s
feature at lth-layer:

h(i)l+1 = GATl

(
h(i)l,

{
h(j)l

}
j∈N r

u(i)

)
, (3)

where N r
u(·) returns the retrieved patents for phrase

i in its ego graph Gu.
For a given patent node j in ego graph, we model

two types of feature aggregation from retrieval and
citation perspectives by:

h(j)l+1
retrieval = GATl

r

(
h(j)l,

{
h(i)l

}
i∈N r

u(j)

)
,

(4)
and

h(j)l+1
citation = GATl

c

(
h(j)l,

{
h(i)l

}
i∈N c

u(j)

)
.

(5)
where N r

u(·) and N c
u(·) are neighbouring lookup

functions to return phrase and patent neighbors for
patent j in ego graph Gu, respectively.

Then, we combine the above two feature trans-
formations to form patent node j’s representation
at the l + 1 layer as follows:

h(j)l+1 = Mean
(
h(j)l+1

retrieval,h(j)
l+1
citation

)
, (6)

where Mean(·, ·) is element-wise Mean pooling.
Finally, the retrieval-augmented phrase embed-

ding ϕ(u) in Equation 1, can be written as follows:

ϕ(u) = f(u)⊕ g(Gu) = h0(u)⊕ hl(u), (7)

where l is the number of GAT layers.

3.4 Learning Objective
One challenge in inferring patent phrase similarity
is the absence of annotated similarity labels. To
address this issue, we propose training both the
textual encoder f and the graph encoder g using a
self-supervised learning objective.

First, we posit that within the ego graph, the
representation of a given patent node should be
more similar to the phrase node that retrieves the
patent than to a random phrase node unlinked to
that patent. We adopt the following triplet margin
loss to capture this graph topology:

Lretrieval(a, p, n) =max{dis(h(a),h(p))
− dis(h(a),h(n)) + δr, 0},

(8)

where a ∈ Vu denotes a patent node (anchor), and
p ∈ Uu denotes a phrase node (positive) and p ∈ U
denotes an in-batch negative phrase (negative). δr
is a hyperparameter denoting the predefined margin.
dis(·, ·) is the Euclidean distance function.

Second, the representation of a given patent node
should be more similar to another patent node with
which it shares a citation, compared to a random
patent node that has no linkage to that patent. We
capture the citation connections by:

Lcitation(a, p, n) =max{dis(h(a),h(p))
− dis(h(a),h(n)) + δc, 0},

(9)
where a, p ∈ Vu denote two patents with a citation
relation, and n ∈ V is an in-batch negative patent.
δc is the margin hyperparameter.

Our final learning objective is shown as follows
(the notations for sampled positive p and negative
n are dropped for simplicity and readability):

L = α
∑

u∈Uu

Lretrieval(u)+(1−α)
∑

v∈Vu

Lcitation(v),

(10)
where α is a coefficient to balance the importance
between two optimization goals. Note that the
framework is trained in a end-to-end fashion where
the parameters in f and g are jointly optimized.

4 Experiment

We evaluate proposed RA-Sim method on Patent
Phrase Similarity Dataset (Aslanyan and Wether-
bee, 2022), which is curated by Google and rated
by domain experts in patents.

4.1 Data
Patent Phrase Similarity (Aslanyan and Wether-
bee, 2022). The dataset comprises annotated patent
phrase pairs, including 36,473 for training, 2,843
for validation, and 9,232 for testing. Given that our
method employs self-supervised learning and does
not utilize annotated patent similarities, we restrict
our evaluation to the testing set. Later in the ex-
periments, we will explore a supervised setting for
RA-Sim, where labeled training data are utilized.

As highlighted previously, an ego phrase graph is
retrieved from the patent-phrase universe, which is
constructed by the following two external datasets.

USPTO Patent Dataset. We download the data
of US granted patents and their citations from the
PatentsView3. This dataset encompasses approxi-

3https://patentsview.org/download/data-download-tables
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mately seven million patents issued from January 6,
1976, to December 28, 2022. From this collection,
our sample includes 7,619,250 utility patents. Ad-
ditionally, we retrieve 102,674,056 citation records.
Patent abstracts are extracted from the database to
serve as the source of patent textual information.

RAKE Phrase Set. We also create a patent
phrase dataset using RAKE algorithm (Rose et al.,
2010), for efficient phrase generation for the large
patent database. For each patent abstract, we ex-
tract 3 key phrases to obtain 22,852,178 phrases
and remove simple digits or single alphabets. We
also apply WordNet Lemmatizer4 to lemmatize
phrases. Then we remove the phrases whose fre-
quency is less than 25 which drops a large amount
of rare phrases. This process results in a phrase set
of size 26,555. We summarize the token statistics
in Appendix A.

4.2 Metrics

Following prior research (Aslanyan and Wetherbee,
2022), we use two metrics to evaluate similarity
inference performance: Pearson correlation and
Spearman correlation which measure the related-
ness between inferred and labelled similarities. A
higher score indicates better alignment with patent
experts and thus better inference performance. The
reported results are averaged over 3 runs.

4.3 Training Setup

Our model is trained on 4 RTX 3090 GPUs. We use
Sentence-BERT model with all-mpnet-base-v25 as
the textual encoder. The full training details can be
found in the Appendix B.

4.4 Baselines

We compare RA-Sim with existing methods and
two proposed baselines. The full details of the
baselines are provided in the Appendix D.

The pretrained baselines include base/large
BERT (Devlin et al., 2019), base/large RoBERTa
(Liu et al., 2019), Sentence-BERT (Reimers and
Gurevych, 2019) (SBERT), and pretrained Con-
triever (Izacard et al., 2022) for dense information
retrieval. We use mean pooling to obtain phrase-
level embeddings. We also evaluate Patent-BERT,
which is pretrained on patent data, for compari-
son. Moreover, we compare multi-stage contrastive

4https://www.nltk.org/_modules/nltk/stem/wordnet.html
5We examine model performance under different textual

encoders like GTE (Li et al., 2023) and E5 (Wang et al., 2022),
and all-mpnet-base-v2 performs the best.

embedding method GTE (Li et al., 2023) and the
instruction-finetuned model instructor-xl (Su et al.,
2022) with our method.

We fine tune base/large BERT, base/large
RoBERTa and SBERT with contrastive
loss SimCSE (Gao et al., 2021), and
derive baselines SimCSE-BERTbase,
SimCSE-BERTlarge, SimCSE-RoBERTabase,
SimCSE-RoBERTalarge and SimCSE-SBERT.

We also compare established off-the-shelf word-
level embeddings, including Glove (Pennington
et al., 2014), Word2Vec (Mikolov et al., 2013),
and FastText (Bojanowski et al., 2017).

We propose a retrieval baseline and a graph base-
line: RetrieveAvg and Graph-Only. RetrieveAvg
is a retrieval-based method that retrieves the most
relevant patent for a given phrase using BM25 and
obtains an augmented embedding by weighted aver-
aging the phrase embedding and the most relevant
patent’s embedding. Graph-Only is a graph-based
baseline that replaces the initial GAT embeddings
in RA-Sim with random embeddings, to remove
the effects of phrase and patent text information.

4.5 Main Results
We show the main results of experiments in Table
1, leading to the following observations.

Model Dim. Pear. Cor. Spear. Cor.
GloVe† 300 0.429 0.444
FastText† 300 0.402 0.467
Word2Vec† 250 0.437 0.483
Patent-BERT† 1024 0.528 0.535
Contriever 768 0.528 0.498
BERTbase 768 0.413 0.418
BERTlarge 1024 0.422 0.405
RoBERTabase 768 0.313 0.329
RoBERTalarge 1024 0.364 0.372
SimCSE-BERTbase 768 0.525 0.516
SimCSE-RoBERTabase 768 0.471 0.435
SimCSE-BERTlarge 1024 0.534 0.510
SimCSE-RoBERTalarge 1024 0.484 0.460
SimCSE-SBERT 768 0.562 0.542
GTEbase 768 0.586 0.562
GTElarge 1024 0.599 0.573
Instructor-xl 768 0.600 0.584
SBERT 768 0.598 0.577
Graph-Only 768 0.258 0.146
RetrieveAvg 768 0.622 0.595
RA-Sim 768 0.633 0.629

Table 1: Patent phrase similarity inference performance
under self-supervised setup, in terms of Pearson Corre-
lation and Spearman Correlation. † denotes the scores
reported by previous work (Aslanyan and Wetherbee,
2022). Results are averaged over 3 runs.

RA-Sim outperforms existing state-of-the-art
methods. Our method leverages a phrase ego graph
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to augment embeddings and achieves a significant
improvement over the second-best model, SBERT,
with a 5.8% increase in Pearson R and a 9% gain in
Spearman R. Notably, the state-of-the-art method
in general text similarity, SimCSE, exhibits poor
performance with BERT, RoBERTa, and SBERT as
base models, with a decline from 0.598 to 0.562 in
Pearson R in SimCSE (SBERT). This suggests that
SimCSE is not an appropriate fine-tuning objective
for inferring patent phrase similarity, highlighting a
need for self-supervised objective in patent phrase
similarity task. Moreover, we find that the multi-
stage contrastive learning method GTE and the
instruction-finetuned model instructor-xl do not sig-
nificantly outperform SBERT, while our RA-Sim
outperforms them in a large margin. This implies
that improving model capability in general text
does not necessarily improve the performance in
patent phrase similarity inference. Lastly, RA-Sim
beats the state-of-the-art method in dense informa-
tion retrieval (i.e., Contriever) and a series of word
embedding methods (e.g., Word2Vec) by a large
margin, demonstrating the superiority of RA-Sim.

Retrieval module is helpful. Retrieval-based
methods, including our method and the proposed
RetrieveAvg baseline, underscore the effectiveness
of retrieval in improving patent phrase similarity in-
ference. For example, our proposed baseline Retrie-
veAvg can improve SBERT from 0.598 to 0.622 in
Pearson R. These results indicate that the retrieval
module is of vital importance.

Phrase graph is informative. From the result
of Graph-Only, we observe that incorporating struc-
tural information (i.e., relations) alone contributes
to patent phrase similarity inference to a certain
extent, leading to a Pearson R of 0.258. This ob-
servation highlights the informative role of graph
topology in augmenting phrase embeddings.

Domain patent texts matter. The patent doc-
ument text information from USPTO is indispens-
able for RA-Sim, as demonstrated by the large
performance degradation of the Graph-Only base-
line due to lacking domain text information, only
presenting a Spearman Correlation of 0.146.

4.6 Ablations
A series of ablation results are shown in Table 2.

Phrase Number and RAKE Bias. We find that
model performance drops from 0.633 to 0.616 in
Pearson R when only using 1% phrases. However,
RA-Sim only experiences a minor performance
degradation with 10% phrases, which validates its

Ablation Pear. Cor. Spear. Cor.
1% RAKE Phrases 0.616 0.613
10% RAKE Phrases 0.633 0.621
k=3 in BM25 0.626 0.621
k=7 in BM25 0.629 0.626
k=50 in BM25 0.621 0.624
Expansion Iter=3 0.620 0.619
Lcitation Only 0.551 0.547
Lretrieval Only 0.608 0.588
Hard Negatives 0.602 0.582
Additive Attention 0.613 0.604
GCN 0.605 0.601
GCNII 0.612 0.615
w/o Lemmatization 0.629 0.624
Use Train Set Phrases 0.635 0.631
RA-Sim (k=5 in BM25) 0.633 0.629

Table 2: Ablation results.

robustness. One may also concern about the bias in-
troduced by RAKE. When we replace the phrase set
with the phrases from the training similarity dataset
(keeping the training labels absent), we observe no
significant change in terms of performance. When
dropping lemmatization, the performance remains.
Thus, our constructed RAKE phrase set is capable
for effectively training RA-Sim.

Retrieval Size in BM25. We evaluate our
method with different BM25 retrieval sizes (best
performance is achieved when k=5). The results
imply that: the receptive field size of the phrase ego
graph (controlled by k) should be neither too small
nor too large. If the retrieved ego graph is too small,
it may not provide enough information to enhance
the embedding. Conversely, if the k in BM25 is
too large, the retrieved two graphs may become too
blurry to distinguish two different phrases.

Iteration Time for Expanding Graph. We
change the iteration time for expanding the phrase
graph to three iterations. This change results in
a decrease in performance compared to the setup
with two iterations used in the main result setup.
It appears that increasing the iteration time leads
to the inclusion of irrelevant or noisy informa-
tion, thereby diluting the power of the constructed
phrase graphs.

Hard Negatives. One may consider a more ad-
vanced negative scheme. We replace the negatives
in Eq. 8 and 9 with the structure-aware negatives in
prior work (Ahrabian et al., 2020). The intuition be-
hind is to utilize the ego graph structure to generate
hard negatives from the anchor’s n-hop neighbor-
hood. However, when using 3-hop negatives, we
find a performance degradation. We suspect that:
in an ego graph, the neighbors within a 3-hop dis-
tance and the anchor node itself are highly relevant,
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Model Dim. Pearson cor. Spearman cor.
BERTlarge 1024 0.704 0.683
RoBERTalarge 1024 0.651 0.633
SBERT 768 0.724 0.706
RA-Sim 768 0.741 0.721

Table 3: Inference performance in supervised learning.

and should not be treated as hard negatives.
Graph Layer. We also implement the GAT

layer with Additive Attention (Veličković et al.,
2018) scheme or use GCN (Kipf and Welling,
2017) or GCNII (Chen et al., 2020). However,
the graph layer with the attention scheme we used
achieves the best empirical performance, consistent
with prior findings (Shi et al., 2021).

Effectiveness of Two Losses. Table 2 shows that
there is only a minor improvement when we solely
use retrieval loss. This illustrates the importance
of citation information. When solely using citation
loss, the performance of the model degrades largely
in Pearson R (from 0.633 to 0.551). This reveals
that the model can not understand how to aggregate
information from phrase graph into focal phrase
embedding without retrieval loss.

4.7 Supervised Learning with Training Set

One may consider using RA-Sim in a supervised
learning setting. We conduct supervised learning
experiments with the training dataset, and present
model performance in Table 3, with training details
in Appendix C. Generally, the results are consis-
tent with the observations in self-supervised setting:
RA-Sim outperforms other benchmarks. Notably,
we emphasize that our focus is on the more chal-
lenging self-supervised setup with label absence.

5 Analysis

We conduct further analyses to understand the inner
workings of self-supervised RA-Sim.

5.1 Alignment and Uniformity

We follow prior work (Wang and Isola, 2020) to
use alignment and uniformity losses to analyze the
underlying mechanism. The a smaller loss in align-
ment or uniformity implies a better representation
capability. Intuitively, a smaller alignment loss in-
dicates that positive pairs are more similar, and a
smaller uniformity loss indicates better informa-
tion retention. We obtain the positive samples in
alignment by the similarity threshold of 0.756. The

6Similar patterns are also observed in other thresholds.
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Figure 2: Alignment and Uniformity losses scatter plot.
Colors represent similarity inference performance. For
clarity, we do not include methods like Word2Vec and
Graph-Only in the plot due to poor performance.

SBERT RA-Sim
Query Phrase: planting tree

#1 artificial tree artificial tree
#2 tilt of tree plant growth
#3 jackfruit tree man made plant
#4 tree topology plant
#5 disjoint or tree plant species

Query Phrase: eye quadrants
#1 quadrants eye region anatomy
#2 eye region anatomy rotate eyes
#3 quadrant eye position plan
#4 hand quadrant eye image
#5 shape quadrant apertures of sclera

Table 4: Retrieved top-5 phrases from testing set.

scatter plot is shown in Figure 2.
Specifically, we observe that: (1) RA-Sim pre-

serves uniformity and enhances alignment, as evi-
denced by the relative positions between RA-Sim
and SBERT; (2) as SimCSE training improves uni-
formity, it performs poorly in alignment (i.e., infer-
ring positive examples in patent phrases are chal-
lenging for SimCSE), which contradicts that Sim-
CSE presents good alignment in general text; (3) a
simple retrieval scheme in RetrieveAvg enhances
alignment; (4) retrieving the graph yields better
alignment than simply retrieving related patents.

5.2 Qualitative Results

Using cosine similarity and trained embeddings,
we randomly select phrases as queries to retrieve
similar phrases from the testing data. Specifically,
we validate RA-Sim from different perspectives
and show some results in Table 4. While "plant-
ing tree" is a commonly used in daily language,
"eye quadrants" is a highly technical term. When
retrieving "planting tree", the top-5 results in RA-
Sim include "artificial tree" and "plant growth",
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which directly relevant to the query phrase. As
for SBERT, the results are noisy with graph topol-
ogy terms like "tree topology". As for "eye quad-
rants", both methods have an overlap of "eye region
anatomy," which is directly correlated to the query.
However, RA-Sim includes more precise results,
such as "rotate eyes" and "eye position plan", which
are specifically related to the anatomy, positioning,
and images of the eye. SBERT includes results like
"hand quadrant", which may be less directly related
to the eye region anatomy. These results demon-
strate the effectiveness of RA-Sim embeddings.

6 Conclusion

We explore the challenge of inferring patent phrase
similarity, a task distinct from classic semantic tex-
tual similarity due to the highly technical language
inherent to the patent domain. In this study, we
introduce a retrieval-augmented phrase similarity
method, termed RA-Sim. This method enhances
the contextualized textual information of a patent
phrase by incorporating a phrase graph that en-
compasses its focal patent, related patents via the
citation network, and associated phrases through
these related patents. RA-Sim is trained using
self-supervised learning objectives centered on the
phrase graph. Experimental results demonstrate
RA-Sim’s superior performance, highlighting the
benefits of retrieval augmentation for contextual-
ized embeddings in domain problems.

7 Limitations

Our method has several limitations to improve in
the future. Firstly, we only test our approach on
patent data, and further research is needed to evalu-
ate its potential for scaling up to other application
domains, such as scientific articles. Secondly, the
computational cost of generating a phrase set for
the vast patent universe is high, which is why we
utilized the efficient RAKE method. In future work,
we plan to explore more computationally expen-
sive phrase generation methods. Lastly, compared
to non-graph-based methods, our approach incurs
additional computational costs in learning from the
retrieved graph module.
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A Token Statistics

We summarize the token statistics in the following
Table 5.

Max Min Average Std.
Phrase by RAKE 11 1 3.3 0.86
Patent Abstract 9,134 1 114.9 49.64

Table 5: Statistics of token number.

B Full Training Details

We train the model with a learning rate from
{2e−6, 2e−5, 2e−4}, a batch size from {2, 4, 6, 8},
and a maximum of 2 epochs. We experiment with
graph layers from 1 to 3 and find that 2 layers
performed the best. Our model is trained on 4
GeForce RTX 3090 GPUs, each with 24G memory,
using Pytorch7 and PyTorch Geometric8 for imple-
mentation. We use the Python library Pyserini9

to implement BM25 with different retrieval sizes
of k from {3, 5, 7, 50}. For neighbor sampling,
we experiment our method with sampling itera-
tion times from {1, 2, 3} and per-iteration sampled
neighbors from {1, 3, 5}. Margin parameter δr and
δc are chosen from {0.01, 0.02, 0.05, 0.1, 0.2, 0.5}.
Adam (Kingma and Ba, 2015) is used to optimize
the model parameters in a end-to-end fashion. We
assess the model’s performance every 100 training
steps by evaluating it on the validation set. We
choose the best checkpoint according to validation
performance and finally evaluate model on testing
phrase set. We use Sentence-BERT model with all-
mpnet-base-v210 as the base textual encoder. The
reported results are averaged over 3 runs.

C Supervised Learning Setup

We conduct supervised learning experiments on
BERT, RoBERTa, and SBERT to compare with our
method. We obtain embeddings for two phrases
and use Mean Squared Error loss to guide train-
ing, following prior work (Reimers and Gurevych,
2019). We compute the loss for a phrase pair
(u1, u2) sampled from the training dataset:

Lsupervised(u1, u2) = MSE(ŷ, y), (11)
7https://pytorch.org
8https://pytorch-geometric.readthedocs.io
9https://github.com/castorini/pyserini

10We examine model performance under different textual
encoders like GTE (Li et al., 2023) and E5 (Wang et al., 2022),
and all-mpnet-base-v2 performs the best.

where ŷ = sim(ϕ(u1), ϕ(u2)) is inferred similar-
ity for phrases u1 and u2, and y is ground truth
similarity labelled by domain experts. As for our
method, we train RA-Sim jointly with supervised
loss Eq. 11 and proposed self-supervised loss Eq.
10 after training with supervised loss Eq. 11 solely
for 2 epochs. As for other benchmarks, we solely
use Eq. 11 for training. We limit overall training
budget to 5 epochs and show model performance
in Table 3.

D Baseline Models

We elaborate on how we implement different base-
lines for comparison in our evaluation:

Pretrained Model. Existing pretrained lan-
guage model can effectively map phrases to embed-
dings with parameters pretrained on large amounts
of training data. Bidirectional Encoder Representa-
tions from Transformers (BERT) (Devlin et al.,
2019) is a widely-adopted pretrained language
model and we use mean pooling to obtain phrase-
level embeddings. Sentence-BERT (Reimers and
Gurevych, 2019) (SBERT) improves BERT by
incorpating dual-tower architecture to obtain sen-
tence embeddings, which is a competitive method
in phrase similarity. We use all-mpnet-base-v2 as
the base model for Sentence-BERT. Patent-BERT
(Srebrovic and Yonamine, 2020) trains BERT on
patent data to obtain a pretrained model on patent.
Contriever (Izacard et al., 2022) is trained for un-
supervised dense information retrieval and we ob-
tain phrase embeddings by mean pooling on hid-
den states. GTE utilizes a multi-stage contrastive
learning method during the pretraining phase (Li
et al., 2023), while instructor-xl (Su et al., 2022)
employs instruction to fine-tune and enhance em-
beddings. Abovementioned pretrained models are
fetched from Hugging Face11.

Finetune. Simple Contrastive Learning of Sen-
tence Embeddings (SimCSE) finetunes BERT (De-
vlin et al., 2019) and RoBERTa (Liu et al., 2019) by
leveraging an unsupervised loss which views two
different embeddings of a same phrase as positive
pair in a contrastive objective. We apply SimCSE
training to finetune BERT, RoBERTa, SBERT on
the mean-pooled hidden states, with the same train-
ing phrases as our method. We experiment bert-
base-uncased, bert-large-uncased for BERT, termed
SimCSE-BERTbase, SimCSE-BERTlarge. As for
RoBERTa, we finetune base models of roberta-base

11https://huggingface.co/models
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and roberta-large, termed SimCSE-RoBERTabase,
SimCSE-RoBERTalarge. The all-mpnet-base-v2
is used for training SBERT based SimCSE, termed
SimCSE-SBERT. All aforementioned base mod-
els for training SimCSE are from Hugging Face.

Word Embedding. Glove (Pennington et al.,
2014), Word2Vec (Mikolov et al., 2013) and Fast-
Text (Bojanowski et al., 2017) are established off
the shelf word-level embeddings. For GloVe we
use the Wikipedia 2014 Gigaword 5 model, for
FastText the wiki-news-300d-1M model, and for
Word2Vec the Wiki-words-250 from TensorFlow
Hub12.

Retrieval-based Embedding. We propose a
retrieval-based baseline, named RetrieveAvg. Re-
trieveAvg retrieves the most relevant patent for a
given phrase using BM25, and then obtains aug-
mented embedding by weighted averaging phrase
embedding and most relevant patent’s embedding.
Specifically, we use SBERT to map phrases or
most relevant patents to embeddings. We adjust the
weight (a scalar) used to combine the two embed-
dings according to the performance on validation
dataset.

Graph-based Embedding. We propose Graph-
Only, a graph-based baseline to validate the power
of graph structure. This method is implemented
by simply replacing the initial node embeddings in
RA-Sim with random embeddings to remove the
effects of phrase and patent text information.

E Examples of Phrase and BM25
Retrieval Results

E.1 Phrase Examples
We show phrase examples generated by the Rapid
Automatic Keyword Extraction (RAKE), shown in
Table 6.

E.2 BM25 Retrieval Example
We present retrieval results for BM25, which re-
trieves relevant patents for a given phrase from the
USPTO patent database. The sample results are
shown in Table 7.

12https://tfhub.dev/google/Wiki-words-250/2

Abstract Phrases
A multi-layered optical disk comprising a
plurality of recording layers accumulated
in the thickness direction wherein a light
beam is focused on one of tracks of one of
the layers thereby to record and reproduce
data, the optical disk being characterized
in that recording layers each have an iden-
tification section storing an address of the
recording layer which the identification sec-
tion belongs to.

Optical disk

Recording
layer

Light Beam

Provided is a light-emitting element with
a small degree of luminance degradation
with accumulation of driving time (a long-
lifetime light-emitting element). Provided
is a light-emitting element in which a light-
emitting layer with an electron-transport
property is formed with a plurality of lay-
ers containing different host materials. Fur-
ther, the LUMO level of a host material
on an anode side is higher than the LUMO
level of a host material on a cathode side.
With such a structure, it is possible to pro-
vide a long-lifetime light-emitting element
with little degradation in luminance with
accumulation of driving time.
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A computer includes a first memory, a sec-
ond memory having an I/O speed lower
than an I/O speed of the first memory, a
storage device, and a processor. The first
memory has a work area and a first cache
area where data input to and output from
the storage device is temporarily stored and
the second memory has a second cache area
where the data input to and output from the
storage device is temporarily stored and a
swap area to be a saving destination of data
stored in the work area. The processor re-
duces the work area and expands the first
cache area, when an input/output amount
to be an amount of data input to and out-
put from the storage device is larger than a
predetermined input/output amount.
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Second
Memory

Storage De-
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Table 6: Patent abstract and phrase examples.
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Query Phrase: Wireless Communications Network
A method for selecting an alternate wireless communica-
tion system for a wireless communication device is dis-
closed. The method comprises using a first radio access
technology (RAT) by a wireless communication device
when scanning (202) for an initial wireless communication
network (201). The wireless communication device fur-
ther registers (215) to the initial wireless communication
network (201). Then, the initial wireless communication
network (201) determines (206) alternate RAT wireless
communication network information for the wireless com-
munication device and sends (235) the alternate RAT wire-
less communication network information to the wireless
communication device. The wireless communication de-
vice receives the alternate RAT wireless communication
network information and selects (240) a first alternate wire-
less communication network from within the alternate RAT
wireless communication network information, scans for the
first alternate wireless communication network using an
alternate RAT and registers with the first alternate wireless
communication network using the alternate RAT.
A wireless communication device comprises a processing
system and a wireless communication transceiver. The
processing system is configured to store in a memory sys-
tem data that associates a geographic identifier, a pseudo
network signal of a first wireless communication network,
and a wireless communication channel of a second wire-
less communication network. The wireless communica-
tion transceiver is configured to wirelessly exchange first
wireless communications with the first wireless communi-
cation network. The processing system is configured to,
in response to the wireless communication device enter-
ing a geographic region associated with the geographic
identifier, process the geographic identifier to identify the
pseudo network signal of the first wireless communication
network and the wireless communication channel of the
second wireless communication network. The wireless
communication transceiver is configured to wirelessly re-
ceive the pseudo network signal from the first wireless
communication network, and in response, wirelessly ex-
change second wireless communications with the second
wireless communication network over the wireless com-
munication channel.
According to some embodiments, a method in a wireless
device operable in a first wireless communication network
and a second wireless communication network comprises
receiving, from the first wireless communication network,
an identification of network nodes of the second wireless
communication network. The network nodes of the second
wireless communication network are operable to process
traffic for the wireless device. The method further com-
prises receiving an instruction from the second wireless
communication network to move traffic from a first net-
work node of the second wireless communication network
to a second network node of the second wireless commu-
nication network. The first network node is one of the
identified one or more network nodes of the second wire-
less communication network. The method also comprises
determining that an identification of the second network
node is not included in the received identification of one or
more network nodes of the second wireless communication
network.

Table 7: Retrieved patents for phrase "Wireless Com-
munications Network". The three most relevant patents
are shown.
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