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Abstract

Story video-text alignment, a core task in com-
putational story understanding, aims to align
video clips with corresponding sentences in
their descriptions. However, progress on the
task has been held back by the scarcity of man-
ually annotated video-text correspondence and
the heavy concentration on English narrations
of Hollywood movies. To address these issues,
in this paper, we construct a large-scale multi-
lingual video story dataset named Multilingual
Synopses of Movie Narratives (M-SYMON),
containing 13,166 movie summary videos from
7 languages, as well as manual annotation
of fine-grained video-text correspondences for
101.5 hours of video. Training on the human
annotated data from M-SYMON outperforms
the SOTA methods by 15.7 and 16.2 percent-
age points on Clip Accuracy and Sentence IoU
scores, respectively, demonstrating the effec-
tiveness of the annotations. As benchmarks
for future research, we create 6 baseline ap-
proaches with different multilingual training
strategies, compare their performance in both
intra-lingual and cross-lingual setups, exempli-
fying the challenges of multilingual video-text
alignment. The dataset is released at: https:
//github.com/insundaycathy/M-SyMoN

1 Introduction

Computational story understanding aims to em-
power AI systems with the ability to delve into the
intricacies of diverse stories, unlocking their deep
semantics such as character motivations and inten-
tions (Emelin et al., 2021; Rashkin et al., 2018),
event structures (Chambers and Jurafsky, 2008; Du
et al., 2021), and social relationships among story
characters (Elson et al., 2010; Chaturvedi et al.,
2016; Kim and Klinger, 2019). In recent years,
computation story understanding has garnered sig-
nificant research interest (Dong et al., 2023; Sang
et al., 2022; Andrus et al., 2022; Xu et al., 2022;
Han et al., 2023) and many story understanding

tasks (Wu and Krahenbuhl, 2021; Choi et al., 2021;
Gu et al., 2023) have emerged.

Story video-text alignment is a fundamental task
of computational story understanding, which aims
to find the best correspondence between a sequence
of video clips and a sequence of sentences (see an
alignment example in Figure 1). Different from tra-
ditional video-text retrieval that relies on keyword
or temporal cue matching (Wang et al., 2021b),
story video-text alignment requires various story
understanding abilities such as causal chain reason-
ing, mental state description, and long-range con-
text understanding (Sun et al., 2022). Establishing
such video-text correspondence will facilitate many
applications such as text-to-video generation (Liu
et al., 2019; Balaji et al., 2019), and visual story
generation (Huang et al., 2019). Thus, the story
video-text alignment task has recently attracted in-
creasing attention (Dogan et al., 2018; Wang et al.,
2021a; Sun et al., 2024).

However, a major obstacle of this task stems
from the scarcity of annotated data, as it is costly
and time-consuming to manually annotate sentence-
level alignments between text and clip sequences.
The story understanding datasets used in previous
studies are limited for several reasons. First, al-
though the Large Scale Movie Description Chal-
lenge (LSMDC) dataset (Rohrbach et al., 2017)
manually aligns 158 hours of movies and audio
descriptions, it only considers one-to-one match-
ing between movie clips and audio descriptions
and its audio descriptions are designed for visually
impaired audiences, containing excessive details.
Second, the YouTube Movie Summary (YMS)
dataset (Dogan et al., 2018) is small and only con-
tains 6.7 hours of video and texts, and thus is typ-
ically employed for video-text alignment evalua-
tion. Lastly, Hollywood movies and English narra-
tions are dominant in existing story understanding
datasets (Huang et al., 2020; Soldan et al., 2022;
Sun et al., 2022; Lu et al., 2023), neglecting the
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है िक कई िवमान या तो गु� �प से गायब
हो गए ह� या वे न� हो गए ह�। 

Unmatch
आ�खरी हादसा टो�ो म� �आ था। िजसम� िवमान
पानी म� िगर गया, सभी याि�यो ंकी मौत हो गई।

Translation: Many aircraft have
either mysteriously disappeared or
have been destroyed.

Translation: The last accident happened
in Tokyo. In which the plane fell into
water, all the passengers died.

Unmatch

Figure 1: An example alignment between a video clip sequence and a sentence sequence from M-SYMON. One
text chuck may correspond to several video clips, while some video clips may not match any textual description.
The example is from https://youtu.be/n5v9hzSYxPQ, a summary of the movie 407 Dark Flight (2012)

.

importance of language and cultural diversity.

To address the aforementioned limitations, we
construct a multilingual video story dataset named
Multilingual Synopses of Movie Narratives (M-
SYMON). M-SYMON is sourced from movie re-
cap videos on YouTube and contains 13,166 videos
spanning 7 languages and totalling 2,136 hours.
Furthermore, we manually annotated a portion of
this dataset, providing exact video-text correspon-
dence for 480 videos or 101.5 video hours. Com-
pared to LSMDC and YMS, our annotated video-
text alignment subset is large-scale, contains one-
to-many matching and unmatched text or video
clips, and covers 7 different languages.

We further investigate the multi-lingual charac-
teristics of the dataset, and make the following
observations. First, in the intra-lingual setup, com-
pared to translating all languages to English for
training and inference, additional language-specific
finetuning on weakly supervised data brings an av-
erage improvement of 5.4 percentage points across
7 languages. Adding a small portion of the manual
annotations further boosts performance. Second,
in the cross-lingual setup, for source and target lan-
guages that are linguistically similar (e.g., Spanish
to Portuguese or French), the transfer performance
is generally good; for source and target languages
that are different (e.g., Chinese to English or Hindi),
the transfer performance is quite limited. Third,
an out-of-domain evaluation on the YMS dataset
shows that training on the weakly supervised data
from M-SYMON outperforms the state of the art
methods by 12.3 and 13.2 percentage points on
Clip Accuracy and Sentence IoU scores. Moreover,
adding manually annotated video-text alignment
data further improves the performance by 2.4 and
3.0 percentage points, indicating the utility of our
annotated alignment data.

The main contributions of this work are summa-
rized as follows:

• We construct a large-scale multilingual
video story understanding dataset named M-
SYMON, containing 13,166 videos in 7 lan-
guages and totaling 2,136 hours.

• We manually annotate the fine-grained align-
ment between video clips and sentences of
480 videos for a total of 101.5 hours.1

• We create a number of multilingual video-
text alignment methods to benchmark the M-
SYMON dataset. Extensive results on both
M-SYMON and YMS demonstrate the sig-
nificance of our multilingual dataset and the
utility of the human video-text alignment an-
notations.

2 Related Work

2.1 Story Video-Text Alignment

Story video-text alignment involves aligning se-
quences of video clips, typically from movies, with
text captions (Cour et al., 2008; Tapaswi et al.,
2015; Wang et al., 2021a; Dogan et al., 2018). The
common approach is to first learn a video-text simi-
larity metric and then calculate the alignment using
dynamic programming (e.g., DTW) (Zhang et al.,
2023b; Dvornik et al., 2021). Recent methods en-
code videos with 3D-convolution (Sun et al., 2024)
or ViT (Li et al., 2023) and texts with Transformer
models (Han et al., 2022; Li et al., 2023; Zhang
et al., 2023a), then optimize alignment via soft-
DTW (Zhang et al., 2023a; Han et al., 2022) or
calculate the alignment from video-text similarity
(Zhang et al., 2023b).

1The video URLs and video-text alignment annotations in
M-SYMON will be made publicly available.
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Due to the lack of sentence-level video-text
alignment annotations, most models are trained
with timestamp-based weak supervision. Although
the LSMDC dataset (Rohrbach et al., 2017) con-
tains a large amount of manual annotation, its
overly fine-grained text data interferes with event
understanding (Sun et al., 2022); it also lacks one-
to-many matching and unmatched items. The YMS
dataset (Dogan et al., 2018) contains only 6.7 hours
of movie summaries with exact video-text align-
ment and cannot serve as a comprehensive test
benchmark.

2.2 Movie Story Datasets
Movies are a popular source of video-text story con-
tent. LSMDC (Rohrbach et al., 2017) and Movie
Audio Description (MAD) (Soldan et al., 2022)
provide movie clips with audio descriptions for
the visually impaired. Although the audio descrip-
tions are accurate, they deviate significantly from
realistic styles of story narration. The Condensed
Movie Descriptions (CMD) dataset (Bain et al.,
2020) offers 7 to 11 key clips per movie with one-
sentence descriptions. The Pororo dataset (Kim
et al., 2017) includes 20-minute cartoon episodes
with in-show conversations and human-written de-
scriptions. Although CMD and Pororo captions
match the clips, they may not form complete sto-
rylines. The CVSV (Lu et al., 2023), YMS (Do-
gan et al., 2018), and SyMoN (Sun et al., 2022)
datasets collect YouTube movie summaries, similar
to M-SYMON, but CVSV and SyMoN lack human
annotations.

Although there are many story understanding
dataset, multilingual video story datasets are scarce.
To our knowledge, the only dataset is Movie101v2
(Yue et al., 2024), which contains 46K Chinese
video-caption pairs from 203 movies, where the
Chinese text are translated to English using GPT-
3.5-turbo. The dataset also lacks human-annotated
video-text correspondence. In comparison, M-
SYMON is large-scale and multilingual, containing
movie summary videos in 7 languages and 101.5
hours of video with exact video-text correspon-
dences.

2.3 Multilingual Story Understanding
There are several tasks related to multilingual story
understanding, including event-causal inference
(Lai et al., 2022), story question answering (Ateeq
et al., 2023), story tag classification (Tikhonov
et al., 2021), and story generation (Razumovskaia

et al., 2024). However, most of them merely focus
on text rather than video stories.

Methods for multilingual story understanding
mainly fall into two categories: (1) translating
training/test data to English (Ponti et al., 2020)
or prompts to the target language (Lin et al., 2022),
and (2) directly finetune on non-English text using
a multilingual Pretrained Language Model (PLM)
(Tikhonov et al., 2021) or a PLM for the target
language (Lai et al., 2022). In this paper, we bench-
mark M-SYMON on multilingual story video-text
alignment with both types of methods.

3 Task Formulation

Given a consecutive sequence of video clips V =
(v1, v2, ..., vm) and a consecutive sequence of sen-
tences T = (t1, t2, ..tn), the video-text alignment
task aims to find the alignment between these two
sequences by learning a function f that maps each
input sentence ti to its corresponding video clips:

P = {. . . , (ti, vf(i)), . . . } (1)

where f(i) refers to the indexes of the video clip
aligned with the sentence ti. Note that f(i) can be
None, a single index, or an index sequence, denot-
ing that there is no video clip, one video clip, or
multiple video clips aligned with ti, respectively.

In the task formulation, we make the simplifying
assumption that multiple video clips can be aligned
with one sentence, but a clip cannot be aligned with
more than one sentence. The reason is that a video
clip is typically very short (around 2.4 seconds)
and clips outnumber sentences, so it is rare that one
clip aligns with more than one sentence.

4 Dataset Construction

In this section, we describe the details of construct-
ing the M-SYMON dataset.

4.1 Data Source and Statistics
For data collection, we first identify YouTube chan-
nels with movie recap videos in the target lan-
guages. Keywords such as “movie summary in
<language>” and “movie recap in <language>” are
used to search for the channels. We then download
all videos and their accompanying subtitles from
the identified channels. Videos without subtitles
and that are not movie summaries are discarded.

This yields 13,166 videos or 2,136 video hours
in 7 languages, including English, Chinese, Span-
ish, French, Portuguese, Hindi, and Russian. We
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Languages English Chinese Spanish French Portuguese Hindi Russian

Video Count 5,193 2,683 1,595 1,193 1,070 749 683
Video Hours 869 390 285 102 209 173 108
Vocabulary Size 40,116 6,269 50,050 33,967 40,676 20,896 64,827
Average Video Length (minutes) 9.5 8.7 10.7 5.1 11.7 13.9 9.5
Average number of Sentences in a Narration 131 78.8 82.6 138 134 126 151
Average number of Words in a Narration 1,717 3,234 1,923 2,226 2,737 2,656 1,623
Movie Count 2,440 1,236 1,217 877 811 462 542
Number of Annotated Videos 98 30 75 84 57 63 72
Annotated Video Hours 23.42 7.23 14.17 14.17 14.17 14.17 14.17

Table 1: The statistics of M-SYMON. For Chinese, we regard the number of unique characters as its vocabulary
size.

list the statistics in Table 1. M-SYMON contains
summaries for 5,960 movies and TV shows, of
which 1,515 have more than one summary.

4.2 Human Annotation

We hire a professional team of annotators with
rich translation experience from Flitto2 to annotate
exact video-text correspondence in M-SYMON.
In total, we annotated 480 videos spanning 101.5
hours. The amount of annotated videos in each
language are in the last two lines of Table 1.

Before human annotation, we automatically di-
vided the video subtitle text into sentences. For
each sentence, we ask the annotators to locate the
start and end times of the video segment described
by the sentence. If a sentence is not grounded in
the video, it is marked as “unmatched”. We re-
moved the audio from the videos to eliminate short-
cut features for alignment from the audio. Note
that human-annotated video-text correspondence is
different from temporal correspondence, because
the narration in narrated movie summary videos
is sometimes faster or slower than the video, and
some narrator may add commentary not grounded
in the video.
Annotation Quality. To evaluate annotation qual-
ity, we also employ a student who is familiar with
the task to annotate a small validation set for each
language. The annotation quality is evaluated as the
IoU between the durations annotated by the student
and the durations annotated by the annotators. If
the IoU for a particular language falls below 60%,
the annotators were asked to redo the annotations
until the IoU reaches 60%. The final average IoU
across 7 languages is 83.1%, indicating substantial
agreement between the annotators. See Appendix
B for annotation details.

2https://www.flitto.com

4.3 Data Preprocessing

Multilingual Punctuation Restoration. We ac-
quire text descriptions directly from YouTube subti-
tles. In some cases, the text descriptions are derived
from automatic speech recognition tools and are
unpunctuated. As punctuated texts are required
for downstream tasks, we train a Transformer-
based model to restore punctuations in all unpunc-
tuated text. We do not use off-the-shelf punctuation
restoration models because most models do not in-
clude all the languages in M-SYMON (Chordia,
2021; Frank and Böhme, 2021). See Appendix C
for details on the punctuation restoration model.
Scene Segmentation. We divide the videos into
clips using TransNet V2 (Souček and Lokoč, 2020)
which detects hard camera cuts. Each clip, con-
taining a continuous shot between two hard camera
cuts, is roughly 2.4 seconds long.
Offensive Language Filtering. To the best of our
abilities, we created a list of offensive terms and
filtered out videos containing those phrases.

4.4 Dataset Split

We divide M-SYMON into two parts: (1) the hu-
man annotated portion: 480 videos from 7 lan-
guages manually annotated with exact video-text
correspondence; (2) the weakly supervised portion:
The entire M-SYMON dataset after removing all
movies that appear in the annotated portion (see
Appendix A.1 for details).

For the weakly supervised data, each video clip
is matched to the text segment that spans its dura-
tion, producing a rough video-text correspondence
regarded as the weakly supervised training set.

For the human annotated data, we further split
it into a training set (20%), a validation set (20%),
and a test set (60%), with the portions distributed
evenly among 7 languages. Table 2 shows the num-
ber of clip-sentence pairs in each split.
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Languages English Chinese Spanish French Portuguese Hindi Russian

Weakly supervised training set 730,112 365,312 166,530 60,676 127,788 90,560 84,556
Supervised training set 6,649 1,860 5,989 5,799 4,205 7,152 5,789
Validation set 7,201 1,616 4,066 4,717 6,865 7,603 8,474
Test set 16,208 5,441 15,185 12,560 15,356 19,652 14,664

Table 2: The number of clip-sentence pairs in each data split.

Figure 2: The top 5 countries of release for movies
recapped in each language.

4.5 Dataset Analysis

We hypothesize that the choices of movies in each
language may have cultural characteristics. Due
to space limitations, we analyze the country of
release and themes of the movies in this section.
Additional statistics of the genre, year of release,
language of release, and narrative structures are
illustrated in Appendix A.2.

As most movie metadata are not available from
the movie recap videos, we use ChatGPT (gpt-3.5-
turbo-0125) to acquire the information. Specifi-
cally, we input the video title, the video-level de-
scription featured on YouTube, and first 5 sentences
of the movie narration into ChatGPT and ask Chat-
GPT to output the movie title and metadata.

Figure 2 reveals interesting correlation between
the language and the origin of the movie. The
movie summaries in each language are typically
about domestic movies (i.e., movies from coun-
tries where the language is widely used) or from
the United States, reflecting the influence of Hol-
lywood. For instance, 22.5% of Portuguese videos
are about Brazilian movies. Interestingly, large per-
centage of videos in Chinese (46.9% from China
Mainland, 7.6% from Hong Kong) and Russian
(44.0%) describe domestic movies than other lan-
guages. In comparison, on average 20.4% of videos

Figure 3: The top 5 themes for movies recapped in each
language.

in other non-english languages describe domestic
movies.

Figure 3 reveals variations in thematic prefer-
ences across languages. While themes like “Friend-
ship” and “Family” appear universally popular, oth-
ers exhibit uneven distributions. For instance, 2.7%
(vs. 0.7% in other languages on average) of Rus-
sian movies have the theme "Isolation". The theme
“Identity” accounts for only 1.8% Chinese videos
(vs. an average of 4.6% in all other languages).
These differences highlight the importance of rep-
resentation of multiple cultures and languages in
story understanding datasets.

5 Methodology

This section first details our base model for video-
text alignment and then introduces its several vari-
ants with different multilingual training strategies.

5.1 Base Model

To achieve the sentence-level alignments between
text and clip sequences, we adopt a three-stage
framework widely used in recent studies (Dvornik
et al., 2021; Zhang et al., 2023b). Specifically,
our model first employs video and text encoders
to obtain the video clip representation and the text
representation as follows.
Video Encoder. Given a video with M clips, we
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represent each clip by randomly selecting three
frames from it and dividing each frame into H×W
patches. We then utilize a trainable MLP projec-
tion layer to map these patches into video tokens,
which are fed into the video encoder Swin Trans-
former (Liu et al., 2021) to obtain the visual repre-
sentation of each frame. An average pooling layer
is applied over the three frames of each video clip
to obtain the video clip representation.
Text Encoder. Because our goal is to perform
multilingual video-text alignment in this paper,
we adopt a pre-trained cross-lingual cross-modal
model named CCLM (Zeng et al., 2023) to ini-
tialize the parameters in Swin Transformer and
the text encoder. Following CCLM, we employ
a pre-trained multi-layer Transformer, i.e., XLM-
R (Conneau et al., 2020) as the text encoder. We
then regard the last hidden representation of the
[CLS] token as the representation of each sentence.
Formally, let ti and vi denote the encoded features
for the ith sentence and the ith video clip.

For every clip-text pair, we randomly sample K
hard negatives from the same video. With the sam-
pled negative text features and video features, we
finetune the encoders by minimizing the contrastive
InfoNCELoss (Oord et al., 2018) below:

LInfoNCE =
1

N

N∑

i=1

[
− log

(
exp(v⊤

i ti/τ)∑K
j=1 exp(v

⊤
i tj/τ)

)

− log

(
exp(v⊤

i ti/τ)∑K
j=1 exp(v

⊤
j ti/τ)

)]

(2)
where N is the total number of training samples
and K is the number of negative samples.

During inference, we first obtain the representa-
tion of each clip and sentence, and then calculate
the cosine similarity between every clip-sentence
pair. Finally, we find the global clip-sentence align-
ment from the similarity scores of each pair by
resorting to a sequence alignment algorithm named
Double Drop Dynamic Time Warp (Drop-DTW)
(Dvornik et al., 2021), detailed in Appendix E.1.

5.2 Multilingual Finetuning Methods
With the base model, we benchmark the M-
SYMON dataset by establishing 4 weakly super-
vised methods, which share the same model archi-
tecture but are trained on the entire weakly super-
vised training set of M-SYMON in Section 4.4
with different training strategies:

• Multilingual training (CCLM-multilingual).

We combine the weakly supervised training
sets of all 7 languages and train a unified mul-
tilingual model on the combined dataset.

• Individual training (CCLM-individual). Us-
ing weakly supervised training data, we fine-
tune the base model on each language and
obtain 7 language-specific models.

• Translational training (CCLM-translate). We
first translate all the weakly supervised train-
ing data and the test data in M-SYMON to
English with off-the-shelf translation model
NLLB-200 (Costa-jussà et al., 2022). We then
finetune the base model on the translated data
to obtain a unified model.

• Two-stage training (CCLM-two-stage). On
top of the trained CCLM-translate model, we
further finetune on each language separately
to obtain 7 language-specific models.

To show the usefulness of our manually anno-
tated video-text alignment dataset, we further fine-
tune two aforementioned methods on the human
annotated training set in Section 4.4:

• CCLM-translate-supervision. We translate the
non-English languages in the human anno-
tated data to English and finetune the CCLM-
translate model on the translated data.

• CCLM-two-stage-supervision. We finetune
the CCLM-two-stage model on the human
annotated data of each language separately.

6 Experiments

In this section, we conduct extensive experiments
in intra-lingual, cross-lingual, and out-of-domain
setups to show the usefulness of M-SYMON.

6.1 Experimental Setup

For CCLM-translate and CCLM-multilingual, we
initialize their parameters from the pre-trained
CCLM-base model (Zeng et al., 2023) and fine-
tune them for 20 epochs with an initial learning
rate of 4 × 10−5 and cosine learning rate decay.
For CCLM-two-stage, we initialize its parameters
from the CCLM-translate model and finetune it for
20 epochs with an initial learning rate of 4× 10−6

and cosine learning rate decay. Random augmenta-
tion and weight decay of 0.2 are applied.
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English Chinese Spanish French Portuguese Hindi Russian Average

Weakly supervised
CCLM-multilingual 9.3 16.3 11.8 8.8 9.9 5.8 9.3 10.2
CCLM-individual 26.6 29.3 17.4 16.6 16.3 10.1 14.6 18.7
CCLM-translate 22.2 20.1 16.0 17.5 14.1 11.2 13.8 16.4
CCLM-two-stage 26.9 37.7 19.1 20.2 18.7 13.1 17.0 21.8

Supervised
CCLM-translate-supervision 24.3 20.1 17.8 19.7 16.0 12.6 15.1 17.9
CCLM-two-stage-supervision 27.7 38.9 19.8 21.0 19.5 12.9 17.5 22.5

Table 3: Intra-lingual results based on F1 score. The “Average” is the mean of 7 languages. The highest number in
each column is in bold, the second highest is in bold italic.

6.2 Evaluation Metrics

Following Dogan et al. (2018), we use two eval-
uation metrics. Clip accuracy is defined as the
temporal proportion of correctly aligned video seg-
ments. Sentence IoU (Jaccard, 1908) is defined
as the intersection-over-union between the aligned
video durations and the groundtruth durations. Due
to space limitations, we mainly report the F1 score,
i.e. the harmonic mean between Clip Accuracy
and Sentence IoU in this section and defer detailed
results to Appendix E.2.

6.3 Intra-Lingual Results

We report the intra-lingual results in Table 3. Here,
each method is trained and evaluated on data in the
same language.

First, we find that training the base model on
all languages together performs significantly worse
than training on each language separately. Specif-
ically, CCLM-individual outperforms CCLM-
multilingual by 4.3-17.3 percentage points. This
suggests that language-specific features are impor-
tant for multilingual video-text alignment. Second,
the CCLM-translate baseline is on par with CCLM-
individual and significantly outperforms CCLM-
multilingual. Moreover, the two-stage baseline
(i.e., CCLM-two-stage) leverages the benefits of
pre-training on a large multilingual dataset and sub-
sequent finetuning on a specific language dataset,
which outperforms CCLM-individual and CCLM-
translate by 3.1 and 5.4 percentage points on aver-
age. Finally, after finetuning with our manually an-
notated data, it yields consistent improvements on
top of both CCLM-translate and CCLM-two-stage
models across the 7 languages, and CCLM-two-
stage-supervision achieves the best average perfor-
mance among all the compared methods. These
observations demonstrate the usefulness of the man-
ually annotated video-text alignment data.

Figure 4: Cross-lingual transfer results of CCLM-two-
stage based on F1 score. The language names are ab-
breviated as: English =“en”, Chinese = “ch”, Spanish
= “es”, French = “fr”, Portuguese “pt”, Hindi = “hi”,
Russian = “ru”.

6.4 Cross-Lingual Transfer Results

We employ the CCLM-two-stage model to evalu-
ate the cross-lingual performance of every source-
target language pair, see Figure 4 for results.

First, the highest value of each column appears
on the diagonal. This is intuitive because the model
is trained and evaluated on the same language. Sec-
ond, linguistically similar languages transfer well
to each other. For example, related languages like
Spanish and Portuguese, generally obtain good
cross-lingual performance. This likely stems from
shared vocabulary, sub-word tokens, and grammati-
cal structures. Furthermore, Chinese does not trans-
fer well to any other language, possibly due to dif-
ferences in linguistic construction and movie distri-
butions (See §4.5) . Lastly, we observe it is difficult
to transfer from any language to Hindi, possibly be-
cause the CCLM pre-training data does not contain
Hindi, which hurts representation learning.
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English Chinese Spanish French Portuguese Hindi Russian Average

Without Timestamps of Text
CCLM-two-stage-supervision 27.7 38.9 19.8 21.0 19.5 12.9 17.5 22.5

With Timestamps of Text
Transcript baseline 34.4 42.6 19.1 26.2 40.6 20.1 27.3 30.1
CCLM-2S-supervision-time 34.6 46.2 28.5 27.7 39.8 25.4 26.4 32.7

Table 4: Intra-lingual video-text alignment results with transcript temporal information.

6.5 Effects of Timestamps of Narration Text

All previous models do not utilize the timestamps
of the narration texts as input features or during
inference. As such timestamps are only available
after a video summary is made, models relying on
timestamps as input features cannot handle general
alignment tasks, such as aligning plot summaries
with movies.

In this section, we explore the effectiveness of
these timestamps during inference. Specifically, we
use the CCLM-two-stage-supervised model to cal-
culate video-text similarity. During DTW, we con-
strain video clips to match only sentences within a
1-second window of their timestamps. This model
is named CCLM-2S-supervised-time. We also cre-
ate a transcript baseline that relies solely on the
timestamps; we simply align video clips to the sen-
tence whose timestamp falls in their duration.

Table 4 summarizes the results. First, the tran-
script baseline achieves an average F1 score of
only 30.1, indicating significant discrepancies be-
tween the temporal transcripts and our annotations.
This demonstrates the noisy nature of YouTube
transcripts and underscores the importance of pre-
cise annotations for accurate evaluation. Second,
CCLM-2S-supervised-time outperforms CCLM-
two-stage-supervised by 10.2 percentage points,
showing that transcript temporal information im-
proves alignment. Finally, CCLM-2S-supervised-
time surpasses the transcript baseline by 2.6 per-
centage points, demonstrating that our model learns
video-text correspondences beyond the transcripts.

6.6 Transfer to YMS

In this section, we extend our analysis to investigate
if models trained on M-SYMON can generalize
to other video-text alignment benchmarks, such
as the out-of-domain English benchmark dataset
YMS (Dogan et al., 2018).

As shown in Table 5, the large scale M-SYMON
dataset significantly improves the performance of
YMS. First, we can observe that finetuning the
base model on the human-annotated training set of

Clip
Acc.

Sent
IoU

NeuMatch (Dogan et al., 2018) 12.0 10.4
Wang et al. (2021a) 30.6 12.8
Sun et al. (2024) 23.2 18.4

CCLM-individual (YMS) 29.2 18.9

CCLM-multilingual 13.3 6.2
CCLM-individual (English) 35.8 25.0
CCLM-translate 25.2 16.7
CCLM-two-stage (English) 42.9 31.6
CCLM-two-stage-supervision (English) 45.3 34.6

Table 5: Out-of-domain results on the YMS dataset.
CCLM-individual (YMS) is the base model finetuned
on the human-annotated training set of YMS.

YMS (i.e., CCLM-individual (YMS)) is already on
par with the state-of-the-art performance, demon-
strating the effectiveness of our proposed base
model. Second, compared to CCLM-individual
(YMS), only training on the weakly supervised
portion of M-SYMON improves performance by
13.7 and 12.7 percentage points on Clip Accuracy
and Sentence IoU, respectively. This suggests the
value of the large-scale weakly-supervised data
in M-SYMON. Moreover, additional finetuning
on the human-annotated data from M-SYMON,
i.e., CCLM-two-stage-supervision (English), fur-
ther boosts the performance by 2.4 and 3.0 percent-
age points on Clip Accuracy and Sentence IoU, re-
spectively. These observations highlight the signifi-
cance and generalizability of our human-annotated
video-text correspondence dataset, indicating the
potential of M-SYMON for advancing research in
video story understanding.

6.7 Discussion

The experiments in this paper demonstrate the
value of M-SYMON as a multilingual and mul-
timodal story understanding dataset. First, M-
SYMON is the first dataset that offers large-scale
human annotations for multilingual story video-
text alignment, and such annotations deliver prat-
ical benefits. As shown in §6.5, the timestamps
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in the YouTube transcripts are noisy, and human
annotations are necessary for accurate benchmark-
ing. Additionally, the human-annotated training
set provides valuable supervision signals. In §6.3,
we achieve a notable 3.2% relative improvement
from human annotation data that amounts to only
2.2% of the training data. Moreover, finetuning on
supervised data from M-SYMON lead significant
improvement on the out-of-domain YMS dataset in
§6.6. Finally, M-SYMON provides fertile ground
for linguistic and cultural studies of story elements.
For example, cross-lingual transfer experiments
(§6.4) lends support to existing linguistic theories
on positive and negative transfer in language learn-
ing (Eronen et al., 2023; Odlin, 1989) as linguisti-
cally similar languages transfer well to each other.
The analysis of movie themes for different lan-
guages (Figure 3) demonstrates the cultural rele-
vance of M-SYMON.

7 Conclusion

In this paper, we introduced M-SYMON, a large-
scale multilingual video story dataset. It contains
13,166 movie summary videos from 7 languages,
featuring 480 videos with human-annotated video-
text correspondence. We established several mul-
tilingual multimodal baselines to benchmark M-
SYMON. Experimental results show the value of
M-SYMON for video story understanding. Its size,
multilingual nature, and rich alignment annotations
make M-SYMON a valuable contribution.
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Limitations

The preprocessing of M-SYMON involves sev-
eral automatic techniques that may introduce noise.
First, some text descriptions are generated using
Google automatic speech recognition. Automatic
punctuation restoration is then applied to the text.
For the translation baselines, the text is further
translated into English. This pipeline may prop-
agate errors. However, due to the size and complex-
ity of M-SYMON, manual processing is imprac-

tical. We acknowledge the potential for improve-
ment in preprocessing steps as better techniques
become available.

Additionally, human annotation of video-text
correspondence in story videos can be ambiguous.
Annotators received a list of instructions for am-
biguous cases. For example, when text describes
a character’s emotional state, annotators are in-
structed to match only when the emotion is evident
from the character’s expression or action. In cases
outside the provided guidelines, annotators used
their best judgment. Despite the inherent ambiguity
in story content annotation, manual inspection of
the annotated data indicates good quality, as shown
in Table 6.

Ethics Statement

M-SYMON is constructed with YouTube videos
under the Standard YouTube License. For the
videos, we release a list of YouTube URL the users
can use to download the video from YouTube, as
is the standard practice (Bain et al., 2020; Miech
et al., 2019; Caba Heilbron et al., 2015). A fair
compensation amount for the annotators was deter-
mined by the annotation company based on the dif-
ficulty level and time needed to annotate a minute
of video in each language. On average, we com-
pensate the annotator 2.44 USD for annotating a
minute of video. The exact per-minute compensa-
tion amount for each language is shown in Table 7
in the Appendix.

In this paper, we collect user-uploaded videos
from YouTube, which are summaries of mostly
western movies and TV shows. We recognize that
movies and TV shows are fictional in nature, and
often prioritize dramatic events over faithful rep-
resentation of real-life scenarios. In addition, the
videos may reflect particular bias of the creators
of the movie and TV shows or the creators of the
summary videos, as well as bias from particular
cultures or the time periods of production.

For these reasons, we urge researchers to take
caution when attempting to learn social norms from
such videos. For example, events of bank robberies
may be over-represented in these videos, and a
machine learning model may inadvertently infer
that robbing a bank is part of the social norm. In
addition, the model may incorrectly learn from dis-
proportional association of certain groups of people
with certain social status, occupations, and other
cultural constructs. The dataset is intended for fun-
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damental research and not real-world deployment.
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Figure 5: The top 5 genres for movies recapped in each
language

Figure 6: Top 5 languages of release for movies re-
capped in each language

A Additional Information on M-SYMON

A.1 Additional Preprocessing

Removing Overlap Between Train and Test Sets.
In movie recap videos, videos summarizing the
same movie may have similar visual and textual
content. Thus, we remove all movies that appear in
the test sets from the training sets. Specifically, we
use ChatGPT to identify the corresponding movie
for each video and translate the movie name to
English. We then remove the overlapped videos
based on the English movie names.

A.2 Additional Analysis

As shown in Figure 5, creators using different lan-
guages prefer similar genre. Although interestingly,
“Fantasy” films are featured more in Hindi and Chi-
nese than other language, perhaps due to the signif-
icant role mythology plays in Eastern cultures.

In Figure 6, we list the language of release for
movies recapped in each language. This trend
largely follows the same pattern as the country

Figure 7: Top 5 years of release for movies recapped in
each language

Figure 8: Narrative style of movies recapped in each
language

of release likely because most countries produce
movies in their native language.

For each language, we list the top 5 years the
movies were released (Figure 7). As our dataset
collection ends around February 2022, M-SYMON
largely contains movies released from 2017 to
2021.

In Figure 8, we show the narrative styles of
movies recapped in each language. The most com-
mon narrative styles are linear and episodic.

B Annotation Details

Characteristics Of Annotators. We employ a
team of annotators with professional qualifications
in translation for annotation. The team is from Ko-
rea. We discussed the compensation amount with
the annotation team and set an adequate amount.

Annotation Instruction. We gave the annotators
an instruction, shown in Figure 9, and a set of
annotation guidelines for ambiguous situations.
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You will see a 5-15 minute video, which is
a summary of a movie or a TV show. You will
be given a list of sentences that describe
the content of the video. Please align each
sentence to the video content by writing
down the start time and end time of the
video segment that matches the sentence.
If the sentence does not match any video
content, please mark it as “Unmatched”.

Figure 9: Human annotation instruction.

Annotation Procedure. We divide the data ran-
domly into 4 equal batches, each batch contains
a quarter of data from each language. After the
annotators annotate each batch, we randomly se-
lect 2 videos from each language for validation and
employ a student familiar with the task to annotate
them. Then, we calculate the IoU between the stu-
dent’s annotations and the annotations provided by
the annotators. Specifically, for each sentence we
calculate the IoU between the duration annotated
by the student and the duration annotated by the
annotators. If the IoU on a particular language falls
below 60%, the annotators were asked to redo the
annotations for that language in that batch. The
average IoU of each language is shown in Table 6

C Multilingual Punctuation Restoration

Task. We treat punctuation restoration as a token
classification task, where the model predicts the ap-
propriate punctuation, if any, to follow each token
in the sequence. To simplify the task, we limit the
predictions to three punctuations: period, comma,
and question mark. Other punctuations are either
removed (in the case of #,@," and ’) or replaced
with periods and commas (in the case of !, ; and :).

Dataset. For training, we use the Wiki-40B (Guo
et al., 2020) dataset containing clean Wikipedia ar-
ticles in 40+ languages. For Hindi, we further sup-
plement the training set with data from Wikipedia
Hindi 3.

To evaluate our punctuation restoration model
on narrative content, we build an evaluation set
from Wikipedia plot summaries. Specifically, we
first identify Wikipedia articles of popular movies.
Then, we extract the “Plot Summary” portion of the
articles. Finally, we remove any overlap between

3https://www.tensorflow.org/datasets/catalog/wikipedia

training and test data. We acquire the evaluation
sets for French, Spanish, Portuguese, Chinese, and
Russian following the above procedure. However,
for Hindi, we can not find enough Wikipedia plot
summaries. Therefore, we use the wiki-40B vali-
dation set for evaluation which may inflate perfor-
mance on Hindi.

Model. Following (Frank and Böhme, 2021), we
finetune on the XLM-RoBERTa-large (Conneau
et al., 2019) model.

Evaluation. We evaluate the model performance
with the F1 score.

Baselines. We use the Full-Stop (Frank and
Böhme, 2021) model as the baseline 4. We use the
same backbone as Full-Stop, the difference is that
they train on the Europarl (Koehn, 2005) dataset
while we train on Wiki-40B. The Europarl dataset
contains transcripts of political talks in European
languages and is commonly used in training multi-
lingual punctuation restoration models.

Results. Table 8 shows the multilingual punctua-
tion model performance. Our model achieves good
performance on all languages. On European lan-
guages, our model outperforms Full-Stop by 6-14%
(see Table 9). This demonstrates that our model
is suitable for punctuation restoration in narratives.
The performance on Hindi is superior to other lan-
guages, this is likely because Hindi is evaluated on
in-domain data from Wiki-40B.

In Table 14, we show the Clip Accuracy and
Sentence IoU for the intra-lingual experiments.

In Tables 15 and 16 we show the Clip Accuracy
and Sentence IoU scores for cross-lingual transfer,
corresponding to Figure 4

D Video-Text Retrieval

Task. Given a set of video clips V =
{V1, V2, . . . , VM} and a set of textual sentences
T = {t1, t2, . . . , tN}, both from all videos in the
test set, the goal is to retrieve the most relevant
video or video clips corresponding to each sen-
tence.

Evaluation. We evaluate with Retrieval@1 (R@1),
Retrieval@5 (R@5), Retrieval@10 (R@5) and
Mean Rank.

4The original Full-Stop model is trained on English, Ger-
man, French, and Italian. We follow their instruction to train
on Spanish, French, and Portuguese
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English Chinese Spanish French Portuguese Hindi Russian

IoU 83.2% 78.8% 84.4% 81.3% 88.9% 84.4% 80.8%

Table 6: IoU between annotator annotations and our annotations.

English Chinese Spanish French Portuguese Hindi Russian

Annotation Cost 1.60 1.44 2.83 3.78 2.83 1.79 2.83

Table 7: Annotator compensation amount for annotating a minute of video, in USD.

0 . , ? Total

French 0.98 0.86 0.71 0.56 0.78
Spanish 0.97 0.77 0.67 0.53 0.74
Portuguese 0.98 0.83 0.72 0.50 0.76
Russian 0.96 0.73 0.77 0.51 0.74
Chinese 0.99 0.82 0.83 0.61 0.81
Hindi 0.99 0.94 0.88 0.77 0.90
Average 0.98 0.82 0.76 0.58 0.79

Table 8: Result of multi-lingual punctuation.

0 . , ? Total

Wiki-40B (Ours)
French 0.98 0.86 0.71 0.56 0.78
Spanish 0.97 0.77 0.67 0.53 0.74
Portuguese 0.98 0.83 0.72 0.50 0.76

Europarl
French 0.97 0.80 0.64 0.47 0.72
Spanish 0.97 0.70 0.59 0.15 0.60
Portuguese 0.97 0.75 0.63 0.37 0.68

Table 9: Comparison between training on Wiki-40B and
training on Europarl. Europarl only contains European
languages.

Method. For video-text retrieval, we evaluate on
the CCLM models trained on M-SYMON. Specif-
ically, we first acquire the video and text embed-
dings from the video and text encoders. Then we
calculate the video text similarity as the cosine sim-
ilarity between video and text embeddings. Finally,
for each text we retrieve the video clip with the
highest similarity.

Results. In Tables 10,11.12,13 we show R@1,
R@5, R@10 and MR scores, respectively.

The text-to-video retrieval results align closely
with our alignment results. CCLM-two-stage out-
performs CCLM-translate by 2.2-6.5% on Retrieval
@ 1,5,10, demonstrating the advantage of multi-

lingual data. CCLM-two-stage-supervision out-
performs CCLM-two-stage by 0.2-1.1% on Re-
trieval @ 1,5,10, highlighting the utility of our
human annotations. However, supervised finetun-
ing does not improve Spanish performance. We
believe this may be due to the greater distribu-
tion difference between weakly supervised corre-
spondence, which rely on timestamps, and human-
annotated correspondence. Based on our statistics,
only 34.0% timestamp-derived correspondence in
Spanish videos match human annotations, while
the average across all languages is 44.9%. Given
this large distribution gap, more supervised data
may be required to bridge the gap.

E Video-Text Alignment

E.1 Drop-DTW

DTW uses dynamic programming to find the op-
timal alignment between two sequences based on
distance (or similarity), the final alignment corre-
sponds to the shortest distance or highest similarity.
In the traditional DTW algorithm, each item in one
sequence must match with an item in the other se-
quence. However, in story videos, some text are
not grounded in the video and vice-versa. There-
fore, we use the Drop-DTW (Dvornik et al., 2021)
algorithm to facilitate dropping certain clips and
sentences.

In traditional DTW, to align a sequence of video
clips V = (v1, . . . , vN ) and a sequence of sen-
tences T = (t1, . . . , tM ), we first assume that v1
is aligned to t1. Thus, the cost of matching v1
and t1 is c(1, 1) = 0, and the cost of match v1
with tj(j ̸= 1) is c(1, j) = ∞, and vice versa.
Then, the minimal cost of aligning (v1, . . . , vi)
with (t1, . . . , tj), can be calculated as:

c(i, j) = min(c(i− 1, j) + d(i, j),

c(i, j − 1) + d(i, j),

c(i− 1, j − 1) + d(i, j))

(3)
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Model English Chinese Spanish French Portuguese Hindi Russian Average

Weakly supervised
CCLM-multilingual 0.5 7.9 1.6 1.1 1.2 1.0 1.8 2.2
CCLM-individual 3.3 6.5 3.3 1.8 2.9 2.0 3.7 3.4
CCLM-translate 1.7 4.7 2.4 1.9 1.9 2.1 3.1 2.5
CCLM-two-stage 3.6 11.5 3.6 3.0 3.2 2.4 5.3 4.7

Supervised
CCLM-translate-supervision 2.1 3.1 2.6 2.6 1.8 2.2 3.8 2.6
CCLM-two-stage supervision 3.7 13.8 3.6 3.3 3.0 2.9 4.2 4.9

Table 10: Text-to-Video retrieval results based on Retrieval@1.

Model English Chinese Spanish French Portuguese Hindi Russian Average

Weakly supervised
CCLM-multilingual 1.6 34.5 4.9 6.2 4.3 3.9 1.6 8.1
CCLM-individual 10.6 17.4 10.3 5.3 7.9 6.6 10.6 9.8
CCLM-translate 6.0 12.9 7.5 6.6 6.1 8.5 6.0 7.7
CCLM-two-stage 10.7 30.3 12.2 8.8 10.0 8.3 10.7 13.0

Supervised
CCLM-translate-supervision 7.1 12.2 8.3 7.6 6.2 7.5 7.1 8.0
CCLM-two-stage supervision 10.7 34.2 12.0 10.1 10.6 8.3 10.7 13.8

Table 11: Text-to-Video retrieval results based on Retrieval@5.

where d(i, j) denotes the distance between vi and
tj . Since we have the cosine similarity between
each video-text pairs, the distance can be calculated
as d(i, j) = 1− s(i, j), where s(i, j) is the cosine
similarity between vi and tj

In Drop-DTW, we further define two hyperpa-
rameters dv and dt as the cost of dropping the video
and the text respectively. At each time stamp, we
calculated the minimal cost as the lowest cost be-
tween: (1) matching vi and tj and adding d(i, j) to
the total cost; (2) dropping vi and adding dv to the
total cost; (3) dropping tj and adding dt to the cost;
(4) dropping both vi and tj and adding both dv and
dt to the cost.

E.2 Addition results

In Table 14 we show the Clip Accuracy and Sen-
tence IoU scores corresponding to Table 3.

E.3 Licensing Information

The videos we acquire from YouTube are under
the Standard YouTube license. Note that in M-
SYMON, the videos are released in the form of
YouTube URL, and researchers can download the
videos directly from YouTube.

For multilingual punctuation restoration we train
with data from Wiki-40B (Guo et al., 2020) li-
censed under the Apache 2.0 License. For scene
segmentation, we use TransNet-V2 (Souček and
Lokoč, 2020) released under the MIT license. Chat-
GPT, which we use for extracting movie names and

metadata, is under the GNU Affero General Public
License Version 3.

For video text alignment, the CCLM (Zeng et al.,
2023) is under the BSD-3-Clause license and the
CLIP4Clip is under the MIT License. YMS (Dogan
et al., 2018), which we use as an out-of-domain
evaluation benchmark, is from https://github.
com/RubbyJ/Data-efficient-Alignment.

The usage of all model and data within the paper
are in line with their intended uses.
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Model English Chinese Spanish French Portuguese Hindi Russian Average

Weakly-supervised
CCLM-multilingual 2.5 38.4 8.2 3.6 7.1 7.1 9.5 10.9
CCLM-individual 16.1 27.3 16.3 9.1 12.7 9.6 20.3 15.9
CCLM-translate 9.6 21.1 13.2 11.1 10.2 13.6 15.6 13.5
CCLM-two-stage 16.0 40.8 19.2 14.3 15.9 12.2 21.4 20.0

Supervised
CCLM-translate-supervision 12.1 19.9 13.0 12.0 10.0 13.1 16.7 13.8
CCLM-two-stage supervision 16.6 45.1 18.3 15.7 16.5 13.9 21.9 21.1

Table 12: Text-to-Video retrieval results based on Retrieval@10.

Model English Chinese Spanish French Portuguese Hindi Russian Average

Weakly-Supervised
CCLM-multilingual 107 65 422 805 518 409 367 524
CCLM-individual 315 74 220 444 311 289 163 259
CCLM-translate 525 105 292 402 344 259 176 300
CCLM-two-stage 333 55 190 337 255 254 136 223

Supervised
CCLM-translate-supervision 427 108 237 330 334 249 167 265
CCLM-two-stage supervision 326 47 182 282 254 246 129 209

Table 13: Text-to-Video retrieval results based on Mean Rank.

English Chinese Spanish French Portuguese Hindi Russian
Clip. Sent. Clip. Sent. Clip. Sent. Clip. Sent. Clip. Sent. Clip. Sent. Clip. Sent.

Weakly supervised
CCLM-multi 13.4 7.3 23.5 12.8 19.5 8.9 17.6 8.8 17.4 7.2 11.8 3.8 15.1 7.0
CCLM-individual 33.2 22.3 36.6 24.6 25.7 13.6 24.2 11.2 24.8 12.4 17.7 7.3 21.9 11.2
CCLM-translate 28.4 18.4 27.7 15.9 24.0 12.5 24.3 13.8 21.9 10.7 18.6 8.2 20.1 10.8
CCLM-two-stage 33.7 22.6 43.7 33.3 27.2 15.2 27.8 16.3 27.0 14.6 20.9 9.9 24.5 13.3

Supervised
CCLM-translate-s 30.9 20.0 27.5 20.1 26.5 14.0 26.9 15.6 24.4 12.3 20.9 9.3 21.9 11.8
CCLM-two-stage-s 34.6 23.5 45.2 34.4 27.4 15.9 28.3 16.9 27.7 15.4 20.5 9.6 25.1 13.7

Table 14: Intra-lingual results based on Clip Accuracy and Sentence IoU. Due to space limitation, we write Clip
Accuracy as “Clip.”, Sentence IoU as “Sent.” , “-supervised” as “-s”, and “multilingual” as “multi”.

English Chinese Spanish French Portuguese Hindi Russian

CCLM-translated 28.4 27.7 24.0 24.3 21.9 18.6 20.1

CCLM-two-stage (English) 33.7 25.4 23.3 25.9 21.1 15.1 21.4
CCLM-two-stage (Chinese) 22.4 43.7 16.7 14.8 11.8 12.0 15.3
CCLM-two-stage (Spanish) 32.5 29.9 27.2 26.6 24.2 14.8 22.0
CCLM-two-stage (French) 31.7 30.9 25.1 27.8 23.1 15.0 22.5
CCLM-two-stage (Portuguese) 32.6 30.2 25.4 27.1 27.0 16.6 22.2
CCLM-two-stage (Hindi) 31.8 29.8 25.2 26.1 21.7 20.9 22.7
CCLM-two-stage (Russian) 33.2 31.7 25.6 26.5 23.5 16.6 24.5

Table 15: Clip Accuracy scores for cross-lingual transfer.

English Chinese Spanish French Portuguese Hindi Russian

CCLM-translated 18.4 15.9 12.5 13.8 10.7 8.2 10.8

CCLM-two-stage (English) 22.6 14.2 11.7 14.8 10.8 2.9 11.5
CCLM-two-stage (Chinese) 13.8 33.3 6.7 7.6 4.2 1.4 6.6
CCLM-two-stage (Spanish) 21.5 18.0 15.2 15.6 12.8 4.6 11.7
CCLM-two-stage (French) 20.8 17.8 13.1 16.3 11.8 3.9 15.2
CCLM-two-stage (Portuguese) 21.5 17.9 13.7 15.7 14.6 5.2 11.8
CCLM-two-stage (Hindi) 20.8 17.4 12.5 14.8 11.0 9.9 11.8
CCLM-two-stage (Russian) 22.1 19.2 13.6 15.1 12.0 5.7 13.3

Table 16: Sentence IoU scores for cross-lingual transfer.
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