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Abstract
In this work, we show a fundamental limita-
tion in vocabulary adaptation approaches that
use Byte-Pair Encoding (BPE) tokenization
scheme for fine-tuning pretrained language
models (PLMs) to expert domains. Current
approaches trivially append the target domain-
specific vocabulary (VDOMAIN) at the end of
the PLM vocabulary. This approach leads to
a lower priority score and causes sub-optimal
tokenization in BPE that iteratively uses merge
rules to tokenize a given text. To mitigate this
issue, we propose ADAPTBPE where the BPE
tokenization initialization phase is modified to
first perform the longest string matching on the
added (target) vocabulary before tokenizing at
the character level. We perform an extensive
evaluation of ADAPTBPE versus the standard
BPE over various classification and summa-
rization tasks; ADAPTBPE improves by 3.57%
(in terms of accuracy) and 1.87% (in terms of
Rouge-L), respectively. ADAPTBPE for MED-
VOC works particularly well when reference
summaries have high OOV concentration or
are longer in length. We also conduct a human
evaluation, revealing that ADAPTBPE gener-
ates more relevant and more faithful summaries
as compared to MEDVOC. We make our code-
base publicly available at https://github.com/
gb-kgp/adaptbpe.

1 Introduction

Vocabulary adaptation-based fine-tuning has
proved successful in domain adaptation to expert
domains, characterized by high vocabulary mis-
match. Here, the PLM vocabulary is further ex-
tended by adding a target domain-specific vocab-
ulary (VDOMAIN) during fine-tuning. To identify
VDOMAIN works like VOLT (Xu et al., 2021) and
AVOCADO (Hong et al., 2021) focus on optimiz-
ing the model’s vocabulary by adding subwords
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Figure 1: ADAPTBPE modifies the initialization step
of standard BPE by merging the characters that match
with the extended vocabulary (VDOMAIN). The incorrect
merge step of BPE for tokenizing the word hypercholes-
terolemia is highlighted by a red dashed box.

based on utility scoring functions that are based
on variants of fragment score (Rust et al., 2021)
or optimize Pointwise Mutual Information (Diao
et al., 2021) or by measuring domain shift of token
sequence distribution (Sachidananda et al., 2021).
MEDVOC (Balde et al., 2024), is the first work in
a summarization setting that uses fragment score as
the utility function. In this work, we establish the
need also to adapt the tokenization scheme; Fig-
ure 1 provides an example of ill-tokenization due
to the limitations of the standard BPE tokenization
scheme.

Prior vocabulary adaptation studies (Hong et al.,
2021; Balde et al., 2024) append added vocabulary
and corresponding merge rules towards the end of
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existing PLM vocabulary (VPLM). This approach
does not guarantee that the Byte-Pair Encoding
(BPE) tokenizer will use the added target do-
main vocabulary. We believe this is because the
merge rules are trivially appended to the end, auto-
matically implying a lower priority (of VDOMAIN)
over existing PLM vocabulary (VPLM).

Our main contribution is to propose the
ADAPTBPE tokenization scheme that mitigates
the above-mentioned ill-tokenization issue of BPE
when applied to vocabulary adaptation strategies.
Our proposed ADAPTBPE algorithm is indepen-
dent of the target domain-specific vocabulary con-
struction algorithm and only modifies the underly-
ing BPE tokenization phase. ADAPTBPE modifies
the initialization stage of a standard BPE tok-
enization as explained in detail in Algorithm 1.
Instead of starting tokenization by splitting the
input token to character level, ADAPTBPE per-
forms the longest substring match in the added vo-
cabulary (VDOMAIN) iteratively and preserves the
matched substring from splitting into characters fur-
ther. This modified BPE algorithm, ADAPTBPE,
mitigates the ill-tokenization issues completely, as
we observe a significant drop in fragment score
(average number of subwords a given word across
the entire corpus) of 39.16% and 13.96% in case
of AVOCADO and MEDVOC respectively.

ADAPTBPE shows improvements of 3.57% and
1.87% over the standard BPE algorithm in the
case of AVOCADO and MEDVOC respectively
for eight datasets (4 classification and 4 summa-
rization tasks). In the case of MEDVOC for diffi-
cult generation scenarios such as high OOV (out-
of-vocabulary) concentration and longer reference
summaries, ADAPTBPE consistently improves by
10.41% and 3.30% in terms of Rouge-L. We fur-
ther perform a human evaluation using medical ex-
perts where we observe that ADAPTBPE produces
more relevant and faithful summaries in the case
of MEDVOC. We make our codebase publicly
available at https://github.com/gb-kgp/adaptbpe.

2 Background

Vocabulary Adaptation Strategies for Classifica-
tion –AVOCADO. AVOCADO (Hong et al., 2021)
propose a vocabulary adaptation strategy for clas-
sification tasks. AVOCADO iteratively adds task-
specific vocabulary (VDOMAIN) constructed from
source documents of target tasks to existing PLM
vocabulary (VPLM). The amount of vocabulary to

be added is decided using fragment score, which
is defined as the average number of subwords to-
kenized per word given a vocabulary. AVOCADO

starts on a set of words that are split into more than
two subwords (Ws>2) and constructs task-specific
vocabulary on this set of words. It then keeps on
adding the vocabulary from this task-specific vo-
cabulary till the fragment score of words in set
(Ws>2) stays above a fixed threshold, γ. AVO-
CADO initialized the embeddings of the newly
added subwords with the average of embeddings of
the subwords they were previously split into. AVO-
CADO uses contrastive loss framework (Chen et al.,
2020) as a regularization loss along with the stan-
dard cross-entropy loss for classification to tune
the model with the added embeddings of the newly
added subwords.
Vocabulary Adaptation Strategies for Summa-
rization –MEDVOC. MEDVOC (Balde et al.,
2024) proposes a vocabulary adaptation framework
for summarization tasks in the medical domain
for three models – BERT, BART, and PEGASUS.
First, MEDVOC identifies vocabulary to be added
(VDOMAIN) as an optimizable parameter. It con-
structs vocabulary on candidate set of medical OOV
(Out-Of-Vocabulary) words (words that are med-
ical, and split into more than one word using ex-
isting PLM vocabulary) identified from combina-
tion of PAC (PubMed Abstract Collection) dataset
(VPAC) and target-task specific datasets (VTGT). It
then performs a hyperparameter search using frag-
ment score as the metric, over different vocabulary
sizes and identifies the optimal vocabulary to be
added to existing PLM vocabulary (VPLM). The
embeddings are initialized randomly and are tuned
by performing an intermediate fine-tuning step on
PAC dataset comprising PubMed abstract as source
document and the title as reference summary.

3 Proposed Methodology

Working of the standard BPE Tokenization.
BPE is the most common tokenization scheme that
is found to be most effective among various to-
kenization strategies (Gallé, 2019; Zouhar et al.,
2023; Schmidt et al., 2024), and is used in the ma-
jority of recent Large Language Models (LLMs)
like LLaMa (Touvron et al., 2023a,b) and Mis-
tral (Jiang et al., 2023). BPE tokenization scheme
takes as input two files: (i) vocabulary file, which
contains the vocabulary, and (ii) merge rules file,
which contains merge rules for the terms present in
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the vocabulary required for its construction (e.g., th
e merge rule for the word ‘the’ in vocabulary). The
standard BPE tokenizer starts by splitting the input
word into the character level. Then, following a
bottom-up strategy, it iteratively merges adjacent
characters following the ordered merge rules from
the merge rule file taken as input. For instance,
consider the word happy. BPE starts by converting
this word into a list of characters: [h, a, p, p, y].
Then, it checks for possible merges on adjacent
characters and selects the one with the least rank.
Here, it chooses <p,p> resulting in [h, a, pp, y].
It then iteratively keeps checking and ends with
[‘happy’] as the final output for BPE tokenization.
ADAPTBPE Tokenization Scheme (Algo-
rithm 1). We observe that the main reason for
ill-tokenization (See Figure 1) is certain merge
rules that hinder the formation of added vocabulary.
Therefore, instead of splitting at the character level
at the initialization stage, we first check for the
longest substring match (Hofmann et al., 2022)
only in the added vocabulary (VDOMAIN) and
prevent the match from splitting into the character
level. This step is iterated till we cannot find any
substring match. Figure 1 shows an example:
the word hypercholesterolemia is initialized as
[h,y,p,e,r,cholesterol,e,m,i,a] as opposed to stan-
dard BPE tokenization which starts entirely at char-
acter level: [h,y,p,e,r,c,h,o,l,e,s,t,e,r,o,l,e,m,i,a].

4 Experimental Setup

We use the same experimental setup as the state-of-
the-art vocabulary adaptation works of AVOCADO

and MEDVOC for the classification and summa-
rization tasks, respectively. Appendix A provides
all the necessary implementation details.

Datasets. We use the same datasets as used in
AVOCADO and MEDVOC (see Appendix A.2
for further details) — (i) four classification tasks:
CHEMPROT (Kringelum et al., 2016) from the
biomedical domain, ACL-ARC (Jurgens et al.,
2018) from the computer science domain, HYPER-
PARTISAN (HYP) (Kiesel et al., 2019) from the
news domain, and AMAZON (McAuley et al.,
2015) from the customer reviews domain, and
(ii) two query-focused document summarization
datasets: EBM (Mollá and Santiago-Martínez,
2011) and BioASQ (Tsatsaronis et al., 2015),
and two question summarization datasets: MeQ-
Sum (Ben Abacha and Demner-Fushman, 2019)
and CHQSum (Yadav et al., 2022).

Algorithm 1: ADAPTBPE tokenization
Input: Text text, Tokenizer tokenizer, Merge rules merges, Added

vocabulary VDOMAIN
Output: BPE token sequence T
// Pre-tokenizing the text based on pre-tokenization rules of

tokenizer

1 pre_tokenized← tokenizer.pre_tokenize_str(text)
2 pre_tokenized_text← [word for word in pre_tokenized]
3 T ← []
4 for word ∈ pre_tokenized_text do
5 split← {}

// Finding the longest substring match in VDOMAIN
6 remaining← word
7 while True do
8 idxmatch , longestmatch← longest_substr(remaining,

VDOMAIN)
9 if idxmatch == −1 then

10 break

11 else
12 split[idxmatch]← longestmatch
13 for i in range(idxmatch,

idxmatch+longestmatch.length) do
14 remaining[i]← ‘-’

// Retrieving the longest matches and remaining parts of

string

15 subwords← [sw for i, sw in sorted(split)]
16 pairs← get_bigrams(subwords)

// Standard BPE loop

17 while True do
18 bigram← {least ranking applicable merge rule on pairs}
19 if bigram is invalid then
20 break

21 first, second← bigram
22 new_word← []
23 i := 0
24 while i < subwords.length do
25 j := subwords.index(first, i)
26 new_word.extend(subwords[i:j])
27 i := j
28 if subwords[i] == first and i < len(subwords) - 1

and subwords[i + 1] == second then
29 new_word.append(first + second)
30 i := i + 2

31 else
32 new_word.append(subwords[i])
33 i := i + 1

34 new_word := tuple(new_word)
35 subwords := new_word
36 if subwords.length == 1 then
37 break

38 else
39 pairs← get_bigrams(subwords)

40 T .extend(subwords)

41 return T

Evaluation Metrics. We report classification accu-
racy and Macro-F1 scores for the classification task.
For summarization, we report Rouge-L (Lin, 2004)
and Concept Score (Zhang et al., 2023), which
measures the overlap of UMLS medical concepts
between the generated and reference summaries.
See Appendix A.3 for additional details.

5 Performance Evaluation of ADAPTBPE

We show the performance comparison results of
ADAPTBPE in Table 1 and 2 for the vocabulary
adaptation strategies for the classification and sum-
marization setting, respectively. Please refer Ap-
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Dataset
(Domain)

Model FragSr Accuracy Macro-F1

CHEMPROT BPE 2.55 81.43± 0.55 54.88± 1.66
(BioMedical) ADAPTBPE 1.16 81.40± 0.40 55.02± 0.47
ACL-
ARC*

BPE 2.21 69.03± 5.05 55.04± 8.24

(Computer
Science)

ADAPTBPE 1.18 73.02± 4.21 62.00± 4.95

HYP BPE 3.26 77.84± 5.20 74.23± 7.01
(News) ADAPTBPE 3.17 82.16± 2.50 80.64± 3.03
AMAZON BPE 2.81 83.13± 3.64 68.34± 0.47
(Reviews) ADAPTBPE 2.47 86.26± 0.53 69.90± 0.29

Table 1: Performance evaluation of ADAPTBPE on AV-
OCADO with RoBERTa-Base as base model averaged
across 5 seeds (* -except for ACL-ARC which was done
for 20 seeds). Improvements wherever observed are sta-
tistically significant (t-test: p-value< 0.05). We show
improvements of 3.57% in accuracy and 3.18% in the
case of the Macro-F1 score. ADAPTBPE results in the
fragment score (FragSr) drop of 39.16% across datasets.

pendix A.4 for the sizes of added vocabularies
in both the settings for all the datasets and Ap-
pendix A.5 for relevant hyperparameter details.
Performance Evaluation in Classification
Datasets. We show the performance comparison
of BPE versus ADAPTBPE in Table 1. We observe
gains of 3.57% in accuracy and 3.18% in the case
of the Macro-F1 score. We further observe huge
drops in fragment scores of 39.16% across four
datasets from four domains. Thus, ADAPTBPE
helps to correctly tokenize the domain words,
which leads to better performance.
Performance Evaluation in Medical Summariza-
tion Datasets. We show the performance compari-
son of BPE versus ADAPTBPEin Table 2. We ob-
serve gains of 1.87% in Rouge-L (R-L) and 0.9%
in the case of ConceptScore (CSr). We further
observe huge drops in fragment scores of 13.20%
across four datasets. This indicates the efficacy of
ADAPTBPE, as we are now correctly tokenizing
the words and thus the downstream task improve-
ment. We further investigate how ADAPTBPE
performed compared to BPE when reference sum-
maries had high OOV concentration and were long
in length following evaluation as performed in
MEDVOC. These points represent the most diffi-
cult data points in terms of vocabulary mismatch.
ADAPTBPE shows a big improvement of 10.40%
on average across four datasets in high OOV set-
tings and 3.41% on average across BioASQ and
EBM datasets for a long-form generation.
Human Evaluation. We randomly select 40 test
data points sampled uniformly from four summa-
rization datasets and follow the annotation proce-
dure as described in (Fabbri et al., 2021; Balde

Model FragSr R-LAll CSrAll R-LH-O R-LL-RS
EBM

BPE 3.00 20.65 22.66 19.23 17.62
ADAPTBPE 2.31 20.73 22.67 21.43 17.74

BioASQ
BPE 3.14 48.02 52.87 39.23 43.25

ADAPTBPE 2.71 47.72 52.93 42.95 45.91
MeQSum

BPE 3.34 55.88 60.52 75.56 -
ADAPTBPE 3.15 58.00 62.29 82.64 -

CHQ
BPE 2.94 40.59 45.63 33.77 -

ADAPTBPE 2.67 41.92 44.57 37.60 -

Table 2: Performance evaluation of ADAPTBPE on
MEDVOC model with BART-Large as base model.
We observe gains of 1.87% in Rouge-L (R-L) and
0.9% in Concept Score (CSr). Improvements wher-
ever observed are statistically significant (t-test: p-
value< 0.001). In High-OOV settings (R-LH-O) we ob-
serve gains of 10.40% and 3.30% in long-form genera-
tion (R-LL-RS considering only EBM and BioASQ). No-
tably, ADAPTBPE results in the fragment score (FragSr)
drop of 13.20% across datasets.
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Figure 2: Human evaluation scores comparison over 40
randomly selected test data points. ADAPTBPE pro-
duces more relevant, coherent, and faithful summaries
during human evaluation with medical experts.

et al., 2024) to get annotations of summaries across
the dimensions of relevance, coherence (on a Lik-
ert scale of 1 to 5), and faithfulness (binary). Each
annotator was given 30 minutes to evaluate 10 sum-
maries and was compensated at a rate of 8 UK
pounds per hour (see Appendix B for more details).
Figure 2 shows the human evaluation results where
ADAPTBPE generates more faithful summaries
(97.5% vs. 77.5% of summaries are faithful), and
more relevant summaries, where 82.5% of data
points get a positive score (≥ 4) in Likert scale, as
compared to 65% in case of BPE for MEDVOC.

6 Conclusion

We are the first to show the incorrect BPE tokeniza-
tion issue present in vocabulary adaptation tech-
niques for fine-tuning PLMs to the target (expert)
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domain, designed for both classification and sum-
marization tasks from various domains. The newly
added target domain vocabulary is trivially added
at low priority, causing BPE tokenizers to ignore
them. Therefore, we propose a novel BPE tokeniza-
tion scheme, ADAPTBPE, that modifies the BPE
initialization step by searching through VDOMAIN
to find the longest substring match. Our proposed
ADAPTBPE algorithm is independent of the tar-
get domain-specific vocabulary construction algo-
rithm and focus only on improving the tokenization
part. ADAPTBPE-enabled models outperform the
competing baselines by 3.57% and 1.87% on av-
erage over classification and summarization tasks,
respectively. Human evaluation using medical ex-
perts rate ADAPTBPE-based summaries to be more
relevant and faithful than standard BPE.

7 Limitations

We limit our evaluation to only pretrained lan-
guage models and do not show results on large lan-
guage models that also utilize BPE, such as LLaMa
or Mistral, which uses Sentencepiece (Kudo and
Richardson, 2018) Byte-level BPE Tokenization
with fallback. We observe that 27.76% of tar-
get domain-specific vocabulary terms are still to-
kenized into more than one subword (i.e., the ill-
tokenization issue persists) for MEDVOC in the
case of the LlaMa-2-7B model. However, the mod-
els considered in this study (BART and RoBERTa)
use huggingface tokenizers library (Wolf et al.,
2020) and we observed ill-tokenization in 64.13%
of target domain-specific vocabulary terms. Thus,
some efforts are needed to make ADAPTBPE work
for LLMs. Second, the issue of ill-tokenization is
mostly prevalent in the case of BPE but less preva-
lent in the case of WordPiece tokenization, which
is used by BERT and does not exist for Unigram
tokenization scheme, which is used by PEGASUS
and FLAN-T5 models.

8 Ethics Statement and Broader Impact

Summarization and other text generation systems
powered by large language models can suffer
from hallucinations, producing outputs that deviate
from the source material and are unfaithful sum-
maries. While the proposed ADAPTBPE tokeniza-
tion scheme generates more faithful summaries
compared to existing baselines based on human
evaluation, the summaries from such AI models
are not yet reliable enough for high-stakes applica-

tions like medical contexts involving professionals
and clinicians. Substantially more research is still
needed to understand better the types of faithful-
ness and relevance errors made by these AI systems
and to ultimately develop methods to mitigate or
prevent such errors before these technologies can
be safely deployed in sensitive real-world settings.
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• RoBERTa (Liu et al., 2019): RoBERTa
(Robustly Optimized BERT Approach) is a
transformer-based model, enhancing the origi-
nal BERT model by training with more data
and improved training techniques. It elimi-
nates the Next Sentence Prediction (NSP) task
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used in BERT and employs dynamic mask-
ing during pre-training to increase robustness.
RoBERTa is trained on a diverse corpus, in-
cluding the Common Crawl dataset, to bet-
ter capture nuanced language patterns. This
model achieves state-of-the-art performance
on various natural language processing (NLP)
benchmarks. We use RoBERTa-base§ which
is a 125 Million parameter model and uses
Byte-pair Encoding tokenization case with a
vocabulary (|VPLM|) of size 50265.

• BART (Lewis et al., 2020): BART is a denois-
ing autoencoder, implemented as a sequence-
to-sequence model with a bidirectional en-
coder over corrupted text and a left-to-right
auto-regressive decoder to generate the orig-
inal document it was derived from. We use
the BART-LARGE§ model available from the
huggingface library. BART has 406 Million
parameters, uses Byte-Pair Encoding tokeniza-
tion, and its pretraining objective is a combi-
nation of Text Infilling and Sentence Shuffling.
The vocabulary size of this PLM (|VPLM|) is
50265.

A.2 Datasets
We describe here the details on the target task
dataset mentioned briefly in Section 4.

Classification We use four target task datasets
for classification that were used in AVOCADO. The
dataset stats are described in Table 3.

• CHEMPROT (Kringelum et al., 2016).
Chemprot dataset is a corpus used for the task
of chemical-protein relation extraction. It con-
sists of scientific abstracts annotated with var-
ious types of interactions between chemical
compounds and proteins, such as inhibition,
activation, and binding in total 13 classes. The
dataset is commonly used to train and evalu-
ate models in the domain of biomedical nat-
ural language processing, particularly for the
extraction and classification of biochemical
relationships.

• ACL-ARC (Jurgens et al., 2018). The ACL-
ARC dataset is designed to classify the intent
behind citations in academic papers. It con-
sists of annotated citations from research pa-
pers in the ACL Anthology, categorizing each

§https://huggingface.co/FacebookAI/roberta-base
§https://huggingface.co/facebook/bart-large

citation based on its purpose, such as back-
ground, use, or comparison in total 6 classes.
This dataset aids in understanding the func-
tional and rhetorical roles of citations in schol-
arly communication.

• HYPERPARTISAN (Kiesel et al., 2019).
The hyperpartisan dataset consists of news
articles labeled for hyperpartisanship, indicat-
ing whether they exhibit extreme bias. It was
created to support research in detecting biased
or partisan news content –a two-class classifi-
cation, providing annotations on article-level
and publisher-level partisanship. This dataset
is used in natural language processing tasks
to develop and benchmark models for identi-
fying and understanding media bias.

• AMAZON (McAuley et al., 2015). The ama-
zon dataset is a comprehensive collection of
customer reviews and ratings from Amazon,
covering a wide range of products. It in-
cludes detailed reviews, ratings, product meta-
data, and user information, providing a rich
resource for sentiment analysis, recommenda-
tion systems, and other NLP tasks. The task
is to identify whether a given review as input
is actually helpful or not.

Domain Dataset Document count Classes OOV %
Train Val Test RoBERTa

BIOMED CHEMPROT 4169 2427 3469 relation (13) 21.65
CS ACL-ARC 1688 114 139 citation intent (6) 12.56

NEWS HYPERPARTISAN 515 65 65 partisanship (2) 3.94
REVIEWS AMAZON 115251 5000 25000 helpfulness (2) 3.69

Table 3: Dataset statistics of downstream classification
datasets. OOV% refers to the median fraction of uni-
grams in SD that are absent from the PLM vocabulary.

Medical Summarization We use four target task
datasets in this study: two query-focussed sum-
marization datasets, EBM and BioASQ, and two
recent benchmark medical question summarization
datasets, MeQSum and CHQSum, each of which
we describe below.

• EBM (Mollá and Santiago-Martínez, 2011).
Here input to the system is a query along with
a PubMed abstract, and the expected output is
the summary answering the question with the
PubMed Abstract as the context.

• BioASQ (Tsatsaronis et al., 2015). We use
the dataset from BioASQ-9B Phase-B sum-
marization task. The input to the system is a
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question followed by relevant snippets from
a collection of PubMed Abstracts. There are
two kinds of outputs an exact answer and an
ideal answer associated with the input. For
the summarization task, we consider the ideal
answer as the Reference summary.

• MeQSum (Ben Abacha and Demner-
Fushman, 2019). The dataset is created
for better medical question summarization
because the original patients’ questions are
verbose. The dataset contains 1000 patients’
health questions selected from a collection
distributed by the U.S. National Library of
Medicine. Each question is annotated with a
summarized question by medical experts.

• CHQSum (Yadav et al., 2022). CHQSum
consists of 1507 domain-expert annotated
question-summary pairs from the Yahoo com-
munity question answering forum§ which pro-
vides community question answering threads
containing users’ questions on multiple di-
verse topics and the answers submitted by
other users. The authors with the help of 6
domain experts identified valid medical ques-
tion from the forum and asked the experts
to formulate an abstractive summary for the
questions.

Dataset Document count Word count OOV %
Train Val Test SD RS BART

EBM 1423 209 424 298 58 11.5
BioASQ 1525 491 496 505 40 9.4
MeQSum 700 150 150 70 12 5.7
CHQSum 1000 107 400 184 12 6.3

Table 4: Dataset statistics of downstream medical sum-
marization datasets. OOV% refers to the median fraction
of unigrams in RS that are absent from the PLM vocab-
ulary.

A.3 Evaluation Metrics
We first describe the implementation details for
computing Rouge scores discussed in Section 4,
where we use the official Rouge (Lin, 2004) script§.
The following parameters: -c 95 -2 -1 -U -r 1000
-n 4 -w 1.2 -a, are used and we report the me-
dian at a 95% confidence interval. Additionaly,
we also use Concept Score which identifies the
medical conocept overlaps between generated and

§https://webscope.sandbox.yahoo.com/catalog.php?
datatype=l&did=11

§https://github.com/bheinzerling/pyrouge/tree/master

reference summary. To identify concepts, we use
matcher.match utility of QuickUMLS (Soldaini and
Goharian, 2016) tool in default setting.

A.4 Added Vocabulary Sizes
We mention the size of added vocabulary obtained
by AVOCADO and MEDVOC on classification
and summarization datasets in Table 5.

Dataset |VDOMAIN|
AVOCADO (|VPLM|: 50265)

CHEMPROT 5103
ACL-ARC 3419
AMAZON 1168
HYPERPARTISAN 743

MEDVOC (|VPLM|: 50265)
EBM 11061
BioASQ 6462
MeQSum 747
CHQSum 680

Table 5: Size of added vocabulary (|VDOMAIN|) for AV-
OCADO(RoBERTa) and MEDVOC(BART) on classifi-
cation and summarization datasets respectively.

A.5 Hyperparameters
We discuss the following hyperparameters: (i) the
training hyperparameters, (iii) inference hyperpa-
rameters for MEDVOC.

A.5.1 Training Hyperparameters
AVOCADO. All AVOCADO related experiments
were run on one V100 32 GB graphic card. We
kept the training hyperparameters same as that of
what authors follow in the study. In brief, we tune
learning rate : ∈ {1e − 5, 2e − 5, 5e − 5} and
temperature: from 1.5 to 3.5 in steps of 0.5.

MEDVOC. All the experiments are run on one
A100 40 GB GPU. We use the fine-tuning summa-
rization scripts for BART provided in MEDVOC’s
codebase. We used the following hyperparameters
to train BART model. learning rate: 5e-5, batch
size: 32, and gradient accumulation steps: 8, rest
all the hyperparameters takes its default values. We
checkpoint at every 500 steps and train the model
for a total of 5 epochs (approx 15K steps). The
training times for IFT-PAC for MEDVOC is men-
tioned in Table 6.

A.5.2 Inference Hyperparameters
We used beam search to run the inference on the
test set. We tuned the following hyperparameters
of beam search: beam size (B ∈ [2, 10]) and length-
penalty (Wu et al., 2016) (lp ∈ [0.1, 3]) on the
validation split of the target task dataset. The best
values of hyperparameters thus obtained are men-
tioned in Table 7.
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Dataset BART
EBM 27 hrs 51 mins

BioASQ 28 hrs 25 mins
MeQSum 28 hrs 49 mins
CHQSum 28 hrs 38 mins

Table 6: Time required in hours for intermediate fine-
tuning using PAC for each target task dataset using
BART with ADAPTBPE.

Dataset B lp

EBM 3 0.8
BioASQ 6 0.8
MeQSum 8 0.1
CHQSum 6 0.5

Table 7: Optimal values for inference hyperparameters -
beam size (B) and Length Penalty (lp) used for beam-
search generation for each of the datasets using BART
with ADAPTBPE.

B Human Evaluation

Twelve individuals took part in an annotation task
on the Prolific platform. Each person was asked
to annotate ten random pairs of summaries from a
pool of forty, with the order and source of the sum-
maries concealed. Participants had thirty minutes
to finish the task and were paid 8 UK Pounds per
hour for their time. They also provided feedback on
the experience and demographic information, ex-
cluding any personal details beyond what is made
available by the platform. The task was conducted
using Google Forms, with participants being shown
a consent notice beforehand.

Participation Criteria. The filtering criteria for
participants were kept same as that of MED-
VOC (Balde et al., 2024):

• Age: ≥ 25,

• Primary Language: English,

• Highest education level completed: Gradu-
ate degree (MA/MSc/MPhil/other), Doctorate
degree (PhD/other)

• Subject: Medicine, Health and Medicine,
Biomedical Sciences.

Annotation Guidelines. The annotations were
carried across three dimensions (Fabbri et al., 2021)
of coherence, relevance, and factual consistency.
Coherence judges how well formed the summaries

Source Doc-
ument

GE: Question in laymen terms: Has any genetic or other correlation
ever been made between these two diagnosis?
My 59 y.o. sister has a diagnosis of Periventricular Heterotopia. Her
30 y.o. daughter has been suffering with same for last 15 years. Her
37 Y.O. daughter is clinically full-care retarded (since infancy) and
has severe idiopathic scoliosis. I have severe idiopathic scoliosis.
I use the term "severe" to express debilitating and multiple fusion
surgeries. All four of my generation female siblings have a level of
scoliosis. FYI: this PH sister died last week, her remains are at the
[LOCATION]

Positive Example
Summary Can there be a genetic link between Periventricular Heterotopia and

scoliosis?
Relevance 5
Coherence 5
Factual
Consistency

1

Explanation Here we can see the summary is focused on idenitfying whether
a genetic link exists b/w Periventricular Heterotopia and scoliosis
which is what the user is asking about.

Negative Example
Summary What are the causes of severe idiopathic scoliosis?
Relevance 1
Coherence 1
Factual
Consistency

0

Explanation The question is asking for treatments of scoliosis which is not the
theme of the input document.

Table 8: A negative and positive example as shown to
the participant in the annotation guidelines for clarifica-
tion under the three dimensions of annotation. The data
point is taken from MeQSum dataset.

are and whether the sentences in the summaries
are actually related to each other or not. Rele-
vance judges how informative the summaries are
considering the input as the context for evaluating
relevance. Factual Consistency judges whether
the facts, figures, numbers stated in the generated
summary ca be verified from source input or not.
Even if the generated text contains correct fact, but
cannot be verified by only looking at input it is
deemed as factually incosistent.

For each of these dimensions, we show one pos-
itive (high rating) and one negative example (low
rating) along with an explanation as a part of our
annotation guideline (Table 8).

Demographic analysis of participants. The av-
erage age of participants was 29 years. Out of
12 participants, 10 were female and 2% were male.
All the participants are Graduate studtents. The par-
ticipants were recruited by platfrom from 3 coun-
tries: South Africa(3), Sweden(2), and UK(7).

Instruction on platform. Prolific begins the user
study with a clear instruction window describing
what the task is about and what the participant is ex-
pected to do in the study. We attach the screenshot
of that window which is shown to the participants
in Figure 3.
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Figure 3: Instruction window as seen by an annotator participating in the study.
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