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Abstract

Language models typically tokenize raw text
into sequences of subword identifiers from
a predefined vocabulary, a process inher-
ently sensitive to typographical errors, length
variations, and largely oblivious to the in-
ternal structure of tokens—issues we term
the curse of tokenization . In this study, we
delve into these drawbacks and demonstrate
that large language models (LLMs) remain sus-
ceptible to these problems. This study sys-
tematically investigates these challenges and
their impact on LLMs through three critical
research questions: (1) complex problem solv-
ing, (2) token structure probing, and (3) re-
silience to typographical variation. Our find-
ings reveal that scaling model parameters can
mitigate the issue of tokenization; however,
LLMs still suffer from biases induced by ty-
pos and other text format variations. Our ex-
periments show that subword regularization
such as BPE-dropout can mitigate this issue.
We release our evaluation code and data at
https://github.com/FloatAI/TKEval.

1 Introduction

Tokenization is a fundamental step in the prepro-
cessing pipeline of large language models (LLMs)
(OpenAI, 2023; Anil et al., 2023; Touvron et al.,
2023; Chai et al., 2023; Lozhkov et al., 2024), con-
verting raw text into a sequence of subword units
derived from a predefined vocabulary (Sennrich
et al., 2016; Kudo and Richardson, 2018). This pro-
cess, while effective in many scenarios, presents
significant challenges that can hinder the perfor-
mance and robustness of LLMs. These challenges
include sensitivity to typographical errors (Cao
et al., 2023), length variations (Aghajanyan et al.,
2022), and a lack of awareness of the internal struc-
ture of tokens (Brown et al., 2020)—collectively
termed the curse of tokenization.

*Equal contribution and shared co-first authorship.
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Figure 1: Compositional challenges in token embed-
dings. (a) “assignment” decomposed into “assign”
and “ment” shows a cosine similarity of 0.21 and an an-
gle of 78.16°. (b) “import” decomposed into “im” and
“port” shows a cosine similarity of 0.13 and an angle
of 82.47°. These results indicate that existing LLMs do
not accurately capture surface form composition.

Typographical errors, such as minor misspellings
or misplaced characters, can drastically affect the
tokenization process. Unlike humans, who can
easily overlook these errors and understand the in-
tended meaning, LLMs can misinterpret or fail to
recognize these variations, leading to degraded per-
formance (Cao et al., 2023). This typo-sensitivity
reveals a crucial gap in current tokenization meth-
ods, which do not sufficiently mimic human read-
ing capabilities.

Another critical issue is the length unawareness
of current tokenization approaches. LLMs often
struggle to accurately represent the organizational
structure of text, being insensitive to the number
of characters or words (Aghajanyan et al., 2022).
This insensitivity affects their ability to understand
and process text effectively, particularly in tasks
requiring a nuanced understanding of text length
and compositional structure.

Furthermore, existing tokenization methods are
often blind to the internal structure of tokens. The
decoupled embedding space and lookup table ap-
proach fail to account for the hierarchical compo-
sition of language, spanning characters, subwords,
and words, as depicted in Figure 1. This lack of
integration across different levels of token com-
position limits the model’s ability to fully grasp
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semantic relationships and differences.
Case insensitivity in certain languages adds an-

other layer of complexity, where variations in cap-
italization can lead to different token representa-
tions, further complicating the model’s understand-
ing and processing of text.

To address these challenges, we conducted a
comprehensive study examining the limitations of
current tokenization methods and their impact on
LLM performance. Our study is guided by three
critical research questions:
A. Complex Problem Solving (§3). As a pilot
experiment, we firstly investigate the performance
of LLMs on complex problems that are sensitive to
tokenization, involving anagram task and complex
mathematical language understanding.
B. Token Structure Probing (§4). We study the
token structural tasks such as case manipulation,
length counting, and length-sensitive tasks to probe
the token structural understanding of LLMs.
C. Typographical Variation (§5). We designed a
robust set of evaluation benchmarks on top of vari-
ous datasets such as MMLU, TruthfulQA, GSM8K,
and HumanEval, covering diverse tasks and linguis-
tic phenomena. These benchmarks allow us to sys-
tematically test and analyze the LLMs’ resilience
to tokenization.

Our findings highlight that while scaling model
parameters can enhance the robustness to tokeniza-
tion, LLMs still suffer from biases introduced by
typographical errors and text format variations. We
demonstrate the persistent nature of these tokeniza-
tion challenges.

Contribution To conclude, our main contribu-
tions are as follows:

1. We provide a comprehensive analysis of the
problem known as the curse of tokenization,
detailing its impact on language model perfor-
mance and introducing systematic evaluation
benchmarks to assess these issues.

2. By evaluating various scales of LLMs, including
LLama3, Mistral, and GPT-4 families, across
thirteen distinct tasks, we demonstrate that even
state-of-the-art models struggle with handling
typographical variations. Specifically, LLMs
exhibit greater sensitivity to character-level vari-
ations compared to subword-level variations.

3. We demonstrate that regularized tokenization
approaches, such as BPE-dropout with moderate
drop rates, can enhance the model’s resilience

to the discussed issues.

2 Related Work

2.1 Tokenization
Tokenization Approach Conventional language
models (Radford et al., 2018; Jozefowicz et al.,
2016; Brown et al., 2020) typically tokenize in-
put text into a sequence of tokens by splitting
it into smaller subwords. Traditional tokeniza-
tion approaches include frequency-based methods
such as Byte Pair Encoding (BPE; Sennrich et al.,
2016) and probability-based methods like Word-
Piece (Schuster and Nakajima, 2012). BPE merges
tokens based on bigram frequency, relying on sub-
word pair co-occurrence to greedily merge neigh-
boring pairs. In contrast, WordPiece can be viewed
as a language-modeling based BPE variant. It se-
lect the unit pair that maximizes the bigram likeli-
hood of training data at utmost, rather than choose
the most frequent pair.

Unigram Language Model (Kudo, 2018) prunes
tokens based on unigram LM perplexity, treating
the segmentation process as a probabilistic mix-
ture of characters, subwords, and words, reduc-
ing subwords by evaluating likelihood reduction.
Additionally, some tokenization methods handle
text at the byte level (Xue et al., 2022) or char-
acter level (Sutskever et al., 2011; Clark et al.,
2022). Conventional LLMs often use byte-level
BPE (BBPE) for base vocabulary construction, rep-
resenting any text with a moderate vocabulary size
and avoiding the out-of-vocabulary (OOV) prob-
lem. For a detailed introduction to tokenization,
readers can refer to Chai (2021).

Tokenization-Free Approach Tokenization ap-
proaches often suffer from the vocabulary bottle-
neck, where there is a trade-off between vocabulary
size and diverse language coverage in multilingual
scenarios. To address this issue, Rust et al. (2023)
and Chai et al. (2024) introduced a tokenization-
free approach that renders raw text as visual text
images for masked language modeling and autore-
gressive pre-training. This method demonstrates
robust multilingual generalization capabilities com-
pared to subword tokenization approaches.

2.2 Perturbation Probing
Several studies have investigated the behavior of
language models under input perturbations at vari-
ous levels, including character-level (Nishino et al.,
2019), subword-level (Abdou et al., 2022), and
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word-level (Sinha et al., 2021; Peng et al., 2023)
scrambling. Despite these efforts, intrinsic eval-
uations of perturbing LLM inputs remain under-
explored.

Cao et al. (2023) proposed examining scrambled
sentence recovery and scrambled QA with con-
text corruptions. In contrast, our study conducts a
comprehensive evaluation of both character- and
subword-level perturbations, along with noise in-
jection. We evaluate a wide range of LLMs across
various tasks to provide a detailed comparison and
inspire future research in tokenization and robust
model performance.

3 Complex Problem Solving

Complex problem-solving tasks are critical bench-
marks for evaluating the complex reasoning and
comprehension capabilities of LLMs. We explore
the LLM’s ability to perform intricate operations
on tokenized inputs, as the tokenization process
is fundamental to determine how the raw text is
segmented and processed, directly impacting the
model’s interpretation and prediction.

Anagram solving and mathematical language
comprehension were selected to elucidate the re-
lationship between tokenization quality and the
model’s performance on complex problem-solving.
Anagram tasks require models to decode and re-
arrange jumbled letters into coherent words, em-
phasizing the importance of precise token bound-
aries and recognition accuracy. On the other hand,
mathematical language comprehension, particu-
larly expressed with LATEX-formatted expressions,
demands an exact interpretation of specialized sym-
bols and structured notation, challenging the tok-
enization process’s robustness.

3.1 Anagram Task

Task Description and Settings The anagram
task tests the model’s ability to unscramble a se-
quence of jumbled characters to form a valid word.
This task evaluates the model’s handling of surface-
form manipulations and its understanding of char-
level compositions within a word. The complex-
ity arises from the need to identify potential word
candidates from mixed characters and reassemble
them correctly. We present a task example in §A.1.
Specifically, we include two tasks:

• Cycled Letters in Word (CL; Srivastava et al.,
2022) – The model is given a word with its letters
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Figure 2: K-shot performance on Word Unscrambling
(WU) and Cycled Letters (CL) tasks. The plots illustrate
that increasing the number of demonstration examples
(K-shot) does not consistently enhance performance.
However, models with larger parameter sizes generally
exhibit better performance across both tasks.

cycled, and is expected to generate the original
word (e.g., “remo” → “more”).

• Word Unscrambling (WU; Srivastava et al.,
2022) – The model is given a randomly scrambled
word, and must recover the original word (e.g.,
“nad” → “and”).

We employ exact match (EM) scores for evaluation.
Unless otherwise specified, we use the inference-
time temperature of 0 for all LLMs in following
experiments, to assure the results reproducible.

Results and Analysis The experimental results
reveal that larger models demonstrate better perfor-
mance on the anagram task, yet they remain suscep-
tible to tokenization errors. Specifically, models
struggled with longer anagrams (see Figure 3) or
those containing uncommon letter combinations,
indicating that while scaling improves token recog-
nition, inherent tokenization flaws persist.
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Figure 3: The relationship between the length of scram-
bled words and the Exact Match (EM) score of Llama3-
8B and Llama3-70B on the word unscrambling task
under one-shot evaluation. The models tend to correctly
reorder anagrams of shorter lengths, while struggling
with longer words.
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Figure 3 highlights the performance differences
between Llama3-8B and Llama3-70B on the word
unscrambling task across various word lengths.
Notably, Llama3-70B consistently outperforms
Llama3-8B, especially in the 0-6 and 6-12 charac-
ter buckets. This trend indicates that as the model
parameter size increases from 8B to 70B, the ability
to accurately reorder scrambled words improves.
However, both models struggle with longer words
(12-18 characters), though Llama3-70B maintains
a moderate edge.

Our results shown in Figure 2 indicate several
key trends. Firstly, the performance improves sig-
nificantly as model size scales from 8B to 70B
parameters (AI@Meta, 2024). Secondly, we ob-
serve that while the dense Mistral-7B model per-
forms poorly, the sparse Mixtral-8x7B model (an
MoE sparse model) shows improved performance
due to its parameter size scaling. Lastly, GPT-4
turbo, a much more powerful model, achieves state-
of-the-art results, clearly outperforming all other
models across all shot conditions. This sensitivity
underscores the need for more robust tokenization
that can handle typographical variations without
degrading performance.

3.2 Mathematical Language (LATEX)
Comprehension

Task Description and Settings The mathematical
language comprehension task evaluates the model’s
ability to read and comprehend mathematics writ-
ten in LATEX, the typesetting language used by pro-
fessional mathematicians. This task assesses the
models’ capability to interpret complex mathemat-
ical expressions and accurately tokenize symbols
and operators within structured LATEX format.

We employ Identify Math Theorems (IMT;
Srivastava et al., 2022) for evaluation, and use
perplexity to measure the model’s confidence in
different given choices. The dataset comprises 54
problems divided into nine sections, each repre-
senting a major area of mathematics research or
advanced pedagogy. We present the input-output
format in §A.1.

Results and Analysis Our evaluation results of
various models are shown in Table 1. The results
demonstrate that while larger models generally per-
form better on LaTeX-formatted mathematical con-
tent, the relationship between the number of in-
context examples and model performance is not
linear. The Llama3-70B model consistently outper-

Setting 0-Shot 1-Shot 2-Shot 3-Shot

GPT-3 (6B)a 33.96 28.30 33.96 28.30
GPT-3 (200B)a 32.08 30.19 33.96 30.19
Llama2-7b 37.70 34.00 35.80 37.70
Llama3-8b 41.51 45.28 45.28 35.85
Llama3-70b 62.26 79.25 69.81 71.70
Mistral-7b 47.20 43.40 37.70 37.70
Mixtral-8x7b 49.10 56.60 64.20 62.30

Table 1: Few-shot results on Identifying Math Theo-
rems, with exact match scores reported as percentages.
a refers to results taken from Srivastava et al. (2022)

formed other models, achieving a score of 62.26%
in the zero-shot setting and improving to 79.25%
with one-shot learning. However, additional in-
context examples led to fluctuating performance,
with scores of 69.81% in the two-shot setting and
71.70% in the three-shot setting. This indicates
that increasing the number of in-context demonstra-
tions does not consistently enhance performance
and may lead to variability depending on the spe-
cific examples provided.

Other models exhibited similar trends. GPT-3-
200B (Srivastava et al., 2022), despite its larger
parameter count, did not show significant improve-
ment over the smaller GPT-3-6B model, suggesting
that simply increasing the model size does not guar-
antee better performance in LATEX comprehension
tasks. The comparison between dense and sparse
models revealed that the dense Mistral-7B model
performed poorly across all shot conditions, while
the sparse Mixtral-8x7B model demonstrated better
results, especially in few-shot scenarios.

4 Token Structure Probe

Tokenization is a key preprocessing step in LLMs,
yet it introduces several significant challenges,
which we defined as the curse of tokenization .
These challenges include length unawareness, case
insensitivity, and a lack of awareness of the internal
structure of tokens. Tokenization transforms text
into sequences of token identifiers, often obscuring
the surface form and internal structure of the origi-
nal text. This conversion can lead to deficiencies
in the model’s ability to understand and process
textual data accurately.

The curse of tokenization manifests in several
ways, which refers to the inherent challenges:

A) Length Unawareness: Models struggle to rec-
ognize the organizational structure of text, such
as the number of characters or words.
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B) Case Insensitivity: Variations in capitaliza-
tion can lead to different token identifiers and
representations, complicating the model’s pro-
cessing of text.

C) Blindness to Internal Structure: The decou-
pled embedding space and lookup table ap-
proach used in LLMs fail to preserve the hier-
archical and relational structure within tokens,
obscuring the surface form and internal rela-
tionships between characters and subwords.

To address these challenges, we construct a set of
probing tasks to evaluate the model’s understanding
of token structure. These tasks are divided into
intra-token (§4.1) and inter-token probes (§4.2).

4.1 Intra-Token Probing
Task Description and Settings To measure the
capability of LLMs, we devise intra-token probing
tasks related to length, case, and counting problems.
These tasks evaluate the model’s performance on
the internal structure of tokens or word, specifically
including four tasks:

• Character Count (CC) – The model is asked
to count the number of occurrences of a specific
character within the given word (e.g., the charac-
ter appears twice in the word “undertake” → the
answer is: “e”).

• N -th Character (NC) – The model is expected
to output the n-th character of the given word
(e.g., 4-th character of the word “dual” → “l”).

• N -th Character Reverse (NCR) – The model
must identify the n-th character from the end of
a word (e.g., 2nd character from the end of the
word “dual” → “a”).

• Case Conversion (CCV) – This task involves
converting the characters within a word to differ-
ent cases (uppercase, lowercase) or converting
the word into title case.

For each task, we conduct many-shot evalua-
tion (0-3 shot) and report the EM score to test the
model’s ability to understand and manipulate the
internal structure of tokens and words at a granular
level, revealing the extent to which the tokenization
process could preserve this information. Detailed
test examples are provided in Appendix A.2.

Results and Analysis We evaluated CC, NC,
NCR, and CCV tasks across different models and
shot settings. The results are presented in Figure 4.

The CC task reveals that larger models exhibit
superior performance, particularly GPT-4 turbo,
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Figure 4: K-shot performance on intra-token probing
tasks (CCV, CC, NC, NCR). The plots demonstrate
that increasing the number of demonstration examples
(K-shot) generally results in an improvement from zero-
shot to one-shot, with performance stabilizing thereafter.

which achieves near-perfect accuracy across all
shot conditions. Smaller models, such as Llama3-
8B, show significant improvement with few-shot
learning, indicating that exposure to examples
greatly enhances their performance. For example,
Llama3-8B’s accuracy improves from 0% in the
zero-shot setting to 81% in the three-shot setting.
This demonstrates that increased model size and
few-shot learning contribute positively to CC tasks.

The NC task underscores the difficulty models
face in accurately identifying specific characters
within words. GPT-4 turbo again leads in perfor-
mance, while smaller models show substantial im-
provement with increased shots. Llama3-70B, for
instance, improves from 1% in the zero-shot setting
to 55% in the three-shot setting. This indicates that
while larger models perform better, few-shot learn-
ing plays a crucial role in enhancing the model’s
ability to identify specific characters.

Identifying characters from the end of the word,
or reverse character identification, proves more
challenging. GPT-4 turbo achieves the highest per-
formance with a score of 52% in the one-shot set-
ting, though overall accuracy is lower compared to
other tasks. Smaller models like Llama3-8B show
moderate improvements with additional shots, but
their performance remains relatively low. This
highlights the complexity of reverse character iden-
tification and the need for more advanced tokeniza-
tion strategies to address this challenge.
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(b) Edit distance on k-shot evaluation.

Figure 5: K-shot performance on various inter-token
probing tasks. For edit distances, lower is better.

4.2 Inter-Token Probing

Task Description and Settings To evaluate the
capabilities of LLMs in understanding and manip-
ulating relationships between multiple tokens, we
devised inter-token probing tasks. These tasks fo-
cus on identifying common patterns and sequences
across tokens, and they assess the model’s ability
to recognize and process such relationships. Specif-
ically, we include three tasks:
• Common Substrings (CS) – The model iden-

tifies multiple common substrings between two
given words.

• Longest Common Substrings (LCS) – The
model identifies the longest continuous common
substring for two given words.

• Longest Common Subsequences (LCSeq) –
The model identifies the longest common sub-
sequence (not necessarily continuous) between
two given words.
For each task, we conduct many-shot evalua-

tions (0-3 shot) and report the EM and edit distance
(ED) score to test the model’s ability to understand
and manipulate relationships between tokens at a
higher level. For CS tasks, the model’s response
is considered correct if it generates one of the mul-
tiple possible common substrings. Detailed test
examples are provided in Appendix A.3.

Results and Analysis The results are presented
in Figure 5. The results for CS tasks indicate that
larger models, such as Llama3-70B and GPT-4
Turbo, perform significantly better than smaller
models. GPT-4 Turbo achieves the highest ac-
curacy across all shot settings, demonstrating the

model’s robustness in identifying continuous sub-
strings. Notably, Llama3-70B also shows strong
performance, particularly in the three-shot setting.
Sparse models like Mixtral-8x7B exhibit notable
improvements compared to dense models, high-
lighting the effectiveness of sparse architectures in
handling complex token relationships.

For LCS tasks, GPT-4 Turbo leads in perfor-
mance, achieving high accuracy across all shot set-
tings. Llama3-70B and Mixtral-8x7B show consid-
erable improvements with increased shots, indicat-
ing that exposure to more examples helps models
better identify multiple common substrings. Dense
models like Mistral-7B lag behind, reinforcing the
advantage of sparse architectures in such tasks.

The LCSeq task reveals that even the best-
performing models face challenges with non-
continuous patterns. While Llama3-70B and GPT-
4 Turbo demonstrate superior performance, there
is a significant drop in accuracy compared to CS
tasks. Few-shot learning significantly enhances the
performance of smaller models, such as Llama3-
8B, which improves from 1% in zero-shot to 4%
in three-shot settings. This underscores the impor-
tance of few-shot examples in aiding models to
recognize and process non-continuous patterns.

5 Typographical Variation

To evaluate the robustness of LLMs to typographi-
cal variations, we constructed tasks that introduce
character-level and token-level typographical er-
rors into the input text. These tasks are designed to
test the models’ ability to maintain semantic under-
standing despite the presence of such errors. The
datasets include MMLU (Hendrycks et al., 2021),
TruthfulQA (Lin et al., 2022), GSM8K (Cobbe
et al., 2021), and HumanEval (Chen et al., 2021),
ensuring diverse coverage.

Task Description and Settings The primary goal
of these tasks is to assess the LLMs’ resilience to
typographical errors at both the character and token
levels, examining whether these models can main-
tain semantic understanding when faced with such
perturbations. For character-level typographical
variation, we employed n-gram shuffling within
word boundaries (with n set to 2, 3, 5) with a
50% probability, and n-gram noise, which involve
adding, deleting, and replacing characters, spaces,
and punctuation marks to simulate spelling noise.
This corruption occurs with a 30% probability, in-
cluding insertion, deletion, or substitution opera-
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Figure 6: Performance comparison for various models across different n-gram sizes (n=2,3,5) and typographical
variations on (1) TruthfulQA, (b) MMLU, (c) GSM8K, and (d) HumanEval. The typographical variations include
character-level (blue) and token-level (orange) perturbations, with noise (solid line) and reorder (dashed line) types.
Baseline performance is indicated with a dotted line at the top of each plot.

tions. Token-level typographical variation was
introduced by shuffling tokens within n-grams of
sizes 2, 3, and 5, with a 50% probability of permu-
tation or typo generation, similar to the character-
level method. We include four tasks:

• Character-Level Permutation: Shuffling char-
acters within word boundaries using n-grams of
sizes 2, 3, and 5, with a 50% probability.

• Character-Level Noise: Adding, deleting, re-
placing random characters to simulate spelling
noise, each with a 10% probability.

• Token-Level Permutation: Randomly reorder-
ing tokens using n-grams of sizes 2, 3, 5, with a
50% probability.

• Token-Level Noise: Adding, deleting, replacing
tokens to inject noise, with a 30% probability.

For evaluation, we report pass@1 for Hu-
manEval using a temperature of 0.2 and a top-p
of 0.95. For others, we used a temperature of
0. GSM8K was evaluated using a 5-shot setting,

while MMLU, TruthfulQA, and HumanEval were
assessed in a zero-shot setting. We measured per-
formance on MMLU and TruthfulQA using per-
plexity for multiple-choice selection1.

Results and Analysis Figures 6 presents a com-
prehensive analysis of the impact of typographical
variations on various LLMs, specifically focusing
on character-level and token-level perturbations
across different n-gram sizes (n=2, 3, 5). The
evaluation covers a range of datasets, including
TruthfulQA, MMLU, GSM8K (5-shot), and Hu-
manEval.

Across all datasets and models, there is a con-
sistent trend showing that LLMs are much more
sensitive to noise (solid lines) than to reordering
(dashed lines). Noise injection, which involves
adding, deleting, or replacing characters or tokens,
leads to more pronounced variations and generally

1Since GPT-4 Turbo does not support perplexity computa-
tion, it was excluded from the evaluation for these two tasks.

1588



degrades overall performance. This is evident from
the lower EM scores for noise perturbations com-
pared to reorder perturbations.

Despite the challenges posed by n-gram re-
ordering within word boundaries, GPT-4 Turbo
maintained high accuracy across all n-gram sizes.
Character-level n-gram noise injection, simulating
realistic spelling noise, further tested the models’
robustness. The results indicate that all models
experienced evident performance degradation, re-
gardless of the parameter sizes, highlighting their
sensitivity to typographical noise.

For most models and datasets, as the n-gram
size of noise injection increases from n=2 to 5, the
performance tends to stabilize or improve. This
trend suggests that models can better handle larger
n-gram noise injection, likely because the context
within larger n-grams provides more semantic co-
herence compared to smaller n-grams.

At the token level, models were subjected to n-
gram permutations similar to those applied at the
character level. The results indicated that models
generally performed better with token-level permu-
tations than with character-level shuffles and noise
injection. This suggests that token-level errors may
be less disruptive to the overall semantic structure
of the input text.

6 Does BPE-dropout Matter?
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Figure 7: K-shot performance on various tasks (CCV,
CC, NC, NCR, CS, LCSeq, and LCS) using the Mistral-
7B model fine-tuned with a BPE-dropout tokenizer at
different dropout rates p, ranging from 0 to 0.8. The
baseline without BPE-dropout (i.e., p = 0) is depicted
with a dashed line. It demonstrates that introducing
a moderate amount of variability during tokenization
improves the model’s generalization capabilities, miti-
gating the curse of tokenization issues.

To further enhance the robustness of LLMs, we
explore regularized tokenization approach, BPE-
dropout (Provilkov et al., 2020), which randomly

drops BPE merges during tokenization. This tech-
nique allows text sequences to be tokenized in more
diverse ways, promoting robustness to various to-
ken combinations and increasing the likelihood of
encountering smaller tokens. Intuitively, this diver-
sity benefits the model’s understanding of internal
token structures.

Training Setup For the training data, we synthe-
sized a dataset consisting of 111k examples specifi-
cally designed for RQ2. We employ the AdamW
optimizer (Loshchilov and Hutter, 2017) with the
hyperpameters of β1 = 0.9, β2 = 0.95. The peak
learning rate is set to 5e-5, and the minimum learn-
ing rate is set to 1e-6. The learning rate warms
up during the first 10% of training steps and then
decays with a cosine scheduler.

Given the difference in data distribution resulting
from BPE-dropout, we post-train Mistral-7B (Jiang
et al., 2023) on the training split for 5 epochs with a
global batch size of 16. Following the pre-training
recipe, we concatenate all sequences and then
chunk them into fixed context lengths of 4096 for
our autoregressive post-training. We conduct data
shuffling within the same epochs. More detailed
training settings are provided in Appendix B.3.

Results and Analysis Figure 7 shows the impact
of varying BPE-dropout rates on the Mistral-7B
model’s performance across multiple K-shot set-
tings and tasks. The baseline performance, with a
dropout rate of p = 0, shows robust results across
several tasks, particularly in CS and CC. These
tasks are relatively straightforward, involving sim-
ple token manipulations that do not significantly
challenge the model’s capacity to generalize from
zero-shot to few-shot scenarios. The high perfor-
mance in these tasks suggests that the Mistral-7B
model, even without BPE-dropout, is adept at han-
dling simpler token relationships. However, it is
important to note that the baseline performance
does not uniformly extend to more complex tasks.

In contrast, tasks such as LCSeq reveal relatively
low performance across all models, irrespective of
the BPE-dropout rate. This suggests inherent diffi-
culties in these tasks that stem from the requirement
to identify non-continuous and intricate token pat-
terns. The consistent under-performance indicates
that LCSeq tasks pose a significant challenge to the
model’s ability to generalize, likely due to the in-
creased complexity in recognizing and processing
longer and fragmented sequences.

Interestingly, the introduction of a moderate
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Figure 8: The impact of BPE-dropout on EM scores across seven tasks (CS, LCSeq, CCV, CC, NC, LCS, NCR)
under different post-training conditions: (a) 0-shot, (b) 1-shot, (c) 2-shot, and (d) 3-shot. The dropout rates range
from 0.0 to 0.8. The plots show that moderate dropout rates generally lead to improvements. Tasks such as CS and
CC are more robust to dropout, maintaining higher scores even at moderate dropout rates, while tasks like NC, LCS,
and NCR show significant performance drops with increasing dropout.

BPE-dropout rate (p = 0.2) frequently surpasses
the baseline, highlighting the benefits of induc-
ing variability during tokenization. This moderate
dropout rate enhances the model’s generalization
capabilities by preventing overfitting and promot-
ing a more robust learning process. Notably, in
tasks such as CCV, NC, and LCS, the p = 0.2
model consistently achieves higher EM scores, un-
derscoring the benefits of incorporating tokeniza-
tion regularization.

Our analysis reveals that higher dropout rates
(p = 0.6 and p = 0.8) exhibit relatively lower per-
formance across most tasks. This decline can be
attributed to insufficient training, as the dataset
was trained for only five epochs. The higher
dropout rates introduce greater tokenization vari-
ation, which necessitates additional training com-
pute to achieve convergence. The lack of adequate
training epochs likely hindered these models from
fully leveraging the potential benefits of higher

BPE-dropout rates. Moreover, we report the test-
set performance across seven tasks over the course
of BPE-dropout fine-tuning in Figure 8. We pro-
vided detailed training analysis in Appendix §D.

7 Conclusion

In this study, we investigated the challenge of the
curse of tokenization, comprehensively evaluating
mainstream LLMs across thirteen tasks sensitive to
conventional subword tokenization. Our findings
reveal that while larger models and increased shot
counts can partially mitigate these issues, LLMs
still struggle with understanding internal structures
and token compositions. Moderate BPE-dropout
can alleviate some of these challenges, whereas
larger drop rates lead to performance degradation.
We encourage the research community to develop
more flexible approaches to further address these
limitations and enhance model robustness.
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Limitations

While our study provides valuable insights into
the robustness and performance of large language
models (LLMs) under various tokenization and ty-
pographical variation scenarios, several limitations
should be acknowledged:

Data Diversity and Size The training data syn-
thesized for RQ2 (token structure probe) consists
of approximate 30k examples. While this dataset
size is substantial, it may not fully capture the di-
versity and complexity of real-world text. Future
work could benefit from expanding the dataset size
and incorporating a wider range of linguistic phe-
nomena.

Evaluation Metrics Our evaluation primarily re-
lies on metrics such as pass@1 for HumanEval and
accuracy for MMLU, TruthfulQA, and GSM8K.
While these metrics provide valuable insights, they
may not fully capture the nuanced performance
of LLMs in real-world applications. Incorporat-
ing additional metrics that assess other aspects of
model performance, such as robustness to out-of-
distribution data and interpretability, could provide
a more comprehensive evaluation.

Subword Regularization Although our use of
BPE-dropout shows promising improvements in
model robustness and accuracy, the approach in-
troduces randomness into the tokenization process.
This randomness can lead to variability in model
performance, making it challenging to ensure con-
sistent improvements across different datasets and
tasks. Further research is needed to optimize the
BPE-dropout technique and evaluate its long-term
impact on model performance.

Typographical Variation Our study focuses on
character-level and token-level typographical varia-
tions, but it does not address other common types
of text perturbations, such as grammatical errors,
semantic variations, or contextual inconsistencies.
Exploring the effects of these additional types of
variations could provide a more holistic understand-
ing of LLM robustness.

Generalizability The findings from our evalu-
ation on specific datasets (MMLU, TruthfulQA,
GSM8K, and HumanEval) may not generalize to
all types of text and tasks. Further studies are
needed to assess the generalizability of our findings
across a broader range of datasets and real-world

scenarios, such as extending to multilingual evalu-
ation (Peng et al., 2024).

Ethical Consideration

Bias and Fairness Tokenization strategies can
introduce or exacerbate biases present in the train-
ing data. Our study, which involves diverse to-
kenization techniques like BPE-Dropout, should
include thorough bias assessments to ensure that
these methods do not perpetuate unfair or discrim-
inatory outcomes. Mitigating bias is crucial for
creating fair and equitable AI systems.

Transparency and Interpretability Our re-
search involves complex tokenization processes
that can obscure the decision-making of LLMs.
Enhancing the transparency of these models by
providing clear explanations of how tokenization
impacts model behavior is essential. This trans-
parency helps build trust and allows users to un-
derstand and identify potential issues in language
model predictions.

Privacy and Data Security The datasets used
for training and evaluating tokenization methods
often contain sensitive information. Ensuring data
anonymization and compliance with data protec-
tion regulations is critical to protecting user privacy.
Our study adheres to strict data security protocols
to prevent any misuse of sensitive information.
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A Task Examples

A.1 Complex Problem Solving Examples

We present detailed examples of complex problem-
solving tasks including word anagram and identify-
ing math theorems as follows:

Anagram Task Format

Input: A string of jumbled characters
(e.g., “moeh” for “home”).
Output: The correct unscrambled word
(e.g., “home”).

Identifying Math Theorems Task Format

Input: A LATEX-formatted mathemati-
cal theorem. E.g., “Let f ∈ L1(R) be
an integrable function. The span of
{fa(x) = f(x + a) : a ∈ R} is dense in
L1(R) if and only if f̂ has no real roots..
A) Let f ∈ L1(R) be an integrable func-

tion. The span of {fa(x) = f(x+a) :
a ∈ R} is dense in L1(R) if and only
if f̂ has no real roots.

B) Let f ∈ L1(R) be an integrable func-
tion. The span of {fa(x) = f(x+a) :
a ∈ R} is dense in L1(R) if and only
if f̂ has no real roots. .

C) Let f ∈ L1(R) be an integrable func-
tion. The span of {fa(x) = f(x+a) :
a ∈ R} is dense in L1(R) if and only
if f̂ is irreducible over Q.

D) Let f ∈ L1(R) be an integrable func-
tion. The span of {fa(x) = f(x+a) :
a ∈ R} is dense in L1(R) if and only
if f̂ has no repeated roots.

Output: The model must determine
whether the theorem is true. If it is false,
the model should provide the correct
version; i.e., select the option “A”.

A.2 Intra-Token Probing Examples

For intra-token probing tasks, we provide Character
Count (CC), N -th Character (NC), N -th Character
Reverse (NCR), and Case Conversion (CCV) for
illustration.

Character Count (CC)

Input: Which character appears 3 times
in the word ‘messrs’?
Output: ‘s’.

N -th Character (NC)

Input: What is the 4th character of the
word ‘myron’?
Output: ‘o’.

N -th Character Reverse (NCR)

Input: What is the 2nd character from
the end of the word ‘pensioner’?
Output: ‘e’.

Case Conversion (CCV)

Input: Which character appears 3 times
in the word ‘messrs’?
Output: ‘s’.

A.3 Inter-Token Probing Examples

We present examples of inter-token probing tasks,
which involve identifying Common Substrings
(CS), Longest Common Subsequences (LCSeq),
and Longest Common Substrings (LCS). These
tasks evaluate the model’s ability to analyze and
compare internal structure across different inputs.

Common Substrings (CS)

Input: What are the common substrings
of ’critical’ and ’conscious’?
Output: ‘i‘, ‘c’.

Longest Common Subsequences (LCSeq)

Input: What are the longest common
subsequences of ‘illustrate’ and ‘criti-
cal’?
Output: ‘ita’.

Longest Common Substrings (LCS)

Input: What are the longest common
substrings of ‘cow’ and ‘condition’?
Output: ‘co’.
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B Experimental Settings

B.1 Baselines

We include Llama3-8B, Llama3-8B-Instruct,
Llama3-70B, Mistral-7B and Mixtral-8x7B for
LLM evaluation.

Llama3 Llama3 (AI@Meta, 2024) series are one
of the most powerful open-sourced models recently.
Llama3-8B is a dense pretrained model with a
vocab size of 128256, which needs few-shot ex-
amples to better follow instructions. Llama3-8B-
Instruct is also envolved for diverse model types.
Llama3-8B-Instrcut is a instruction-fine-tuned ver-
sion of Llama3-8B, showing much improvement
over Llama3-8B on benchmarks like HumanEval
and TruthfulQA.

Mistral & Mixtral Mistral-7B (Jiang et al.,
2023) is a dense model with a vocab size of 32000
released last year. Mixtral-8x7B (Jiang et al., 2024)
is a sparse mixture-of-expert(MoE) model with
13B active parameters, whose performance greatly
surpasses Mistral-7B and matches the performance
of Llama2-70B.

GPT-4 Turbo The model version we evaluate is
“gpt-4-1106-preview”2. Compared with GPT-4,
"gpt-4-1106-preview" yields stronger performance
on following instructions, structured output and
other abilities.

B.2 Evaluation Settings

We utilize lm-evaluation-harness (Gao et al., 2023)
for the evaluation of GSM8K, MMLU, and
TruthfulQA. For HumanEval, we adopt bigcode-
evaluation-harness (Ben Allal et al., 2022). All
models are tested under bfloat16 precision for
higher efficiency.

To eliminate the impact of the Chain-of-Thought
(CoT) prompt, GSM8K is evaluated using a 5-
shot setting without CoT, and we report the "exact
match" as the final metric. For HumanEval, we
report pass@1 using a temperature of 0.2 and a
top-p of 0.95. The maximum total length of the
prompt and model output is set to 512 for Llama3
and 1024 for Mistral-7B and Mixtral-8x7B. We
only apply corruption to the annotation to make
sure that entry point can be found after corruption.
For TruthfulQA, model performances are measured
within the “MC1 (single-true)” setting.

2https://platform.openai.com/docs/models/
gpt-4-turbo-and-gpt-4

For models after instruction-tuning, we do not
apply chat templates except for TruthfulQA, as
model outputs tend to be difficult to parse in chat
mode.

B.3 Post-Training Details

Dataset We synthesized the dataset for RQ2 with
a template-based method. Table 2 describes statis-
tics of dataset splits for each task.

Task Train Test

Intra-Token Probing 111,070 800

Character Count 20,775 200
N-th Character 31,241 200
N-th Character Reverse 31,316 200
Case Conversion 27,738 200

Inter-Token Probing 14,400 600

Common Substrings 4,800 200
Longest Common Substrings 4,800 200
Longest Common Subsequences 4,800 200

Table 2: The dataset size for training and testing.

C Details of Probing Task Construction

C.1 Token Structure Probing (RQ2)

To create a comprehensive test set for evaluating
the tokenization capabilities of LLMs, we followed
a systematic data synthesis process. Initially, we
manually collected a set of around 300 words from
the web, ensuring a diverse representation of word
structures. This collection included words with
common suffixes, prefixes, and varying lengths to
cover a broad range of token structures.

Next, we defined a set of rules to create tasks
for both intra-token and inter-token evaluations.
These rules were designed to test different aspects
of tokenization, such as character counting, charac-
ter identification, case conversion, and identifying
common substrings and subsequences.

Then we generated the probing tasks. For intra-
token evaluations, we created tasks like Character
Count (CC), N -th Character (NC), N -th Character
Reverse (NCR), and Case Conversion (CCV). For
inter-token evaluations, we developed tasks such as
Common Substrings (CS), Longest Common Sub-
strings (LCS), and Longest Common Subsequences
(LCSeq). Each task was carefully crafted to test
the model’s ability to understand and manipulate
token structures at various levels.
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C.2 Typographical Variation Task (RQ3)

Task Test

GSM8k 1,319
MMLU 14,042
TruthfulQA 817
HumanEval 164

Table 3: Dataset statistics of typographical variation
tasks (RQ3).

To thoroughly evaluate the typographical varia-
tion (RQ3), we conduct corruption to the questions
of several benchmark datasets’ test split and keep
answers intact. Details of evaluation dataset are
summarized at Table 3.

Permutation For permutation task, we randomly
shuffle tokens or characters within an n-gram range
with a 50% probability. We evaluate by using n-
gram range from 2 to 5, in which various n-gram
levels could assess the model’s performance under
varying degrees of corruption.

Noise Injection We consider three kinds of noise
that commonly encountered by humans: insertion
(10%), deletion (10%), and replacement (10%). For
insertion, we choose a token or character from the
current n-gram under 50% circumstances. Other-
wise, we randomly select a token or character from
the whole vocabulary (token or character) and add
it to a random position.

When performing replacing, we replace a token
or character in the current n-gram with a token or
character randomly selected from the whole vocab-
ulary.

Character-Level We performed character-level
permutation within word boundaries, ensuring that
the positions of punctuation marks or spaces re-
mained unchanged after permutation. Even when
there were not enough characters to form a com-
plete n-gram, permutation was still applied. We
ignore word boundaries when injecting character-
level noise. Figure 9 illustrates our character-level
corruption approach using a 5-gram granularity.

Token-Level We converted the input prompts
into tokens using tokenizers from different model
families. Corruption was then applied within an
n-gram range, without regard to word boundaries.
This approach simulates token-level typographical

variations, challenging the models to handle disrup-
tions at the token level. Figure 10 gives an example
of how we apply such variations to an encoded
prompt.

D Detailed Results of BPE-dropout
Post-Training

The results, as shown in Figure 8, illustrate the ef-
fect of BPE-dropout on EM scores across seven
tasks (CS, LCSeq, CCV, CC, NC, LCS, NCR) un-
der various post-training conditions (0-shot, 1-shot,
2-shot, and 3-shot) with dropout rates ranging from
0.0 to 0.8.

We observe that moderate dropout rates (0.2 to
0.4) appear to improve the convergence of EM
scores across all tasks, particularly in the zero-shot
setting. This indicates that a certain level of vari-
ability introduced by dropout can help the model
generalize better when no additional examples are
provided. In the 1-shot, 2-shot, and 3-shot settings,
moderate dropout rates contribute to stabilizing per-
formance, suggesting that this level of dropout in-
troduces useful regularization without significantly
compromising token integrity.

It is evident that higher dropout rates (0.6 and
0.8) lead to a noticeable decline in EM scores
across all tasks and post-training conditions. This
indicates that excessive dropout disrupts the tok-
enization process, resulting in subwords with fewer
merges that conflict with the original pre-training
of the models. Tasks such as NC, LCS, and NCR
show more significant drops in EM scores with
higher dropout rates, reflecting their complexity
and the challenge of maintaining token integrity
under substantial dropout.

Task-specific performance varies under differ-
ent dropout conditions. CS and CC tasks exhibit
high robustness to dropout, maintaining relatively
stable EM scores even at moderate dropout rates.
This suggests that the nature of these tasks makes
them less sensitive to the variability introduced by
dropout. LCSeq and CCV tasks show moderate
sensitivity to dropout, with a noticeable decline in
performance at higher dropout rates. NC, LCS, and
NCR tasks are more adversely affected by higher
dropout rates, indicating their reliance on stable
token sequences.

The positive effects of moderate BPE-dropout
include improved generalization and regularization.
Moderate dropout rates (0.2 to 0.4) introduce ben-
eficial variability, enhancing the model’s ability
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Raw text

def largest_divisor(n: int) -> int:
    """ For a given number n, find 
    the largest number that divides n evenly, smaller than n
    >>> largest_divisor(15)
    5
    """

Char-level
permutation

(5-gram)

def largest_divisor(n: int) -> int:
    """ For a given number n, fdin
    teh raglets number htat dividse n leenvy, asllmer than n
    >>> largest_divisor(15)
    5
    """

Char-level
noise

(5-gram)

def largest_divisor(n: int) -> int:
    """ For a gaiven numberwn, find 
    the largest number that diaides n evenly, smaller than n
    >>> laUgest_|divisor(15)
    H5
    """

Figure 9: Example of a char-level(5-gram) corrupted prompt from HumanEval. Red, Green, and Gray denote
replacement, insertion, and deletion respectively.

Raw tokens

Token-level
permutation

(3-gram)

[8100, 50777, 2380, 369, 17954, 1475, 6693, 323, 293, 2094, 55404, 1354, 369,
1077, 4885, 1475, 1938, 449, 3116, 13, 3005, 31878, 279, 27410, 520, 279, 20957,
6, 3157, 7446, 369, 400, 17, 824, 7878, 37085, 19151, 13]

[8100, 50777, 2380, 369, 17954, 1475, 6693, 293, 323, 2094, 55404, 1354, 369,
1077, 4885, 1475, 1938, 449, 3116, 13, 3005, 279, 31878, 27410, 520, 279, 20957,
6, 3157, 7446, 369, 400, 17, 824, 7878, 37085, 13, 19151]

Token-level
noise

(3-gram)

[8100, 50777, 2380, 412, 17954, 1475, 6693, 323, 293, 2094, 4124, 55404, 1354, 369,
1077, 4885, 1475, 1938, 449, 75316, 13, 3005, 31878, 279, 27410, 520, 279, 20957, 6,
3157, 7446, 369, 400, 6134, 17, 824, 7878, 37085, 19151, 13]

Figure 10: Example of a token-level(tri-gram) corrupted prompt from GSM8K. Red, Green, and Gray denote
replacement, insertion, and deletion respectively.

to generalize, particularly in zero-shot scenarios
where the model must rely solely on its pre-trained
knowledge without additional examples. BPE-
dropout acts as a regularizer, preventing the model
from overfitting to specific token sequences seen
during pre-training. This is especially useful in low-
resource settings (e.g., 0-shot and 1-shot) where

overfitting can be a significant concern.
However, challenges arise with high dropout

rates. Higher dropout rates lead to subwords with
fewer merges, deviating from the token sequences
the model encountered during pre-training. This
disruption results in poorer performance, as the
model struggles to reconcile the altered tokeniza-

1598



tion with its pre-trained representations. More com-
plex tasks (NC, LCS, NCR) suffer more from high
dropout rates, highlighting the need for careful tun-
ing of dropout rates based on task complexity and
tokenization stability requirements.

The findings suggest that there is an optimal
range for BPE-dropout rates that balances the ben-
efits of regularization and improved generalization
with the need to maintain token integrity. Prac-
titioners should consider moderate dropout rates
to leverage the positive effects while avoiding the
pitfalls of excessive dropout. Different tasks ex-
hibit varying sensitivities to dropout, underscoring
the importance of task-specific dropout tuning to
achieve the best performance outcomes.

E Additional Analysis

E.1 Impact of Typographical Variations on
Sequence Length
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Figure 11: Scatter plots showing the positive correla-
tion between token lengths before and after introducing
typographical errors on MMLU and GSM8K, varying
n-gram settings (2, 3, or 5). The x-axis represents the
original token length, and the y-axis represents token
length after adding errors.

Figure 11 shows a strong positive correlation be-
tween token lengths before and after introducing
typographical errors across different tasks (GSM8K
and MMLU) and n-gram settings (2, 3, 5). We ob-
serve that token lengths after introducing errors are
proportional to their original lengths. Besides, both
GSM8k and MMLU tasks exhibit similar patterns,
and the n-gram settings (2, 3, 5) do not significantly
alter this relationship. Most interestingly, the slope
for reorder errors is relatively larger than for noise
errors, indicating that reorder errors tend to re-
sult in a slightly greater increase in token length
compared to noise errors.

E.2 Compositional Challenges in Token
Embeddings

Figure 1 illustrates the compositional challenges
faced by existing LLMs when handling subword
units. Specifically, it presents cosine similarities
and angular differences between embeddings of
original words and their subword components.

In Figure 1(a), we observe the word “assign-
ment” and its subword components “assign” and
“ment”. The cosine similarity between the com-
posite embedding “assign + ment” and the original
word "assignment" is relatively low at 0.21, with
a significant angular difference of 78.16 degrees.
This substantial disparity indicates that the learned
token embeddings fail to capture the surface form
composition accurately. The model does not rec-
ognize that “assign” combined with “ment” should
semantically align closely with “assignment”.

Similarly, Figure 1(b) shows the word “import”
and its subword components “im” and “port”. Here,
the cosine similarity between “im + port” and “im-
port” is 0.13, and the angular difference is still no-
table at 82.47 degrees. This suggests that while the
model captures some compositional aspects, it still
struggles to fully integrate subword information to
match the original word’s embedding perfectly.

These observations highlight a critical limitation
of existing LLMs: their learned token embeddings
do not adequately capture the surface form com-
position. The inability to effectively combine sub-
word units to represent the full word’s meaning
undermines the model’s overall understanding and
processing capabilities.
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