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Abstract

Medical entity disambiguation (MED) aims to
ground medical mentions in text with ontolog-
ical entities in knowledge bases (KBs). A no-
table challenge of MED is the long medical
text usually contains multiple entities’ men-
tions with intricate correlations. However, lim-
ited by computation overhead, many existing
methods consider only a single candidate en-
tity mention during the disambiguation process.
As such, they focus only on local MED op-
timal while ignoring the sole-mention disam-
biguation possibly boosted by richer context
from other mentions’ disambiguating processes
– missing global optimal on entity combination
in the text. Motivated by this, we propose a
new approach called Extractive Medical Entity
Disambiguation with Memory Mechanism and
Memorized Entity Information (M3E). Specifi-
cally, we reformulate MED as a text extraction
task, which simultaneously accepts the con-
text of medical mentions, all possible candidate
entities, and entity definitions, and it is then
trained to extract the text span corresponding
to the correct entity. Upon our new formula-
tion, 1) to alleviate the computation overhead
from the enriched context, we devise a mem-
ory mechanism module that performs memory
caching, retrieval, fusion and cross-network
residual; and 2) to utilize the disambiguation
clues from other mentions, we design an aux-
iliary disambiguation module that employs a
gating mechanism to assist the disambiguation
of remaining mentions. Extensive experiments
on two benchmark datasets demonstrate the su-
periority of M3E over the state-of-the-art MED
methods on all metrics1.

1 Introduction

Associating medical mentions in a given biomed-
ical text with their corresponding correct entities

* Corresponding author
1The source code and datasets of this paper can be obtained

from https://github.com/Stubborn-z/MMME.
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Figure 1: (a) When encountering the medical mention “in-
sulinum” in the sentence, humans will simultaneously consider
the context of mention, all possible candidate entities such as
“insulin”, “Cy5-insulin”, and the semantic knowledge of these
entities to determine the correct entity “insulin”. (b) Once
the medical mention “Insulinum” is identified as “insulin”,
humans will utilize it as semantic clues to further infer the
entity of the mention “DM” as “diabetes mellitus”.

from a reference knowledge base (KB) is a his-
torical and challenging task in natural language
processing (NLP) and biomedical domains (French
and McInnes, 2023; Zhu et al., 2023; Kartchner
et al., 2023), formally known as medical entity
disambiguation (MED). For instance, consider the
following sentence: “Insulinum is an important fac-
tor in the treatment of DM”. The medical mention
“DM” could refer to the entity “diabetes mellitus”
or “diabetic microangiopathy” in UMLS (Boden-
reider, 2004). The MED system should accurately
map the mention “DM” to the corresponding entity
“diabetes mellitus”. In addition, MED has extensive
applications in diverse downstream tasks of med-
ical NLP, including medical question answering
(Bae et al., 2024), medical dialogue (Valizadeh and
Parde, 2022; Priya et al., 2023), medical informa-
tion extraction (Landolsi et al., 2023).

In recent years, a series of disambiguation meth-
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ods have been proposed in the literature of deep
representation learning. They can be roughly cat-
egorized into matching and generative MED, im-
proving benchmark performance in a row. First,
MED was defined as a matching problem between
medical mentions and candidate entities. As such,
some works (Zhu et al., 2020; Lu et al., 2024) uti-
lized dual encoders to separately encode medical
mentions and candidate entities, adopting attention
mechanisms to enhance the interaction between
them. However, these methods only consider a sin-
gle candidate entity for a medical mention and do
not fully utilize semantic knowledge in KBs. To
mitigate this, another research line presents gen-
erative MED methods(Yuan et al., 2022a,b) with
sacrifice of efficiency, which utilize generative pre-
trained language models, inputting medical men-
tions with context and outputting corresponding
entities through pre-training and fine-tuning.

Nonetheless, these generative MED methods
still suffer from a lack of context information as
they only consider the context of the current med-
ical mention, while ignoring richer context from
other mentions’ disambiguating processes. For ex-
ample, as shown in Figure 1(a), when encountering
a medical mention in a sentence, humans simul-
taneously consider the context of the mention, all
possible candidates and the semantic knowledge
of entities, focusing on global information to com-
prehensively understand the whole context and de-
termine the correct entity. What’s worse, these
methods usually disambiguate each medical men-
tion individually without considering the semantic
clues when disambiguating other entities. As such,
they focus only on local MED optimization, over-
looking the potential benefits of richer context from
the disambiguation processes of other mentions.
This results in missing the global optimization of
entity combinations within the text. Continue the
example above: as depicted in Figure 1(b), humans
utilize the memorized entity information as dis-
ambiguation clues to further infer the remaining
medical mentions. Therefore, the disambiguation
pattern of existing MED methods is inconsistent
with human cognitive behaviors.

Inspired by the extractive entity disambiguation
in the general domain (Barba et al., 2022) and the
human cognitive behaviors in Figure 1, we pro-
pose a new paradigm that reformulates MED as a
medical text extraction task. Unlike previous medi-
cal entity disambiguation methods, we introduce a
memory mechanism module to alleviate the compu-

tational burden of our newly formulated MED task,
enabling the model to simultaneously consider the
context of medical mentions, all possible candidate
entities and the semantic knowledge of candidates
during the disambiguation process. Additionally,
we propose an auxiliary disambiguation module
that leverages the semantic disambiguation clues
from memorized entities, i.e., the richer knowledge
from the disambiguation process of other mentions
to assist in disambiguating the remaining medical
mentions. Our approach achieves globally opti-
mal disambiguation by focusing on global MED
optimization

Our main contributions are three-fold:

• We reformulate MED as an extractive dis-
ambiguation task for both effective and effi-
cient purposes, leading to a new MED method
called extractive medical entity disambigua-
tion with memory mechanism and memorized
entity information (M3E).

• To preserve the efficiency with enriched con-
text, we propose a memory mechanism mod-
ule that performs memory caching, retrieval
and fusion to alleviate computational burdens
for our newly formulated MED. This facili-
tates the proposed auxiliary disambiguation
module that leverages semantic disambigua-
tion clues from memorized entities to assist in
disambiguating the remaining mentions.

• We conduct experiments on two public bench-
mark datasets and verify the superiority of our
approach through comparisons with represen-
tative and existing state-of-the-art works.

2 Related Work

Matching MED. Matching MED methods treat
MED as a matching problem, which usually en-
codes medical mentions and candidate entities sep-
arately and then evaluates their matching score to
predict correct entities. Early methods (Francis-
Landau et al., 2016; Deng et al., 2019) employ
CNN (Kim, 2014) to capture the semantic sim-
ilarity between source documents and candidate
entities. However, they often focus solely on the
representations of contexts and entities, neglecting
to leverage the knowledge from medical KBs and
overlooking the modeling of interactions between
medical mentions and entities. To address these
deficiencies, LATTE (Zhu et al., 2020) introduces
latent type knowledge as auxiliary supervision and
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employs a cross-attention mechanism to model in-
trinsical interactions. Although simple and effec-
tive, it overlooks fine-grained entity-entity interac-
tions. Prompt-BioEL(Xu et al., 2023) first employs
a bi-encoder initialized with SAPBERT (Liu et al.,
2021) to jointly learn representations of medical
mentions and candidate entities to retrieve poten-
tial candidates and then adopts a re-ranking model
based on prompt tuning with entity-entity interac-
tions to identify the correct entity.

Generative MED. Generative MED methods
usually utilize generative language models pre-
trained on various medical corpora as fundamental
architectures, and finetune them to infer correct en-
tities of medical mentions. For example, BioBART
(Yuan et al., 2022a) is a biomedical autoregressive
generative language model pre-trained on PubMed
abstracts, which is further fine-tuned on the medi-
cal entity disambiguation task, yielding promising
results. GenBioEL (Yuan et al., 2022b) first pro-
poses KB-guided pre-training to inject synonyms
and definition knowledge into the generative lan-
guage model and then proposes synonym-aware
fine-tuning to select correct entities for mentions.

3 Methodology

3.1 Task Definition

Inspired by recent trends of entity disambiguation
in the general domain (Barba et al., 2022), we
formulate MED as a medical text extraction task:
given a context with medical mentions, all possible
candidate entities along with their definitions from
medical KBs, a model has to extract the text span
corresponding to the correct entity’s definition. For-
mally, let C = {w1, . . . , wl} be a medical context
consisting of l words, which includes N ambigu-
ous mentions, denoted as M = {m1, . . . ,mN}.
For the i-th mention mi in M, according to medi-
cal KBs, its potential candidate entities and their
definitions are expressed as E = {e1, . . . , en},
D = {d1, . . . , dn}, where n represents the number
of candidate entities. We concatenate the medical
context C, all possible candidate entities E and en-
tity definitions D together, and train the model to
extract the text span [ie, je] corresponding to the
correct entity of the mention mi.

3.2 Model Architecture

The overall architecture of the proposed M3E
model is shown in Figure 2, comprising four core

components: knowledge augmenting module, mem-
ory mechanism module, auxiliary disambiguation
module and prediction module. First, to compre-
hensively understand the medical text, the knowl-
edge augmenting module simultaneously accepts
the context of medical mentions, all potential can-
didate entities, along with their definitions from
UMLS. This inevitably increases the input length.
Then, to alleviate the computational burdens caused
by the increased input length, the memory mecha-
nism module performs memory caching, retrieval,
fusion and cross-network residual. Subsequently,
the auxiliary disambiguation module employs a
gating mechanism to leverage the memorized en-
tities as semantic clues to assist in disambiguating
remaining medical mentions. Finally, the predic-
tion module extracts the text span corresponding to
the correct entity of the target mention. Next, we
will describe these four modules in detail.

3.3 Knowledge Augmenting Module

Some recent works have verified that semantic
knowledge in UMLS is crucial for enhancing the
representation of medical mentions and candidate
entities (Zhu et al., 2020; Zhang et al., 2022).
Therefore, in order to mimic human cognitive be-
havior shown in Figure 1(a) and provide sufficient
semantic knowledge to our model, we devise a
knowledge augmenting module to simultaneously
accept the context of medical mentions, all poten-
tial candidate entities along with their definitions
from UMLS. In detail, we augment candidate enti-
ties by incorporating the definition of entities from
UMLS, and then concatenate the context of med-
ical mentions, all possible candidate entities, and
their entity definitions together as the input of our
model, described as:

I = <s> w1 . . . <t> mi </t> . . . wl </x>

e1, d1 . . . en, dn </s>
(1)

where <s> and </s> are the special symbols that
surround the entire input, <t> and </t> are the
special symbols that surround the target medical
mention mi, and </x> is a special symbol that sep-
arates the context with candidate entities and their
definitions.

3.4 Memory Mechanism Module

In order to efficiently encode the input text I , we
employ a medical pre-trained language model, as
it excels in understanding medical text at a deeper
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...The patient, diagnosed with pancreatic cancer,
was prescribed insulinum to manage DM resulting
from the cancer's impact on the pancreas... 

Transformer Layer

Embedding Layer
G

ate
M

echanism

Linear Layer

Mention with Context
 Candidate Entity 1 &

Definition 1

Memory Mechanism Module

 Candidate Entity 2 &
Definition 2

 Candidate Entity 3 &
Definition 3

 Candidate Entity 

Softm
ax

Prediction Module

Softm
ax

O
utput

Definition

Auxiliary Disambiguation Module

Identified  Entity

Definition of Identified Entity

Knowledge Augmenting Module

... +

Token-To-Chunk
Retrieval

Memory Fusion

N
Transformer Layer Cross-Network Residual

Retrieval-based Fusion LayerRetrieval-based Fusion Layer
K

V

Cache Repository Q

Figure 2: The architecture of the proposed M3E model, which consists of four core modules: (1) knowledge
augmenting module, which simultaneously accepts the context of medical mentions, all potential candidate entities
along with their definitions from UMLS; (2) memory mechanism module, which performs memory caching, retrieval,
fusion and cross-network residual connections to alleviate the computational burdens; (3) auxiliary disambiguation
module, which employs a gate mechanism to leverage memorized entities as semantic clues to disambiguate the
remaining medical mentions; (4) prediction module, which extracts the text span corresponding to the correct entity
of the target mention.

level and performs well in long sequence mod-
eling. Nevertheless, as we simultaneously feed
the context of medical mentions, and all poten-
tial candidate entities along with their definitions
from UMLS into our model, the length of the input
text increases significantly, resulting in substantial
memory requirements and computational burdens.
To address this challenge, drawing inspiration from
LongMem (Wang et al., 2023), we propose a mem-
ory mechanism module, which consists of memory
caching, retrieval, fusion and cross-network resid-
ual.

3.4.1 Memory Caching
As shown on the memory mechanism module in
Figure 2, we employ the memory embedding layer
to encode the input I and acquire the hidden state
representation H0

m:

H0
m = {h1

f , . . . ,h
u
f} = EmbeddingLayer(I) (2)

where H0
m ∈ Rd×u, d represents the dimension of

each hidden state and u represents the number of
hidden units. We freeze the pre-trained language
model, allowing the transformer layers to perform
forward passes without conducting any gradient
calculations after obtaining H0

m. During the for-
ward propagation of the model, the memory mech-
anism module cache the key-value pairs of self-
attention, which represent the context tokens (i.e.,

the current input context information) adjacent to
the current input token, into a cache repository for
memory caching. This process avoids recalculating
the same context information in each forward prop-
agation step, significantly reducing computational
redundancy.

3.4.2 Memory Retrieval
Subsequently, the retrieval-based fusion layer re-
trieves the relevant key-value pairs from the cache
repository through token-to-chunk retrieval. Specif-
ically, we divide the cache repository into a certain
number of chunks, with each chunk containing a
fixed number of attention key-value pairs. Mean
pooling is then conducted along the chunk size di-
mension for each chunk to generate a mean-pooled
vector for retrieval. Next, the dot product between
the query vector of the current input token and
the mean-pooled vector of each candidate chunk
is computed. Based on the dot product value, the
memory chunk most relevant to the current input
token is retrieved to prepare for subsequent fusion
operations. Further, the chunks of self-attention
key-value pairs are linearly projected to the atten-
tion matrices K, V through two weight matrices
WK , WV respectively.

K = WK(TokenToChunk(H0
m)) (3)

V = WV (TokenToChunk(H0
m)) (4)
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where TokenToChunk represents the above token-
to-chunk retrieval operation, which can greatly
speed up the retrieval process.

3.4.3 Memory Fusion

The retrieval-based fusion layer employs the atten-
tion mechanism to achieve memory fusion, which
enables each token to attend to both current con-
texts and retrieved memory contexts:

H1
fus = sigmoid(g) · (softmax(

Q ·KT

√
dk

)V)

+ (1− sigmoid(g)) ·H0
m

(5)

where H1
fus is the output of the first retrieval-based

fusion layer, g is a trainable gating vector, Q is
obtained by linearly projecting the H0

m through
the query matrix WQ, sigmoid and softmax are
activation function.

Following a single memory caching, retrieval
and fusion, it deletes the attention key-value pair
at the front of the queue and adds the current atten-
tion key-value pair to the tail of the queue. This
mechanism facilitates repository updates, ensuring
that the cache repository always preserves the latest
context for the current input.

3.4.4 Cross-network Residual

In order to leverage the knowledge from the frozen
pre-trained language model, we perform cross-
network residual connections between transformer
layers. Different from the residual operations in
LongMem (Wang et al., 2023), our memory mech-
anism module uses adjacent transformer layers for
residual connections, facilitating more comprehen-
sive knowledge transfer. Additionally, we do not
perform the concatenation operation as the most
relevant contextual information has been consid-
ered in the iterative fusion process. In this way, the
lightweight retrieval-based fusion layer achieves
fast convergence of knowledge transferred from
pre-trained parameters and can undergo continuous
training in an efficient manner:

H1
m = H1

fus + (H2
t −H1

t ) (6)

where H1
m is the memory representation obtained

through retrieval-based fusion process. H1
t and H2

t

represent the hidden state representation of the first
transformer layer and the second transformer layer,
respectively.

3.4.5 Iteration
The series of operations involved in the aforemen-
tioned retrieval-based fusion is formally defined as
the function fθ, as follows:

H1
m = fθ(H

0
m) (7)

We iterate the memory caching, retrieval, fusion
and cross-network residual connection process mul-
tiple times, allowing the model to focus on global
information and significantly alleviating the com-
putational overhead:

Hl
m = fθ(H

l−1
m ), ∀l ∈ [1, L] (8)

where Hl
m represents the memory representation

acquired through the l-th retrieval-based fusion. l
represents the number of memory retrieval fusion
processes. Finally, the final memory representa-
tion Hm is obtained via the memory mechanism
module.

3.5 Auxiliary Disambiguation Module
To mimic human cognitive behavior shown in Fig-
ure 1(b), we devise an auxiliary disambiguation
module that caches memorized entities and their
definitions in the disambiguation process of other
mentions to assist in disambiguating the remain-
ing medical mentions. Specifically, the auxiliary
disambiguation module caches the hidden state rep-
resentation Hide of the identified entities and entity
definitions after completing the preceding disam-
biguation:

Hide = {he1
ide,h

d1
ide, . . . ,h

ei
ide,h

di
ide} (9)

where ei is the i-th memorized entity, di is the i-th
entity definition. Subsequently, the final hidden
state representation is generated by concatenating
Hide and Hm together, and then passing through
GRU (Chung et al., 2014), described as:

H = GRU([Hide;Hm]) (10)

3.6 Prediction Module
The prediction module extracts the text span corre-
sponding to the correct entity of the target medical
mention. First, it employs a linear layer to perform
a linear transformation on H:

Z = WTH+ b

Zs = [Z11, . . . ,Z1n]

Ze = [Z21, . . . ,Z2n]

(11)
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where W ∈ Rd×2 and b ∈ R2 are trainable param-
eters. Zs and Ze represent the logits of each token,
indicating whether it is the start or the end of the
text span corresponding to the correct entity of the
target mention.

Subsequently, it feeds the logits of Zs and Ze

into softmax to obtain the probability distribution,
and then performs a product operation on the prob-
ability distributions of the start and end position
to generate the probability of the pair [ie, je], de-
scribed as:

P[ie] = softmax(Zs) (12)

P[je] = softmax(Ze) (13)

P[ie, je] = P[ie]×P[je] (14)

where P[ie], P[je] represent the probability that ie
is the correct starting position or je is the correct
ending position, respectively. P[ie, je] represents
the probability of a medical text span in the input
text starting at ie and ending at je (i.e., the prob-
ability that a medical mention corresponds to the
correct entity).

Finally, the prediction module outputs the pair
with the maximum probability score:

s = argmax(P[ie, je]) (15)

3.7 Training
We train the proposed M3E model by summing two
cross-entropy losses calculated at the start and end
position, described as:

Ls = −Zs
ie + log

n∑

v

exp(Zs
v) (16)

Le = −Ze
je + log

n∑

v

exp(Ze
v) (17)

L = Ls + Le (18)

where Ls and Le are the losses of the starting posi-
tion and the ending position of the candidate entity,
respectively. L is the total loss. Zs

ie
and Ze

je
are the

scores corresponding to the correct start and end
positions.

4 Experiment

4.1 Datasets and Baselines
We evaluate M3E using three public benchmark
datasets: MedMentions2, BC5CDR3 and NCBI

2https://github.com/chanzuckerberg/MedMentions
3https://www.ncbi.nlm.nih.gov/research/bionlp/Data/

Disease4. The details of the datasets are shown in
Appendix A.1.

To evaluate the performance of M3E, we com-
pare our method with representative methods as
well as state-of-the-art approaches. Detailed de-
scriptions of the baselines are provided in Ap-
pendix A.2.

4.2 Implementation Details

We implement the proposed M3E model using the
PyTorch framework and adopt BioBART (Yuan
et al., 2022a) as the base model. We also em-
ploy the base and large variants of pre-trained
weights from HuggingFace library, called M3Ebase

and M3Elarge. More implementation details are
provided in Appendix A.3.

4.3 Main Results

We compare our approach with representative and
state-of-the-art baselines. The experimental results
are summarized in Table 1. According to the table,
we have the following observations.

Firstly, among the Matching MED methods,
BIOSYN exhibits inferior performance compared
to later approaches. This discrepancy arises due
to subsequent methods incorporating additional
knowledge information from medical KBs and en-
hancing the interaction not only between medical
mentions and candidate entities but also between
entities. Among the Generative MED methods,
BART yields lower results compared to the latter
methods. This is because the subsequent methods
use a large amount of medical knowledge for pre-
training on medical corpora. The aforementioned
observations prove that integrating more semantic
information into the model is crucial for MED.

Secondly, on the three public benchmark
datasets, our M3E model consistently outperforms
all competitive baselines on all evaluation metrics.
The superiority of our M3E model can be attributed
to two key factors. On one hand, our model re-
formulates MED as a text extraction task, which
can simultaneously accept medical contexts, candi-
date entities and their definitions, comprehensively
understanding the context to judge the correct enti-
ties. On the other hand, our model utilizes a mem-
ory mechanism module to alleviate the model bur-
den due to increased input length, while leveraging
memorized entities to assist in disambiguating the
remaining mentions.

4https://www.ncbi.nlm.nih.gov/
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Model
MedMentions BC5CDR NCBI Disease

Precision Recall@1/@5 F1 Precision Recall@1/@5 F1 Precision Recall@1/@5 F1

M
at

ch
in

g
M

E
D BIOSYN (Sung et al., 2020) 67.12 66.42/77.50 68.49 70.10 68.84/82.75 72.21 74.61 77.98/82.10 72.53

LAATE (Zhu et al., 2020) 88.23 86.55/88.94 85.61 88.28 87.00/88.56 86.37 90.53 89.87/91.00 87.91
Zhu (Zhu et al., 2021) 69.52 68.14/80.41 67.48 88.29 88.01/89.33 87.10 89.85 90.12/92.03 88.14
Cross-Domain (Varma et al., 2021) 68.85 73.12/80.71 78.22 88.74 90.00/91.50 86.80 90.21 90.48/91.10 88.13
B-LBConA (Yang et al., 2023) 88.51 87.16/89.20 86.47 89.19 88.24/90.93 87.37 90.88 90.98/92.07 89.70
Prompt-BioEL (Xu et al., 2023) 89.16 86.85/88.67 87.65 90.27 91.26/92.20 88.63 91.11 91.38/92.00 91.46

G
en

er
at

iv
e

M
E

D

BARTbase (Lewis et al., 2020) 64.25 68.61/82.29 67.46 86.15 88.18/89.49 85.34 88.21 89.80/90.70 86.19
BARTlarge (Lewis et al., 2020) 68.16 70.00/82.85 68.14 88.21 89.47/90.60 85.83 89.15 90.61/91.00 88.52
BioBARTbase (Yuan et al., 2022a) 81.63 80.11/83.25 80.58 89.10 89.81/91.20 86.21 90.18 91.24/91.50 90.61
BioBARTlarge (Yuan et al., 2022a) 82.81 81.21/84.24 82.37 90.07 89.77/91.22 87.27 91.49 91.00/92.22 90.15
BioGPT (Luo et al., 2022) 81.96 80.82/82.51 81.46 89.20 89.84/91.85 86.38 89.90 91.01/92.26 88.42
ClinicalT5base (Lu et al., 2022) 81.18 80.13/82.50 80.89 89.44 90.71/91.39 85.80 90.12 91.21/91.89 88.40
ClinicalT5large (Lu et al., 2022) 83.94 80.54/83.00 82.05 90.51 90.88/92.11 85.08 91.44 91.09/92.25 89.71
GenBioEL (Yuan et al., 2022b) 88.56 88.19/89.54 87.74 91.14 91.08/92.30 88.64 92.23 92.82/93.00 91.27

O
ur M3Ebase 89.21 88.40/90.04 88.56 92.01 91.29/92.30 89.51 93.01 92.41/92.91 92.16

M3Elarge 89.60 88.87/90.14 88.71 92.26 91.43/92.39 89.70 93.15 93.18/93.30 92.28

Improvement(%) 1.04 0.68/0.6 0.97 0.92 0.35/0.09 1.06 1.22 0.36/0.31 1.01

Table 1: Performance on the MedMentions, BC5CDR and NCBI disease datasets in comparison with the SOTA
models.It is worth noting that we take the average of the 5 experimental performances as our final result. We mark
in bold the best scores and underline the suboptimal one. The improvement is calculated against the M3Elarge

and best-performing baseline (GenBioEL), and the difference in performance between M3Elarge and GenBioEL is
statistically significant (p < 0.01).

4.4 Ablation Study

To investigate the importance of each key com-
ponent of M3E, we perform an ablation study by
comparing the performance of M3E and that of
its variants. We consider the following variants:
i) M3E−de: It removes the definitions of entities
in the knowledge augmenting module, consider-
ing only the medical context of mentions and their
candidate entities; ii) M3E−Me: It removes the
memory mechanism module, relying solely on Bio-
BART to encode the long input text segments; iii)
M3E−Au: It removes the auxiliary disambiguation
module, disregarding the semantic clues associated
with the memorized entities. The experimental re-
sults are presented in Figure 3, and several notewor-
thy observations can be drawn. Firstly, comparing
M3E with M3E−de verifies the importance of entity
definitions, as the latter performs inferiorly. Sec-
ondly, comparing M3E with M3E−Me highlights
the indispensability of the memory mechanism
module, as the latter exhibit inferior performance.
Lastly, comparing M3E with M3E−Au reveals a sig-
nificant performance gap, emphasizing the crucial
role of memorized entities in providing important
clues for disambiguating the remaining mentions.

4.5 Fine-grained Results on
Frequency-specific Entities

To investigate the performance of our model on the
entities with different frequencies, we conduct a
fine-grained analysis on frequency-specific entities.

We create three subsets5 from MedMentions and
BC5CDR datasets based on entity frequencies: i)
MFE, which contains all the instances in the test
set that the target medical mention is associated
with its most frequent entity in the training corpus;
ii) LFE, which contains all the instances in the test
set that the target medical mention is associated
with its least frequent entity in the training corpus;
iii) Unseen, which contains all the instances in the
test set that the target medical mention is never
seen in the training corpus.

Model MedMentions BC5CDR NCBI

MFE LFE Unseen MFE LFE Unseen MFE LFE Unseen

GenBioEL 93.61 50.15 78.00 93.40 52.15 81.10 93.40 52.15 81.10
M3Ebase 93.82 56.16 82.61 94.21 56.80 83.44 94.21 56.80 83.44
M3Elarge 93.82 58.53 84.39 95.68 59.38 88.12 94.21 57.24 86.32

Table 2: F1 score of GenBioEL, M3Ebase and M3Elarge

on MFE, LFE and Unseen datasets created from Men-
Mentions, BC5CDR and NCBI respectively. The best
scores are marked in bold.

In Table 2, we report the results of the three
best-performing models: GenBioEL, M3Ebase and
M3Elarge. Firstly, it is observed that the F1 score of
all three models exceeds 93 on the MFE dataset, in-
dicating their excellent disambiguation abilities on
frequent entities. Secondly, M3Ebase and M3Elarge

perform significantly better than GenBioEL on
both LFE and Unseen datasets. Specifically, on

5The manually created dataset is available at
https://github.com/Stubborn-z/MMME/data/subsets/.
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Figure 3: Ablation experimental results on MedMentions (left), BC5CDR (middle) and NCBI (right) datasets.

the LFE and Unseen datasets, M3Elarge achieves
approximately 8 and 5 points higher F1 scores than
GenBioEL, respectively. This highlights the strong
generalization ability of our proposed method,
demonstrating its effectiveness in handling rare or
unseen candidate entities.

4.6 Complexity and Efficiency Analysis

To investigate the complexity of our model, we
conduct a fair comparison of its parameter size and
memory requirement with existing methods on the
MedMentions dataset. To analyze the efficiency,
we compare its training and inference time with
existing methods on the three benchmark datasets.
The detailed experiments are provided in Appendix
A.4.

4.7 Error Analysis

To investigate the proposed M3E model further and
gain insights for future work, we conduct an error
analysis on the test sets across three datasets and
discover errors caused by insufficient fine-grained
knowledge.

Input
...specific cytotoxic effectors as a potential remedy for...
effector T cells refer to cells, a subset of T lymphocyte...
cytotoxic effectors refer to cells or molecules that... ...

Gold Entity effector T cells

Predicted Entity cytotoxic effector

Table 3: A representative instance for error analysis. We
mark the medical mention in , the golden entity and its
definition in / , the predicted entity and its definition
in / .

According to the statistical results, out of the
5714 medical mentions of the test set, M3E makes
incorrect disambiguation on 241 instances. We
conduct a detailed analysis on some representative
instances. As shown in Table 3, we observe that

the two candidate entities related to the medical
mention “effectors”, namely “effector T cells” and

“cytotoxic effector”, share similar meanings and en-
tity definitions, leading to our model being unable
to utilize sufficient differentiation information for
accurate disambiguation. To this end, we strongly
believe that future research might benefit from fo-
cusing on enriching entities’ information by adding
fine-grained knowledge.

5 Conclusion

In this paper, we propose a novel MED frame-
work called extractive medical entity disambigua-
tion with Memory Mechanism and Memorized En-
tity Information (M3E). Our new paradigm refor-
mulates MED as a text extraction task, which si-
multaneously accepts the context of mentions, all
possible candidate entities and entity definitions.
To alleviate the computational burden caused by the
increased input length, we devise a memory mecha-
nism module, which performs memory caching, re-
trieval, fusion, and cross-network residual connec-
tions to enhance the model’s efficiency by captur-
ing and utilizing global context information more
effectively. Additionally, we implement an auxil-
iary disambiguation module, which leverages mem-
orized entities’ semantic clues in the disambigua-
tion process of other mentions, aiding in the dis-
ambiguation of the remaining mentions. Therefore,
our method achieves globally optimal disambigua-
tion by emphasizing global MED optimization. Ex-
tensive experimental results on three public bench-
mark datasets demonstrate that M3E consistently
outperforms the representative and state-of-the-art
MED baselines. Notably, our model achieves an
F1 score approximately 1 point higher than the
suboptimal baseline on all datasets, showing great
potential for further exploration.
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Limitations

Although our work is the first to adopt the extrac-
tive medical entity disambiguation paradigm and
has achieved great success, significantly improving
performance compared to matching and genera-
tive disambiguation methods, it has the following
limitations. First, our model still struggles to dis-
tinguish between similar entities, whose ability to
capture subtle difference between candidate entities
remains limited. Second, due to budget constraints,
we have not conducted comparative experiments
with large-scale medical language models. There-
fore, improving the model’s ability to distinguish
subtle differences between similar entities and ex-
ploring the impact of large medical language mod-
els on MED tasks are very interesting directions
for future work.

Ethical Statement

Medical entity disambiguation (MED) is essential
in natural language processing and biomedical do-
mains. It supports various downstream medical
applications, aiding in medical-related decision-
making, enhancing medical information extraction,
and improving the accuracy of medical question an-
swering. We believe that the potential for misuse of
this MED technology is low. Our technology is de-
veloped using publicly available datasets, adhering
the data use guidelines and ensuring no copyright
infringement.
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A Appendix

A.1 Dataset Summary and Statistics
• MedMentions: It is the largest biomedi-

cal entity disambiguation dataset, consisting
of 4,392 abstracts from PubMed, with over
350,000 mentions linked to UMLS concepts
(Mohan and Li, 2019).

• BC5CDR: It consists of 1,500 articles from
PubMed, with 4,409 annotated chemicals and
5,818 diseases, containing over 28,000 men-
tions linked to MeSH concepts. In addition,
we map these mentions to UMLS concepts (Li
et al., 2016).

• NCBI Disease: It provides manually anno-
tated disease mentions in each document, with
each Concept Unique Identifier (CUI) mapped
into the MEDIC dictionary (Davis et al.,
2012). Following the work of BIOSYN (Sung
et al., 2020), we adopt the consistent version
of MEDIC, which contains 11,915 CUIs and
71,923 synonyms from the MeSH and OMIM
ontologies (Doğan et al., 2014). Additionally,
we map these mentions to UMLS concepts.

The detailed statistical information is provided in
Table 4.

Dataset Statistics Train Dev Test

MedMentions
#Documents 2,635 878 879
#Mentions 211,029 71,062 70,405
#Entities 20,830 6,941 6,953

BC5CDR
#Documents 900 300 300
#Mentions 17,135 5,710 5,714
#Entities 5,489 1,830 1,830

NCBI Disease
#Documents 592 100 100
#Mentions 5,134 787 960
#Entities 1,924 480 482

Table 4: Statistics of experimental datasets.

A.2 Descriptions of Baselines
We category baselines into two groups: matching
MED and generative MED.

A.2.1 Matching MED
• BIOSYN: It uses iterative candidate selection

together with synonym marginalization tech-
niques to optimize the representation of medi-
cal entity (Sung et al., 2020).

• LATTE: It introduces latent type knowledge
and employs a cross-attention mechanism to
model interactions betweenmentions and enti-
ties (Zhu et al., 2020).

• Zhu: It proposes a two-stage algorithm to
enhance entity representations using prompt
learning and leveraging contextual knowledge
(Zhu et al., 2021).

• B-LBConA: It uses Bio-LinkBERT to encode
medical mentions and entities, while using
a bidirectional attention mechanism to cap-
ture the interactive information between them
(Yang et al., 2023).

• Cross-Domain: It introduces a cross-domain
data integration method to transfer general
knowledge into the medical domain (Varma
et al., 2021).

• Prompt-BioEL: It proposes a prompt
learning-based re-ranking method that simul-
taneously represents the context and all candi-
date entities (Xu et al., 2023).

A.2.2 Generative MED
• BART, BioBART, BioGPT and ClinicalT5:

They are all representative medical pretrained
language model, which are adopted as base-
lines and are finetuned on our datasets (Lewis
et al., 2020; Yuan et al., 2022a; Luo et al.,
2022; Lu et al., 2022).

• GenBioEL: It introduces the injection of syn-
onyms and definition knowledge into the pre-
training and finetuning of biomedical lan-
guage models (Yuan et al., 2022b).

A.3 Experiment Parameters
To ensure a fair comparison between our model
and the baselines, we finetuned the parameters of
all models consistently on the validation dataset.
Specifically, we initialized the parameters of each
baseline model according to the experimental set-
tings from the original paper, and then finetuned
them on the MED validation dataset to achieve op-
timal performance. Similar to the previous work of
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EXtEnD (Barba et al., 2022), we use the output of
the last decoder to represent the input tokens and
calculate the probability distributions of the start
and end tokens. Additionally, we finetune M3E
with the RAdam (Liu et al., 2020) optimizer with a
learning rate set to 2e−5 for at most 200,000 steps,
and a gradient clipping of 1.0 (He et al., 2020). We
employ 10 steps of gradient accumulation and a
batch size consisting of 1024 tokens. We evaluate
the model’s performance on the validation dataset
every 2000 steps, enforcing patience of 15 evalua-
tion rounds. Our model was trained for 10 epochs
using a GeForce RTX 3090 GPU, which required
around 21 hours on the MedMentions dataset and
approximately 6 hours on the BC5CDR dataset.

A.4 Complexity and Efficiency Analysis
To investigate the complexity of our model, we
conduct a fair comparison of its parameter size
and memory requirement with the best-performing
baselines (i.e., Prompt-BioEL and GenBioEL) on
the MedMentions dataset. Table 5 depicts experi-
mental results.

Method Parameter Size (M) Memory Requirement (GB)
Prompt-BioEL 242 27.1
GenBioEL 416 36.2
M3Elarge 410 30.2

Table 5: Parameter Size and Memory Requirement (GB)
of different methods on the MedMentions dataset.

According to Table 5, as the representative of
the Matching MED baselines, Prompt-BioEL re-
quires the least memory with the smallest param-
eter size. Although Prompt-BioEL shows advan-
tages in model complexity, its performance is in-
ferior to generative methods. Both GenBioEL
and M3Elarge are generative MED methods, which
can outperform Prompt-BioEL. Compared to Gen-
BioEL, our M3Elarge model achieves better perfor-
mance with less parameters and memory require-
ment. This improvement is attributed to the mem-
ory mechanism module we proposed, which effec-
tively alleviates the model’s computational burden.

Additionally, we evaluate the efficiency of our
M3E model by comparing its training and inference
times with existing methods on three benchmark
datasets. The experimental results are reported
in Figure 4. We have the following observations.
Firstly, as the number of input tokens increases,
the training and inference times of Prompt-BioEL,
GenBioEL, and M3Elarge increase to varying de-
grees across the three datasets. This is due to
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Figure 4: Efficiency comparison run on MedMentions,
BC5CDR and NCBI dataset.

the greater computational burdens required as in-
put length grows. Secondly, compared to Prompt-
BioEL and GenBioEL, our M3Elarge model ex-
hibits a stable linear growth in training and in-
ference times as the number of tokens increases,
whereas Prompt-BioEL and GenBioEL tend to
show a quadratic growth trend, demonstrating sig-
nification efficiency advantages of M3E. This im-
provement is attributed to the memory mechanism
module we proposed, which eases the model’s bur-
den through retrieval fusion operations and acceler-
ates both training and inference. Lastly, once the
number of input tokens reaches 1k, Prompt-BioEL
and GenBioEL cannot function on the experimen-
tal workstation with a single GeForce RTX 3090
GPU, whereas our M3Elarge model continues to
run normally with only limited increases in train-
ing and inference times. This verifies that com-
pared to Prompt-BioEL and GenBioEL, our model
supports longer input token lengths, thanks to its
robust memory mechanism module.

13822


