
Findings of the Association for Computational Linguistics: EMNLP 2024, pages 15735–15748
November 12-16, 2024 ©2024 Association for Computational Linguistics

Controlled Transformation of Text-Attributed Graphs

Nidhi Vakil
Department of Computer Science

University of Massachusetts Lowell
nvakil@cs.uml.edu

Hadi Amiri
Department of Computer Science

University of Massachusetts Lowell
hadi@cs.uml.edu

Abstract
Graph generation is the process of generating
novel graphs with similar attributes to real
world graphs. The explicit and precise control
of granular structural attributes, such as
node centrality and graph density, is crucial
for effective graph generation. This paper
introduces a controllable multi-objective
translation model for text-attributed graphs,
titled Controlled Graph Translator (CGT). It is
designed to effectively and efficiently translate
a given source graph to a target graph, while
satisfying multiple desired graph attributes
at granular level. Designed with an encoder-
decoder architecture, CGT develops fusion
and graph attribute predictor neural networks
for controlled graph translation. We validate
the effectiveness of CGT through extensive
experiments on different genres of datasets. In
addition, we illustrate the application of CGT
in data augmentation and taxonomy creation,
particularly in low resource settings.1.

1 Introduction

Graph generation is the process of generating new
graphs that satisfy the properties of existing real-
world graphs (Erdös and Rényi, 1959; Barabási
and Albert, 1999; You et al., 2018). Graph genera-
tion has extensive real world applications. These
include generating new molecules that satisfy cer-
tain chemical properties for applications like drug
discovery (Jin et al., 2018; Shi et al., 2019; Jin
et al., 2020a), creating periodic graphs with repet-
itive patterns for new synthetic materials (Wang
et al., 2022), generating synthetic social network
for studying network dynamics and understanding
complex social interactions (Pitas, 2016), generat-
ing program graphs for representing source codes
using abstract syntax trees (Allamanis et al., 2018),
and completing knowledge graphs (Melnyk et al.,
2022; Zhou et al., 2023; Cao et al., 2023).

1Code and data are available at https://clu.cs.uml.
edu/tools.html

Effective neural graph generation methods
have been proposed. In particular, You et al.
(2018) and Li et al. (2018) proposed to turn input
graphs into sequences and generate graphs sequen-
tially using two recurrent neural networks, which
iteratively determine if and how new nodes and
edges should be added to the partially generated
graph. Several effective methods have been devel-
oped specifically for text graph generation (Koncel-
Kedziorski et al., 2019; Jin et al., 2020b; Guo et al.,
2020; Yao et al., 2020; Song et al., 2020; Saha
et al., 2022; Melnyk et al., 2022; Han and Shareghi,
2022; Edwards et al., 2022). For example, Guo
et al. (2020) proposed a variational autoencoder
that generates graphs through disentanglement of
node and edge features. The model implements
three encoders to model the distribution of node,
edge and graph features; and two decoders to
jointly generate these features based on the
resulting latent representations. Recently, Han and
Shareghi (2022) proposed a low-resource approach
to generate text from input graph by introducing
several graph masking strategies to integrate both
local and global information into the pre-trained
language models. However, despite their effec-
tiveness, existing works often lack explicit control
over desired structural properties, or focus on a
limited set of graph properties in the output space.

In this paper, we propose the Controlled Graph
Translator (CGT), which transforms a given source
graph into a new target graph that satisfies multiple,
precisely-defined structural attributes. CGT imple-
ments an effective graph encoder-decoder model,
augmented with a fusion and pre-trained structural
attribute predictor. This predictor efficiently com-
putes the attributes of graphs generated in real-time
to explicitly guide the generation process. Specifi-
cally, the model enables translating a source graph
into a target graph that not only satisfies the desired
attributes but does so with granular control over the
changes in its structural attributes.

15735

https://clu.cs.uml.edu/tools.html
https://clu.cs.uml.edu/tools.html

The contribution of this paper are (a): a novel
approach capable of controlling the transformation
of text-attributed graphs and satisfying predefined
structural attributes, and (b): a graph attribute pre-
dictor that explicitly guides the generation process
by computing graph attributes in real-time.

We evaluate the efficacy of CGT across several
domains including ontologies, citation networks,
and molecular biology. It consistently outperforms
existing baselines on these datasets. In addition,
we show that CGT is capable of refining existing
ontologies, such as WordNet (Miller, 1995), and
generating new additional data points in low re-
source domains such as molecular biology, thereby
improving the performance of downstream models
developed for specific tasks. In addition, CGT is
scalable to larger graphs.

2 Control Attributes

We provide a list of structural attributes that are
crucial for controlled graph translation. These at-
tributes, which have not been previously utilized in
graph generation, add granularity, complexity and
depth to the generation process, and impose explicit
and precise control over the generation process:

• Number of nodes and edges: These commonly-
used and fundamental attributes define the
scale and complexity of a graph.

• Number of local bridges: A local bridge is
an edge that is not part of a triangle in the
graph. Local bridges act as edges that transfer
information between different parts of graphs.

• Graph density: The density of an undirected
graph is computed as e

v(v−1) , where e is the
number of edges and v is the number of nodes
in the graph.

• Edge connectivity: Edge connectivity is the
minimum number of edges that must be re-
moved to disconnect the given graph.

• Number of maximum cliques: This attribute
represents the number of maximum cliques
within a graph. A maximum clique is a largest
complete subgraph in a graph.

• Diameter: The diameter of a graph is the length
of the shortest path between the most dis-
tanced nodes in the graph.

• Treewidth min degree: The treewidth of a
graph is an integer that quantifies the degree
to which a given graph deviates from a tree.

• Transitivity: Transitivity of a graph is the frac-
tion of all possible triangles present in the
graph. It is computed as 3×|triangles|

|triads| , where a
“triad” is a set of two edges in the graph that
share a common node.

• Average closeness centrality: The closeness of
a node is its average distance to all other nodes
in the graph or, in the case of disconnected
graphs, to all other nodes in the connected
component containing that node. For a given
graph, we compute the average of closeness
centrality scores of all nodes.

• Average clustering coefficient: The clustering
coefficient of a node is the fraction of trian-
gles that exist in its neighborhood (over all
possible triangles). The clustering coefficient
of a graph is the average of the clustering co-
efficient scores of its nodes.

These attributes reflect the complexity involved
in transforming graphs through structural modifi-
cations. They enable precise control over the struc-
tures of generated graphs, making them suitable
for specific applications. For example, attributes
like number of nodes and edges, and local bridges
are crucial in ontologies like WordNet, where the
richness of linguistic connections, e.g. hypernyms
and hyponyms, reflects the complexity and depth
of semantic relationships. Edge connectivity and
subgraph density are key in citation networks to
model the influential works and inter-connectivity
of research areas. In molecular datasets, transitiv-
ity can indicate the overall connectivity and po-
tential stability of a compound, while clustering
coefficient can help understand the compactness
of molecular structures. In social networks, graph
density is a crucial metric for community detection
and analyzing the likelihood of forming tight-knit
communities within graphs.

3 Controlled Graph Translator

Problem Statement Given a source graph Gs,
a source attribute vector cs, and a target attribute
vector ct, we aim to translate Gs to a target graph
Gt that satisfies specified desired attributes ct.

Solution Overview Given the source graph Gs =
(V s, Es), we represent the adjacency matrix of Gs

as As ∈ R|V s|×|V s|, such that As
ij = 1 if there

is an edge between node i and j, and As
ij = 0

otherwise. Similarly, the adjacency matrix for the
target graph Gt is represented as At ∈ R|V t|×|V t|.

15736

regenerate.v.01

regenerate.v.04
republish

republish.v.02
resurrect

resurrect.v.03
resurrect.v.01

resuscitate.v.01

revive

revive.v.04

revive.v.03

regenerate

restore
rejuvenate

come_to.v.04
animate.v.04

reincarnate.v.02

Graph
Encoder

Graph
Decoder

Predicted Source Graph

ADD

MULTIPLY

Feature
Encoder

CGT Source Feature Encoder

Source Node Features

Source Attribute

Attribute Difference

Target Attribute

CGT Attribute Encoder

CGT Source Encoder Decoder

Attribute
Encoder

Attribute
Encoder

Attribute
Encoder

CONCAT Attribute
Encoder

Feature
Decoder

Graph
Decoder

CGT Target Feature Decoder

CGT Target Graph Decoder

Pre-Trained
Attribute
Predictor

Attribute
Predictor

0 1 .
1 .
. .

. . 0
0
0

0
1
0 . .

. 1 1
. 0

. . 0

Predicted
Target Attribute

regenerate.v.04

republish.v.02

resurrect

resurrect.v.03
resuscitate.v.01

revive
revive.v.04

revive.v.03

restore

rejuvenate

come_to.v.04

Predicted Target Graph

Feature Loss

Attribute Loss

Graph Loss
0 1 .
1 .
. .

. . 0
0
0

0
1
0 . .

. 1 1
. 0

. . 0

Reconstruction Loss

Figure 1: Architecture of Controlled Graph Translator (CGT). The model encodes the adjacency matrix (As) of a
source graph to obtain its structural representation Zs, which is integrated with the source features embeddings Zf

to obtain the source graph representation Zsf . It computes a control vector zci that effectively captures the attributes
of the source and target graphs, and the desired changes in the source attributes for successful transformation. zci is
integrated with Zsf through element-wise multiplication to create final representation z as the input to the decoder.
The decoder uses z to reconstruct the source graph features and generate the target graph. CGT uses a pre-trained
attribute predictor to estimate attributes of the predicted graph and guide the generation process.

To simplify the translation process, we assume a
maximum threshold for the number of nodes in
the input and output, and use V to refer to both
V s and V t. As shown in Figure 1, CGT encodes
the adjacency matrix of Gs (e.g. a subgraph from
WordNet) to obtain its structural representation
Zs, and concurrently encodes the node features
of Gs to obtain its content-based representation
Zf . These two representations are combined to
form the graph representation Zsf (§3.1). Also,
CGT computes a control vector zci that effectively
captures the source and target attributes, and the
desired attribute changes for successful translation,
c∆ = cs−ct. The control vector is integrated with
Zsf through element-wise multiplication to obtain
the final latent representation z, which encodes
all the necessary information for transformation.
The rationale for using element-wise multiplica-
tion is to allow the model to automatically adjust
the influence of each feature for controlled graph
transformation. The decoder then uses z to not
only generate the source graph’s attributes but also
to generate the target graph (§3.2 and 3.3). A pre-
trained attribute predictor (§3.4) assesses how well
the predicted target graph matches the desired tar-
get attributes and use this feedback to guide the
generation process.

3.1 Learning Representation

Given the non-Euclidean nature of graph data, we
use a multilayer perceptron (MLP) to encode both
structural information and textual (node) features
of the source graph Gs. While our framework
is compatible with other neural networks such as
graph neural networks (GNNs) or convolution neu-
ral networks (CNNs), we focus on MLP due to our
comparative analyses.2

We add the structural (Zs) and feature (Zf) rep-
resentations of the source graph to obtain its com-
bined graph representation, Zsf . To ensure that
Zsf effectively captures the structure and content
information of the source graph, we reconstruct
the source graph from this representation. A low
reconstruction loss indicates that all the key input
information has been preserved in Zsf . We use
MLP decoder to reconstruct the input source graph,
Gs. During training the model, we enforce this con-
straint by computing the loss between input source
graph and predicted source graph as follows:

ℓsij = As
ij log(P

s
ij) + (1−As

ij) log(1− P s
ij), (1)

2We analyzed several types of GNNs and found that they
tend to oversmooth the representations, which blurs distinctive
features among nodes and compromises the reconstruction per-
formance. Similarly, CNN was not effective on non-Euclidean
data such as graphs, which, despite CNN, are order insensitive.

15737

Ls =
1

|v|2
v∑

i=1

v∑

j=1

ℓsij , (2)

where P s
ij is the probability of an edge between

nodes i and j in Gs, and As
ij is the ground truth.

3.2 Integrating Control Attributes
To encode the source and target attribute vectors, cs

and ct, and their difference vector c∆, we process
each attribute vector independently using an MLP.
We obtain the representation for cs as:

h
(m+1)
cs = ReLU

(
Wcsh

(m)
cs + bcs

)
, (3)

where Wcs and bcs are learnable parameters,
h0cs = cs, and m is set from {0, 1}. Similarly,
we learn latent representations for ct with h0ct = ct

and c∆ with h0
c∆

= cs − ct. The resulting repre-
sentations from each MLP are concatenated and
processed with fully connected layer to produce
the control vector representation zci. This vector
effectively guides the transformation process by
influencing how the graph’s structure and attributes
should adjust to meet specific target criteria.

3.3 Target Graph Generation
The source representations Zsf and the control vec-
tor zci from attribute encoder are integrated through
element-wise multiplication to obtain the input to
the decoder, z, to generate the target graph. In
CGT, the target graph decoder predicts the target
graphs using a fully connected decoder layer, where
we use the binary cross entropy loss between target
graph and predicted target graph as follows:

ℓtij = At
ij log(P

t
ij) + (1−At

ij) log(1− P t
ij), (4)

Lt =
1

|v|2
v∑

i=1

v∑

j=1

ℓtij , (5)

where P t
ij is the predicted probability of an edge

between nodes i and j in the target graph Gt, and
At

ij is the ground truth.
In addition, we use z to predict target features

using another fully connected decoder layer, where
we minimize the mean square error (MSE) between
predicted target features X̂t and target features Xt:

LX =
1

|D|

|D|∑

i=1

(
Xt − X̂t

)2
. (6)

3.4 Control Attribute Predictor
To enable end-to-end training, independently pre-
train and freeze an attribute predictor that predicts
structural (control) attributes of a graph from its
adjacency matrix. We pre-train the model using
training (As, cs) and (At, ct) pairs. This model
allows efficient and real-time computation of graph
attributes during end-to-end training, while keeping
the model differentiable. We optimize the target
graph transformation with attribute loss as follows:

ĉt = Wch
last + bc (7)

h(m+1) = ReLU
(
Wch

(m) + b(m)
c

)
, (8)

where h(0) = flatten(Ât); flatten convert Ât

into a vector, ĉt denotes predicted attribute vector,
and Wc and bc are learnable parameters. Here,
hlast indicates the representation from the final
MLP layer. We use MSE loss to train the attribute
index predictor model as follows:

Lc =
1

|D|

|D|∑

i=1

(c− ĉ)2, (9)

where c is the ground truth attribute vector (either
from source or target in training data), ĉ denotes
predicted attribute vector, and |D| denotes total
number of graphs in training.

3.5 Objective Function
We obtain the final loss function to train CGT by
linearly combining the above four loss functions:

Ltotal = αLt + βLs + γLX + δLc (10)

where α, β, γ, and δ are the weights for each loss.

4 Experiments

4.1 Datasets
WordNet (Miller, 1995): a dataset of English
words where nouns, verbs, adjectives and adverbs
are grouped into sets of synonyms based on
their meanings. We use hypernyms, hyponyms,
meronyms, and holonyms relationships in WordNet
to create different WordNet graphs.

Ogbn-arxiv (Hu et al., 2020): a citation network
between arxiv papers in computer science, where
each node is a paper and an edge represents a cita-
tion from one paper to another. In addition, each
paper contains an embedding vector obtained from
the average of the words present in the title and
abstract of the paper.

15738

(a) WordNet (b) Ogbn-Arxiv (c) Citeseer

Figure 2: Source-Target pairs used to train all models. Source graphs are constructed by extracting k-hop neighbor
for each node. Target graphs are created by randomly removing n% of edges from the source graphs (such that no
more than one connected component remains after edge removal). In addition, source-target pairs are flipped to
allow learning transformations both from dense to sparse and sparse to dense structures.

Train Val Test
WordNet 52,675 2,926 2,927
Citeseer 1,406 78 79
Arxiv 47,538 2,641 2,641
MUTAG 169 10 9
MOLBACE 1,323 74 74

Table 1: Dataset statistics in terms of the number of
source-target graph pairs in each data split.

Citeseer (Kipf and Welling, 2017a): a citation
network of scientific articles, where nodes are pa-
pers and edges indicate citations between them.

MUTAG (Morris et al., 2020): a molecular
dataset where each graph represents a chemical
compound and classified as whether the given
molecule have mutagenic effect on specific gram
negative bacaterium.

MOLBACE (Hu et al., 2020): a molecular
dataset where each graph represents a chemical
compound.

Table1 shows the statistics of these datasets.

4.2 Generating Source-Target Pairs

To create source-target graph pairs from the
datasets, we consider the k-hop neighbors of each
node in the graph to create source subgraphs. We
randomly remove a maximum of n% edges from
each source subgraph such that no more than one
connected component remains after edge removal.
We flip these source-target pairs to allow the model
learns transforming graph from sparse to dense and
vice-versa. Figure 2 shows examples source-target
pairs with n = 50% and k = 3.

4.3 Settings

we use the Networkx package (Hagberg et al.,
2008) to calculate the graph attributes in §2. We
set the maximum number of nodes to |V | = 50
in experiments and zero pad adjacency matrix as

necessary. This threshold is appropriate for GNNs
due to the nature of how GNNs process graph data,
especially when considering the common practice
of sampling 1-2 hop neighbors form localized sub-
graphs for nodes. We set the number of hops to
to k = 2 for WordNet and Ogbn-Arxiv datasets
and to k = 3 for Citeseer (due to its smaller size).
We consider a batch-size of 4,096. We consider
maximum number of 1000 training iteration for
Citeseer and 200 iterations for Ogbn-Arxiv and
WordNet datasets. For the CGT(CNN) encoder,
we used two layers of CNN with kernel size of 5
and 32, 64 channels respectively. For the decoder,
we used two layers of CNN with 64,32 channels re-
spectively. For We run all experiments on a single
A100 40GB GPU.

4.4 Evaluation Metrics
We use mean absolute difference (MAD↓) and
graph edit distance (GED↓) for evaluation. MAD
computes the absolute difference between the at-
tributes of predicted graphs and their corresponding
target graphs. We average these absolute differ-
ences for the dataset. GED is a graph similarity
measure which is similar to Levenshtein distance
for strings. It gives the minimum cost for transform-
ing one graph to another. Due to the extensive time
complexity of GED computation, we only evaluate
this metric for the test graphs with 10 or less nodes.

4.5 Baselines
For fair evaluation, we incorporate our control
target attributes to all baseline models except
GraphRNN which is a free generative model.

GraphRNN (You et al., 2018): generates graph
iteratively by training on a representative set of
graphs using breath first search of nodes and edges
and implements node and edge RNNs to gener-
ate target graphs. GraphRNN is not a controlled
generation approach.

15739

WordNet Citeseer Ogbn-Arxiv MUTAG MOLBACE Average
GED MAD GED MAD GED MAD GED MAD GED MAD GED MAD

GraphRNN (You et al., 2018) 4.02 3.26 5.42 5.05 5.36 4.80 – 1.71 – 3.81 4.93 3.73
GT-GAN (Guo et al., 2023) 7.16 2.74 5.14 2.73 7.81 3.24 – 2.64 – 5.26 6.70 3.32
GenStat (Zahirnia et al., 2024) 3.86 4.11 5.62 5.35 5.58 5.53 – 4.14 – 6.89 5.02 5.20
EDGE (Chen et al., 2023) 4.73 3.87 5.50 5.50 6.39 5.60 – 2.34 – 3.51 5.54 4.16
CGT (CNN) 3.39 1.17 5.92 2.53 5.18 2.39 – 1.77 – 2.36 4.83 2.54
CGT (MLP) 1.67 0.56 4.20 2.47 3.30 1.59 – 0.75 – 3.25 3.05 1.72

Table 2: Overall performance across datasets. Average mean absolute difference (MAD ↓) is the average of absolute
mean error in satisfying target attributes. Lower is better. Here, "–" in GED (↓) indicates missing values as there
were no predicted graphs with less than 10 nodes to calculate GED. Variance is reported in Appendix B

Hyponyms Hypernyms P.Holonyms P.Meronyms Entailments Average
GED MAD GED MAD GED MAD GED MAD GED MAD GED MAD

GraphRNN (You et al., 2018) 3.68 3.15 3.73 3.15 4.71 3.35 3.71 2.97 4.25 0.74 4.02 2.67
GT-GAN (Guo et al., 2023) 7.23 2.77 3.26 2.52 9.51 3.05 9.10 2.85 11.0 1.81 8.02 2.60
GenStat (Zahirnia et al., 2024) 3.24 4.12 3.24 4.12 3.54 4.87 4.00 4.15 2.33 0.48 3.27 3.54
EDGE (Chen et al., 2023) 4.08 3.80 4.15 3.81 5.06 4.36 5.56 4.28 4.33 1.22 4.63 3.49
CGT (CNN) 2.92 1.02 3.01 1.10 – 3.73 – 3.08 7.50 1.46 4.47 2.08
CGT (MLP) 1.20 0.47 1.28 0.49 3.32 1.21 2.81 0.95 11.5 2.32 4.02 1.08

Table 3: Performance across different types of WordNet relationships. Lower GED and MAD indicates better
performance. P. stands for Part and "–" in GED indicates missing values as there were no predicted graphs with less
than 10 nodes to calculate GED.

Deep Graph Translation (GT-GAN) (Guo
et al., 2023): is a generative adversarial network for
graph transformation. It employs a graph convolu-
tion neural network as graph discriminator condi-
tioned on the input graph.

EDGE (Chen et al., 2023): is a diffusion based
generative model which iteratively removes edges
to create completely disconnected graph and uses
decoder to iteratively reconstruct the original graph.
It explicitly uses node degrees and adjacency ma-
trix to satisfy the graph statistics of the generated
graphs similar to the training graphs.

GenStat (Zahirnia et al., 2024): learns the latent
adjacency matrix conditioned on graph level statis-
tics, and decodes it to recreate statistics and use it
to generate graphs.

4.6 Main Results

Table 2 shows the overall performance of models
across datasets. The corresponding attribute-level
performance is reported in Appendix B. The re-
sults show that CGT outperforms all the baselines
across datasets except in Wordnet (Entailments)
dataset; we attribute this to small number of data
points in the graph. GraphRNN does not generate
graphs conditionally dependent on attributes con-
straints leading to generation of graphs different
from target graphs, and results in greater error rate

compared to CGT. EDGE performs better compare
to GenStat as EDGE generates graph based on the
degree distribution similar to train data points by ex-
plicitly modeling adjacency matrix, while GenStat
generate graphs using graph statistics but implicitly
generating adjacency matrix from latent represen-
tations. CGT (MLP) and CGT (CNN) provides
the granular control over the graph attributes dur-
ing transforming to get the desired graph. As evi-
dent from the results, the mean average difference
(MAD ↓) between the attribute values in predicted
and target graphs is small, indicating the magnitude
of control over desired attributes during generation.

Table 3 in the hyponyms and hypernyms cat-
egories, CGT(MLP) achieves the best GED and
MAD scores. CGT(CNN) also does well but not
as strong as the MLP version. In part holonyms
and part meronyms, CGT(MLP) leads in GED and
shows exceptional performance improvements in
MAD over the CNN version and other models. The
Entailments category is dominated by GenStat with
the lowest GED and MAD, indicating its strength
in handling this specific type of relationship, al-
though CGT(MLP) did not perform as well here.
The Average scores across all categories show that
CGT(MLP) and CGT(CNN) have strong overall
capabilities, with the MLP version providing the
best average MAD and GraphRNN showing solid
average GED.

15740

CGT GraphRNN
Dataset Source Target Predicted MAD↓ Predicted MAD↓

WordNet

1.09 10.66

0.42 4.44

Ogbn - Arxiv

1.20 5.03

1.68 2.98

Table 4: Example of the source, target, and predicted graphs for WordNet and Ogbn-Arxiv by CGT (MLP) and
GraphRNN. Here, MAD indicates the difference between predicted graph and target graph.

Table 4 visualizes example source, target, and
predicted graphs. CGT learns the attributes from
diverse pool of source graphs and can generate
target graphs that satisfy control attributes by ef-
fectively capturing the changes required to achive
target graphs. In comparison, GraphRNN gener-
ates much sparser graph that target, resulting in
higher MAD score.

4.6.1 Attribute Index Predictor
We pre-trained the attribute predictor as described
in §3.4. Table 5 shows an exceptionally low MSE
for the predictor across all the datasets. Such effec-
tive estimations allows CGT to precisely predict
the attributes of its predicted target graphs.

Dataset Mean Square Error↓
Ogbn-Arxiv 0.00000209
Wordnet 0.00000289
Citeseer 0.00073484
MUTAG 0.00201862
MOLBACE 0.00004967

Table 5: MSE of pre-trained attribute predictor.

5 Discussion

Ablation Study Several factors affect training
CGT, see (10), especially, the latent representation
Z , which is used to generate target graphs, features,
and graph attributes. Table 6 shows changes in the
error rate while generating target graphs for all the
datasets across objective functions. The results
show that, overall, each of the terms in the objec-
tive function contribute to learning better graph

generation and transformation. Ignoring feature
reconstruction (w/o feature loss) results in increase
in the error. This indicates the importance of us-
ing features to guide the model in learning better
graph representations. Removing feature loss in-
creases the error in Arxiv, WordNet, Citeseer and
MUTAG, perhaps because the model loses a criti-
cal guide that helps it understand and reconstruct
the complex relationships and properties encoded
in the features. On the other hand, it decreases the
error rate in MOLBACE. This is perhaps because
this dataset might be less dependent on node fea-
tures, or the graph structure itself might provide
sufficient information for the generation. Ignoring
graph attributes (w/o attribute loss) also increases
the error indicating the importance of informing
model about deviation in desired attributes.

Effect of Pruning on CGT As described in §4.2,
we remove a maximum of n% of edges from the
source graph to obtain the source-target pairs. To
investigate the effect of varying degrees of prun-
ing, we train CGT independently for values of
n ∈ [20% − 80%] with step size of 10%. Fig-
ure 3(a) shows the ability of CGT in accurate gen-
eration of target graphs at different levels of edge
removal; the graph with greater percentage of edges
removed indicates the highest difference between
source-target pairs. Figure 3(a) shows as more
edges are removed to create the source-target graph
pairs, MAD increases, indicating the challenges of
satisfying significantly different control attributes.
We note MAD improves between 40% to 70% edge

15741

Loss Term Ogbn-Arxiv WordNet Citeseer MUTAG MOLBACE
CGT (MLP) 1.59 0.56 2.47 0.75 3.25

w/o Feature Loss 1.65 (↑) 0.61 (↑) 2.50 (↑) 1.42 (↑) 2.44 (↓)
w/o Attribute Loss 1.67 (↑) 0.65(↑) 2.51 (↑) 1.13 (↑) 1.91 (↓)

Table 6: Ablation analysis. MAD error of CGT indicates the full model, "w/o" indicates the use of overall objective
function without a particular loss term. (↑) indicates increase in error and (↓) indicates decrease in error.

removal. This could be because the pruning might
help by eliminating redundant or less important
connections within the graph.

20 30 40 50 60 70 80
% of edges removed

0.00

0.25

0.50

0.75

1.00

M
AD

WordNet

(a)

30 40 50 60 70
Max number of Nodes

0.00

0.25

0.50

0.75

1.00

M
AD

WordNet

(b)

Figure 3: (a) shows the MAD error rate at different
levels of edge removal on WordNet. As the percentage
of removed edges increases, the source and target graph
become significantly different and accurate prediction of
the target graphs becomes more challenging. (b) shows
the MAD error rate on larger graphs.

Effect of Number of Nodes To understand the
strength and limitation of CGT, we create snap-
shots of multiple datasets from WordNet such that
each dataset contains graphs with a maximum
threshold for node size in V ∈ [30 − 70]. Fig-
ure 3(b) shows that the error rate increases for
larger graphs. This is because, in larger graphs,
important interactions can occur between distant
nodes, making it difficult for models, especially
MLP that primarily aggregate information, to accu-
rately learn and predict these distant relationships.

Data Augmentation Data augmentation is
crucial for low resource datasets. We augment
graph data points for two of our smaller datasets,
MUTAG and MOLEBACE, and evaluate its effect
on their held-out dataset. We augment the data by
creating new graphs through CGT by making small
Gaussian changes to their attributes to generate
target attributes and create target graphs. To enable
data augmentation, we assume each augmented
graph has the same label as its corresponding
source graph. To determine the effect of augmenta-
tion, we use a binary graph classification model to
compare two settings: (a): using the original train
data without any augmentation and (b): with data
augmentation using CGT. Table 7 shows a major
accuracy gain of 10.5 points on a smaller MUTAG
dataset and a gain of 4.6 points on relatively larger

Data Augmentation MUTAG MOLBACE
Accuracy↑

Original Train set 78.95 59.21
+ CGT augment 89.47 63.82

Table 7: Gain in Performance on the held-out set after
augmenting the original train set with additional data
points generated using CGT.We used Graph Neural
Network (GNN) for the property classification task.

MOLBACE dataset. The results indicate that data
augmentation obtained through CGT can improve
the performance of the low resource dataset.

Ontology Refinement Wordnet is a useful lin-
guistic resource, but it suffers from missing con-
nections between its words. We illustrate that CGT
can detect missing edges in WordNet for ontology
refinement. Figure 4 shows the result of an experi-
ment, where the attributes of the source graph (blue
nodes) is given as target attributes to CGT. There-
fore, CGT has to re-generates the source. Figure 4
shows a group of nodes that appear with high confi-
dence in the generated graph. Many of these edges
indicate genuine relations missing from WordNet,
e.g. CGT confidently links "ethnic group" to "egyp-
tian" in the hypernym graph.

Figure 4: Ontology refinement by adding missing edges
using CGT. Solid lines indicates existing connections
in WordNet and dotted lines indicates edges generated
by CGT originally missing from WordNet.

6 Related Work

Recent surveys (Faez et al., 2021; Zhu et al., 2022)
shows that existing deep graph generation models
uses various methods to generate graphs. Auto-
regressive methods (You et al., 2018) generates
the graph sequentially either node by node or edge
by edge; Auto-encoder graph generators utilizes

15742

the latent space variables to generate graphs; Rein-
forcement learning methods to induce the desired
properties into the graph; flow based learning meth-
ods which learns the mapping from the given graph
distributions to mostly Gaussian distribution for
learning data likelihood. GraphRNN (You et al.,
2018) is a deep auto-regressive model with two
Recurrent Neural Network (RNN) our of which
Graph-level RNN maintains the state of the graph
generated so far while edge-level RNN determines
if an edge should be present between the current
node and all the previously generated node by mod-
eling the decision as multi-variate or univariate
Bernoulli distribution. Li et al. (2018) proposes a
sequential graph generation process by taking se-
quence of decisions whether to add a new node or
not; and to decide which edges should be added
and repeat this process till the model decides not to
add any edge or node to terminate the generation.

There is extensive literature on generating new
molecules structure using graph generation mod-
eling. Jin et al. (2018) proposes JT-VAE which
generates the molecules as an unconditional graph
generation process by adopting small size motif
sequence generating techniques based on Varia-
tion Auto Encoder (VAE). JT-VAE uses small size
motifs as building block which degrades its per-
formance for for generating larger molecules. To
address this issue, HierVAE (Jin et al., 2020a) pro-
poses to generate molecular graphs using signifi-
cantly larger motifs where the encoder produces
representation for each molecule in a fine-to-course
fashion i.e. from atoms to connected motifs and
decoder follows auto-regressive course-to-fine fash-
ion to complete the molecule generation.

Kipf and Welling (2016) proposes generation
model VGAE mainly for unsupervised learn-
ing on graphs based on VAE where given the
graph,adjacency matrix and node features, VGAE
infers latent matrix based on two-layer Graph
Convolution Network (GCN) (Kipf and Welling,
2017b). The graph decoder is a simple inner prod-
uct of latent variables. The main limitation of
VGAE is that it works on single graph. To over
come this limitation, Simonovsky and Komodakis
(2018) proposes VAE based generative model that
learns from a dataset of graphs where GCN encoder
embeds the graphs to the continuous latent space
and decoder outputs a probabilistic fully-connected
graph with predefined maximum size for the graph.
Guo et al. (2020) proposes NED-VAE framework
based on node and edge disentanglement learning

based on VAE where it has three encodes where
each of them models the distribution of node, edge
and graph features; and two decoders which jointly
generates the node and edge features based on the
latent representations. Wang et al. (2022) proposes
Periodical-Graph Disentangled Variational Auto-
encoder (PGD-VAE) model for generating periodic
graphs by disentangling the representations of local
and global patterns in periodic graphs.

Melnyk et al. (2022) propose a model to gener-
ate a knowledge graph from input text where firstly
entities are extracted as nodes using T5 language
model (Raffel et al., 2020) and then the relations
are classified using a classification head to build
edges between the nodes using the node features.
Song et al. (2020) proposes a model to generate
text from graph by leveraging richer training sig-
nals like triple relation in which graph is broken
into set of triples and is reconstructed to guide
model to preserve input information using different
aspects of input graphs. Saha et al. (2022) pro-
posed a model to generate explanation graphs in
an end-to-end manner using contrastive learning
methods to improve on structural constrains and
semantically correctness. Wang et al. (2021) pro-
poses a model to generate long text from the short
input text in a two stage approach to generate rel-
atively more coherent long text, first by building
document level directed semantic graph and the
selecting a path that maximize subgraph matching
for text generation.Han and Shareghi (2022) pro-
poses a low-resource method to generate text from
input graph by introducing several graph masking
strategies to inject local and global information into
the pre-trained language models. Other research in
graph to text generation includes (Jin et al., 2020b;
Yao et al., 2020; Koncel-Kedziorski et al., 2019)

7 Conclusion and Future Work

We introduce a novel approach for controlled trans-
formation of text-attributed graphs. The model can
control any number of structural attributes and im-
plements a graph attribute predictor that explicitly
guides the generation process by computing graph
attributes in real-time. In future, we will extend
our approach to generate diverse outputs, and in-
vestigate meta-learning approaches and minimal
training for graph generation.

15743

Limitations

The proposed model have been tested on graphs
with maximum number of 80 nodes and perfor-
mance may degrade as the graph size significantly
increases. In addition, the proposed approach may
require considerable tuning and adaptation to work
effectively with directed graphs, weighted edges,
or graphs with heterogeneous node types. The po-
tential focus and solution is using efficient sparse
matrix representation and factorization techniques,
optimizing model architecture to reduce computa-
tional overhead, investigating more efficient graph
sampling techniques, and building on inductive ca-
pability of GNNs.

References
Miltiadis Allamanis, Marc Brockschmidt, and Mah-

moud Khademi. 2018. Learning to represent pro-
grams with graphs. In International Conference on
Learning Representations.

Albert-László Barabási and Réka Albert. 1999. Emer-
gence of scaling in random networks. science,
286(5439):509–512.

Pengfei Cao, Yupu Hao, Yubo Chen, Kang Liu, Jiexin
Xu, Huaijun Li, Xiaojian Jiang, and Jun Zhao. 2023.
Event ontology completion with hierarchical struc-
ture evolution networks. In Proceedings of the 2023
Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP 2023, Singapore, Decem-
ber 6-10, 2023, pages 306–320. Association for Com-
putational Linguistics.

Xiaohui Chen, Jiaxing He, Xu Han, and Liping Liu.
2023. Efficient and degree-guided graph generation
via discrete diffusion modeling. In International
Conference on Machine Learning, pages 4585–4610.
PMLR.

Carl Edwards, Tuan Lai, Kevin Ros, Garrett Honke,
Kyunghyun Cho, and Heng Ji. 2022. Translation be-
tween molecules and natural language. In Proceed-
ings of the 2022 Conference on Empirical Methods
in Natural Language Processing, pages 375–413.

P Erdös and A Rényi. 1959. 2017-10-
20t13:47:06.000+0200. Publicationes Mathematicae
Debrecen, 6:290–297.

Faezeh Faez, Yassaman Ommi, Mahdieh Soleymani
Baghshah, and Hamid R Rabiee. 2021. Deep graph
generators: A survey. IEEE Access, 9:106675–
106702.

Xiaojie Guo, Lingfei Wu, and Liang Zhao. 2023. Deep
graph translation. IEEE Trans. Neural Networks
Learn. Syst., 34(11):8225–8234.

Xiaojie Guo, Liang Zhao, Zhao Qin, Lingfei Wu,
Amarda Shehu, and Yanfang Ye. 2020. Inter-
pretable deep graph generation with node-edge co-
disentanglement. In 26th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data
Mining, KDD 2020, pages 1697–1707. Association
for Computing Machinery.

Aric Hagberg, Pieter Swart, and Daniel S Chult. 2008.
Exploring network structure, dynamics, and func-
tion using networkx. Technical report, Los Alamos
National Lab.(LANL), Los Alamos, NM (United
States).

Jiuzhou Han and Ehsan Shareghi. 2022. Self-supervised
graph masking pre-training for graph-to-text gener-
ation. In Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing,
pages 4845–4853, Abu Dhabi, United Arab Emirates.
Association for Computational Linguistics.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong,
Hongyu Ren, Bowen Liu, Michele Catasta, and Jure
Leskovec. 2020. Open graph benchmark: Datasets
for machine learning on graphs. Advances in neural
information processing systems, 33:22118–22133.

Wengong Jin, Regina Barzilay, and Tommi Jaakkola.
2018. Junction tree variational autoencoder for
molecular graph generation. In International confer-
ence on machine learning, pages 2323–2332. PMLR.

Wengong Jin, Regina Barzilay, and Tommi Jaakkola.
2020a. Hierarchical generation of molecular graphs
using structural motifs. In International conference
on machine learning, pages 4839–4848. PMLR.

Zhijing Jin, Qipeng Guo, Xipeng Qiu, and Zheng Zhang.
2020b. GenWiki: A dataset of 1.3 million content-
sharing text and graphs for unsupervised graph-to-
text generation. In Proceedings of the 28th Inter-
national Conference on Computational Linguistics,
pages 2398–2409, Barcelona, Spain (Online). Inter-
national Committee on Computational Linguistics.

Thomas N Kipf and Max Welling. 2016. Variational
graph auto-encoders.

Thomas N. Kipf and Max Welling. 2017a. Semi-
supervised classification with graph convolutional
networks. In 5th International Conference on Learn-
ing Representations, ICLR 2017, Toulon, France,
April 24-26, 2017, Conference Track Proceedings.
OpenReview.net.

Thomas N Kipf and Max Welling. 2017b. Semi-
supervised classification with graph convolutional
networks.

Rik Koncel-Kedziorski, Dhanush Bekal, Yi Luan,
Mirella Lapata, and Hannaneh Hajishirzi. 2019. Text
Generation from Knowledge Graphs with Graph
Transformers. In Proceedings of the 2019 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Pa-

15744

https://openreview.net/pdf?id=BJOFETxR-
https://openreview.net/pdf?id=BJOFETxR-
https://www.science.org/doi/full/10.1126/science.286.5439.509
https://www.science.org/doi/full/10.1126/science.286.5439.509
https://aclanthology.org/2023.emnlp-main.21
https://aclanthology.org/2023.emnlp-main.21
https://proceedings.mlr.press/v202/chen23k/chen23k.pdf
https://proceedings.mlr.press/v202/chen23k/chen23k.pdf
https://publi.math.unideb.hu/load_doi.php?pdoi=10_5486_PMD_1959_6_3_4_12
https://publi.math.unideb.hu/load_doi.php?pdoi=10_5486_PMD_1959_6_3_4_12
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9490655
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9490655
https://doi.org/10.1109/TNNLS.2022.3144670
https://doi.org/10.1109/TNNLS.2022.3144670
https://dl.acm.org/doi/pdf/10.1145/3394486.3403221
https://dl.acm.org/doi/pdf/10.1145/3394486.3403221
https://dl.acm.org/doi/pdf/10.1145/3394486.3403221
https://doi.org/10.18653/v1/2022.emnlp-main.321
https://doi.org/10.18653/v1/2022.emnlp-main.321
https://doi.org/10.18653/v1/2022.emnlp-main.321
https://proceedings.neurips.cc/paper/2020/hash/fb60d411a5c5b72b2e7d3527cfc84fd0-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/fb60d411a5c5b72b2e7d3527cfc84fd0-Abstract.html
http://proceedings.mlr.press/v80/jin18a/jin18a.pdf
http://proceedings.mlr.press/v80/jin18a/jin18a.pdf
https://proceedings.mlr.press/v119/jin20a/jin20a.pdf
https://proceedings.mlr.press/v119/jin20a/jin20a.pdf
https://doi.org/10.18653/v1/2020.coling-main.217
https://doi.org/10.18653/v1/2020.coling-main.217
https://doi.org/10.18653/v1/2020.coling-main.217
http://bayesiandeeplearning.org/2016/papers/BDL_16.pdf
http://bayesiandeeplearning.org/2016/papers/BDL_16.pdf
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
http://graphics.stanford.edu/courses/cs233-18-spring/ReferencedPapers/GCNN_gcn_kipf.pdf
http://graphics.stanford.edu/courses/cs233-18-spring/ReferencedPapers/GCNN_gcn_kipf.pdf
http://graphics.stanford.edu/courses/cs233-18-spring/ReferencedPapers/GCNN_gcn_kipf.pdf
https://doi.org/10.18653/v1/N19-1238
https://doi.org/10.18653/v1/N19-1238
https://doi.org/10.18653/v1/N19-1238

pers), pages 2284–2293, Minneapolis, Minnesota.
Association for Computational Linguistics.

Yujia Li, Oriol Vinyals, Chris Dyer, Razvan Pascanu,
and Peter Battaglia. 2018. Learning deep generative
models of graphs.

Igor Melnyk, Pierre Dognin, and Payel Das. 2022.
Knowledge graph generation from text. In Find-
ings of the Association for Computational Linguistics:
EMNLP 2022, pages 1610–1622, Abu Dhabi, United
Arab Emirates. Association for Computational Lin-
guistics.

George A Miller. 1995. Wordnet: a lexical database for
english. Communications of the ACM, 38(11):39–41.

Christopher Morris, Nils M. Kriege, Franka Bause, Kris-
tian Kersting, Petra Mutzel, and Marion Neumann.
2020. Tudataset: A collection of benchmark datasets
for learning with graphs. CoRR, abs/2007.08663.

Ioannis Pitas. 2016. Graph-based social media analysis.
CRC Press.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. The Journal of Machine Learning Research,
21(1):5485–5551.

Swarnadeep Saha, Prateek Yadav, and Mohit Bansal.
2022. Explanation graph generation via pre-trained
language models: An empirical study with con-
trastive learning. In Proceedings of the 60th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1190–1208,
Dublin, Ireland. Association for Computational Lin-
guistics.

Chence Shi, Minkai Xu, Zhaocheng Zhu, Weinan Zhang,
Ming Zhang, and Jian Tang. 2019. Graphaf: a flow-
based autoregressive model for molecular graph gen-
eration. In International Conference on Learning
Representations.

Martin Simonovsky and Nikos Komodakis. 2018.
Graphvae: Towards generation of small graphs using
variational autoencoders. In Artificial Neural Net-
works and Machine Learning–ICANN 2018: 27th
International Conference on Artificial Neural Net-
works, Rhodes, Greece, October 4-7, 2018, Proceed-
ings, Part I 27, pages 412–422. Springer.

Linfeng Song, Ante Wang, Jinsong Su, Yue Zhang, Kun
Xu, Yubin Ge, and Dong Yu. 2020. Structural infor-
mation preserving for graph-to-text generation. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 7987–
7998, Online. Association for Computational Lin-
guistics.

Shiyu Wang, Xiaojie Guo, and Liang Zhao. 2022. Deep
generative model for periodic graphs. Advances in
Neural Information Processing Systems, 35.

Ziao Wang, Xiaofeng Zhang, and Hongwei Du. 2021.
Building the directed semantic graph for coherent
long text generation. In Proceedings of the 2021
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 2563–2572, Online and
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Shaowei Yao, Tianming Wang, and Xiaojun Wan.
2020. Heterogeneous graph transformer for graph-
to-sequence learning. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 7145–7154.

Jiaxuan You, Rex Ying, Xiang Ren, William Hamilton,
and Jure Leskovec. 2018. GraphRNN: Generating
realistic graphs with deep auto-regressive models. In
Proceedings of the 35th International Conference
on Machine Learning, volume 80 of Proceedings
of Machine Learning Research, pages 5708–5717.
PMLR.

Kiarash Zahirnia, Yaochen Hu, Mark Coates, and Oliver
Schulte. 2024. Neural graph generation from graph
statistics. Advances in Neural Information Process-
ing Systems, 36.

Wentao Zhou, Jun Zhao, Tao Gui, Qi Zhang, and Xu-
anjing Huang. 2023. Inductive relation inference of
knowledge graph enhanced by ontology information.
In Findings of the Association for Computational Lin-
guistics: EMNLP 2023, Singapore, December 6-10,
2023, pages 6491–6502. Association for Computa-
tional Linguistics.

Yanqiao Zhu, Yuanqi Du, Yinkai Wang, Yichen Xu,
Jieyu Zhang, Qiang Liu, and Shu Wu. 2022. A survey
on deep graph generation: Methods and applications.
In Learning on Graphs Conference, pages 47–1.

15745

http://wds.ac.cn/portal/summer2019/paper/12.pdf
http://wds.ac.cn/portal/summer2019/paper/12.pdf
https://doi.org/10.18653/v1/2022.findings-emnlp.116
https://dl.acm.org/doi/pdf/10.1145/219717.219748
https://dl.acm.org/doi/pdf/10.1145/219717.219748
http://arxiv.org/abs/2007.08663
http://arxiv.org/abs/2007.08663
https://dl.acm.org/doi/abs/10.5555/3455716.3455856
https://dl.acm.org/doi/abs/10.5555/3455716.3455856
https://dl.acm.org/doi/abs/10.5555/3455716.3455856
https://doi.org/10.18653/v1/2022.acl-long.85
https://doi.org/10.18653/v1/2022.acl-long.85
https://doi.org/10.18653/v1/2022.acl-long.85
https://link.springer.com/chapter/10.1007/978-3-030-01418-6_41
https://link.springer.com/chapter/10.1007/978-3-030-01418-6_41
https://doi.org/10.18653/v1/2020.acl-main.712
https://doi.org/10.18653/v1/2020.acl-main.712
https://proceedings.neurips.cc/paper_files/paper/2022/file/e89e8f84626197942b36a82e524c2529-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/e89e8f84626197942b36a82e524c2529-Paper-Conference.pdf
https://doi.org/10.18653/v1/2021.emnlp-main.200
https://doi.org/10.18653/v1/2021.emnlp-main.200
https://aclanthology.org/2020.acl-main.640.pdf
https://aclanthology.org/2020.acl-main.640.pdf
https://proceedings.mlr.press/v80/you18a.html
https://proceedings.mlr.press/v80/you18a.html
https://proceedings.neurips.cc/paper_files/paper/2023/file/72153267883fbcafdb6e4662382696c5-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/72153267883fbcafdb6e4662382696c5-Paper-Conference.pdf
https://aclanthology.org/2023.findings-emnlp.431
https://aclanthology.org/2023.findings-emnlp.431
https://proceedings.mlr.press/v198/zhu22a/zhu22a.pdf
https://proceedings.mlr.press/v198/zhu22a/zhu22a.pdf

A Effective Graph Encoder

We use CNNs to capture local and global represen-
tations while encoding the graph structure. This
helps CGT to accurately transform source graphs
while keeping the original representation intact.
Figure 5 shows three input graphs and their recon-
structed graphs for Citeseer, Wordnet and Ogbn-
Arxiv respectively. A CNN encoder-decoder model
leads to minimal reconstruction error.

Figure 5: Outputs of CNN auto-encoder. Left shows the
input graph and right shows the reconstructed output
graph from Citeseer (top), Wordnet (Middle), and Ogbn-
Arxiv (Bottom).

B Detailed Results

Detailed results for all the datasets considering each
attribute is shown in Table 8 and 9. CGT (MLP)
outperforms all the baselines for each attribute.

We report the mean and standard variance for all
the datasets for 3 runs in Table 10 and 11.

15746

WordNet Citeseer Ogbn-Arxiv
CGT
(CNN)

CGT
(MLP)

Graph
RNN

GT-
GAN

CGT
(CNN)

CGT
(MLP)

Graph
RNN

GT-
GAN

CGT
(CNN)

CGT
(MLP)

Graph
RNN

GT-
GAN

Density 0.05 0.03 0.13 0.08 0.11 0.16 0.13 0.05 0.06 0.05 0.13 0.06
Edges 3.60 1.56 9.85 9.70 11.2 8.54 20.6 13.6 11.9 6.93 21.1 16.5
Nodes 3.27 1.30 9.47 7.38 5.53 5.90 13.4 5.64 5.09 2.72 12.2 6.61
Node Connec-
tivity

0.02 0.00 0.00 0.01 0.01 0.08 0.00 0.00 0.01 0.01 0.01 0.01

Average Clus-
tering

0.04 0.04 0.03 0.16 0.18 0.11 0.16 0.17 0.18 0.14 0.19 0.21

Closeness Cen-
trality

0.04 0.03 0.09 0.04 0.12 0.16 0.13 0.06 0.07 0.07 0.12 0.08

Local Bridges 3.18 1.87 9.00 6.07 3.82 5.04 8.08 3.92 3.39 3.49 6.87 3.97
Transitivity 0.02 0.02 0.01 0.10 0.17 0.11 0.13 0.14 0.11 0.09 0.13 0.12
Edge Connec-
tivity

0.00 0.00 0.00 0.01 0.01 0.08 0.01 0.01 0.01 0.01 0.01 0.01

Cliques 3.35 1.44 9.43 7.54 6.32 6.76 14.5 6.45 5.50 3.87 13.6 8.2
Treewidth Min
Degree

0.20 0.19 0.26 1.16 1.00 0.74 1.22 1.13 0.95 0.75 1.3 1.36

Diameter 0.35 0.35 0.89 0.69 1.88 2.01 2.21 1.56 1.44 1.03 1.81 1.75

MAD 1.17 0.56 3.26 2.74 2.53 2.47 5.05 2.72 2.39 1.59 4.80 3.24

Table 8: Performance of CGT compared with Graph-RNN and GT-GAN on Citeseer, WordNet, Ogbn-Arxiv
Datasets. Here, each number indicates the absolute mean error of graph attributes between the predicted graph and
the target graph. Lower the value, better the performance.

MUTAG MOLBACE
CGT
(CNN)

CGT
(MLP)

Graph-
RNN

GT-
GAN

CGT
(CNN)

CGT
(MLP)

Graph-
RNN

GT-
GAN

Density 0.07 0.02 0.04 0.06 0.02 0.11 0.03 0.03
Edges 4.89 1.67 4.56 7.88 7.31 8.34 12.0 16.9
Nodes 4.00 1.22 3.11 5.62 5.58 7.51 10.4 11.6
Node Connectivity 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Average Clustering 0.02 0.00 0.00 0.07 0.01 0.01 0.00 0.07
Closeness Centrality 0.07 0.05 0.08 0.09 0.03 0.14 0.04 0.11
Local Bridges 4.22 2.44 4.56 4.38 5.11 8.24 7.15 9.97
Transitivity 0.03 0.00 0.00 0.10 0.01 0.02 0.00 0.10
Edge Connectivity 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Cliques 5.11 1.67 4.56 8.12 7.26 8.66 12.0 15.9
Treewidth Min Degree 0.44 0.11 0.67 1.50 0.53 0.18 0.47 1.95
Diameter 2.44 1.89 3.00 3.88 2.47 5.85 3.42 6.32

MAD 1.77 0.75 1.71 2.64 2.36 3.25 3.81 5.26

Table 9: Performance of CGT compared with GraphRNN (G-RNN) and GT-GAN on MUTAG and MOLBACE
Datasets. Here, each number indicates the absolute mean error of graph attributes between the predicted graph and
the target graph. Lower the value, better the performance.

WordNet Citeseer Ogbn-Arxiv
GED MAD GED MAD GED MAD

GT-GAN (Guo et al., 2023) - 21.28±31.46 - 6.67±7.66 - 21.66±18.13
GenStat (Zahirnia et al., 2024) 3.82±0.07 4.13±0.03 5.62±0.00 5.34±0.01 5.58±0.00 5.51±0.03
EDGE (Chen et al., 2023) 4.75±0.21 3.90±0.03 5.67±0.58 4.95±0.10 6.49±0.47 5.55±0.05
CGT (CNN) 3.14±0.22 1.22±0.05 5.41±0.60 2.47±0.11 4.74±0.38 2.23±0.14
CGT (MLP) 1.61±0.05 0.62±0.06 4.42±0.29 2.43±0.03 3.38±0.07 1.64±0.05

Table 10: Overall performance across datasets. Average mean absolute difference (MAD ↓) is the average of
absolute mean error in satisfying target attributes. Lower is better. Here, "–" in GED (↓) indicates missing values as
there were no predicted graphs with less than 10 nodes to calculate GED.

15747

MUTAG MOLBACE
GED MAD GED MAD

GT-GAN (Guo et al., 2023) – 14.89±15.32 – 3.47±1.56
GenStat (Zahirnia et al., 2024) – 2.77±1.94 – 4.27±2.27
EDGE (Chen et al., 2023) – 2.79±0.20 – 3.59±0.45
CGT (CNN) – 1.67±0.13 – 4.51±1.91
CGT (MLP) – 1.27±0.60 – 3.15±0.17

Table 11: Overall performance across datasets. Average mean absolute difference (MAD ↓) is the average of
absolute mean error in satisfying target attributes. Lower is better. Here, "–" in GED (↓) indicates missing values as
there were no predicted graphs with less than 10 nodes to calculate GED.

15748

