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Abstract

We propose a constraint learning schema for
fine-tuning Large Language Models (LLMs)
with attribute control. Given a training corpus
and control criteria formulated as a sequence-
level constraint on model outputs, our method
fine-tunes the LLM on the training corpus while
enhancing constraint satisfaction with minimal
impact on its utility and generation quality.
Specifically, our approach regularizes the LLM
training by penalizing the KL divergence be-
tween the desired output distribution, which sat-
isfies the constraints, and the LLM’s posterior.
This regularization term can be approximated
by an auxiliary model trained to decompose
the sequence-level constraints into token-level
guidance, allowing the term to be measured
by a closed-form formulation. To further im-
prove efficiency, we design a parallel scheme
for concurrently updating both the LLM and
the auxiliary model. We evaluate the empirical
performance of our approach by controlling the
toxicity when training an LLM. We show that
our approach leads to an LLM that produces
fewer inappropriate responses while achieving
competitive performance on benchmarks and a
toxicity detection task.

1 Introduction

Large language models (LLMs) have demonstrated
impressive performance across a variety of tasks
which has led to their widespread adoption for a
multitude of AI applications. However, they carry
the risk of producing inappropriate, unsafe, unfair
outputs (Wallace et al., 2019; Sheng et al., 2019;
Gehman et al., 2020; Huang et al., 2024) Ideally,
LLMs should learn to comply with constraints and
policies specified by users. For example, in a user-
facing application like a chatbot, LLMs should
never generate toxic or offensive responses, nor
to divulge sensitive information. While there are
several post hoc methods to moderate LLM out-
puts (Lu et al., 2022; Qian et al., 2022; Markov

et al., 2023), they lack an efficient and principled
approach to training LLMs to adhere to constraints.

We start by defining a sequence-level oracle as
a function that takes an LLM’s output and adju-
dicates whether it satisfies a predefined set of at-
tribute constraints. In practice, the oracle can be a
rule-based, model-based, or mixed system (e.g., a
classifier that decides whether a sentence is toxic).
Given a pre-trained LLM and the oracle, we aim to
fine-tune an LLM to achieve the following: 1) At-
tribute control: The LLM output passes the oracle
with a high probability. 2) Utility preservation:
The LLM maintains performance comparable to the
original LLM on utility benchmarks. 3) Training
efficiency: The cost of fine-tuning with attribute
control is similar to that of the typical fine-tuning.

While existing approaches can meet some of
these criteria, achieving all of them is challenging.
For example, filtering training data with the ora-
cle function before fine-tuning (Wang et al., 2022)
is a simple and efficient method. However, this
approach could be less effective. Taking toxicity
control as an example, if we filter out the toxic
data from a fine-tuning corpus, in a regular con-
text the model will learn not to generate toxic con-
tents. Nevertheless, it might still be possible to
trigger the generation of offensive responses given
a toxic prompts, due to the fact that toxic prompts
are out-of-distribution in relation to the fine-tuning
corpus. Another promising approach is reinforce-
ment learning (RL) considering controlling criteria
in the reward function (Snell et al., 2023; Mudgal
et al., 2023). However, RL setups tend to be ineffi-
cient and require preference data generation which
adds significant overhead in comparison to generic
fine-tuning.

In this work, we propose a novel solution to
training an LLM with a set of attribute constraints.
Inspired by the classic idea of constraint-driven
learning (Chang et al., 2007) and posterior regu-
larization (Ganchev et al., 2010), we incorporate
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constraints as a regularizer in fine-tuning. Specifi-
cally, we estimate the closest distribution from the
current model that satisfies the constraints and pe-
nalize the gap from the current model distribution
to this estimated distribution to regularize the LLM
during fine-tuning. We iterate through this process
to push the LLM closer to the feasible region of
generations, making the estimation progressively
more accurate.

This iterative fine-tuning process updates the
base LLM and regularizer sequentially, causing
run time to be significantly longer than the typical
fine-tuning. Thus, we parallelize our algorithm by
updating the base LLM and regularizer simulta-
neously based on their status in the last iteration.
Empirically, the parallelization achieves the same
level of performance compared to sequential fine-
tuning, and the time complexity is the same as a
typical fine-tuning approach.

To validate the effectiveness of our proposed
method, we conduct a case study in detoxifica-
tion, considering three scenarios involving differ-
ent datasets. In the first scenario, we fine-tune
LLMs on datasets rich in toxic language with an at-
tribute control that prevents the generation of toxic
outputs. Our approach successfully passes stress
tests and produces responses with lower toxicity
compared to all baseline models. In the second
scenario, we explore whether the attribute control
can retain the utility of the LLM while reducing
the toxicity of its responses. Training only on a
small dataset will lead to catastrophic forgetting.
Therefore, we fine-tune the LLM on a mix of data
comprising toxiGen (Hartvigsen et al., 2022) and
Wikitext (Merity et al., 2016) datasets with attribute
control. Our method demonstrates the best balance
between model utility and toxicity management
compared to similar techniques.

Finally, we assess whether the LLM can effec-
tively identify toxic content without generating it,
a critical skill since the model must recognize toxic
elements to avoid producing them. In standard
fine-tuning, these goals often conflict: the model
learns to identify toxicity through training on a
toxic corpus, which paradoxically increases the
generation of toxic content. However, our method
successfully mitigates the generation of toxic con-
tent while maintaining classification performance
on par with traditional fine-tuning techniques.

We summarize our contributions as follows:

• We provide an efficient and effective solution

to the attribute-controlled fine-tuning.

• Empirically, we achieve the current best trade-
off between attribute control (measured us-
ing toxicity) and utility performance against a
suite of baselines.

• We show that our approach enables the model
to retain knowledge of the concept of a given
attribute and yet selectively choose to avoid
generating it. This can not be achieved via
generic fine-tuning.

2 Related Work

Prior work exists on the controlled generation prob-
lem and it can be divided into two fronts. Solutions
that apply at inference time during decoding, and
solutions that apply at fine-tuning.

Attribute controlled decoding for LLMs Sev-
eral methods have been explored to control LLM
generation during decoding. Some prominent meth-
ods include activation editing (Hernandez et al.,
2023; Li et al., 2023) which adjusts the activa-
tion vectors in the LLM, and weight editing (Meng
et al., 2022a; Ilharco et al., 2023) which adjusts the
weights in LLM. Dathathri et al. (2020) (PPLM)
leverages an auxiliary model to steer the base LLM
distribution. Following this line of work, Krause
et al. (2021) (GeDi) and Liu et al. (2021) (DExpert)
used contrastive learning as an objective to achieve
attribute control during decoding. Yang and Klein
(2021) (FUDGE) leveraged an external token-level
auxiliary model for their work. This was followed
by (Meng et al., 2022b) (NADO) who trained a
token-level auxiliary model by decomposing the
controlling criteria via optimization and approxi-
mation. Zhang et al. (2023) (GeLaTo) leverage a
probabilistic circuit to tractably incorporate sym-
bolic constraints.

Our work is inspired by NADO (Meng et al.,
2022b), and we take it as a sub-component in our
fine-tuning approach. However, our paper signifi-
cantly differs from NADO. Firstly, NADO presents
an inference method that guides generation by
reweighting output distributions without updating
the model weights of the base model. In contrast,
our approach involves fine-tuning the model. We
use NADO to estimate the optimal distribution
that satisfies the constraints. However, our design
of the posterior regularizer, the iterative-updated
scheme, and the parallel computing algorithm is
novel. Moreover, the effectiveness of regularizing
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Figure 1: A conceptually visualization of base LLM dis-
tribution pθ and optimal distribution q∗ in fine-tuning.
The polygon is representing the feasible region Q where
the constraints are satisfied. On (a) it shows the regular-
izer term is defined as the closest distance from pθ to Q.
Regularized by KL-divergence from q, on (b) we show
the LLM distribution pθ is gradually pushed towards the
feasible region.

model training with constraints has not been stud-
ied for LLMs. We also demonstrate our approach
in a real-world application, enhancing models to
understand toxicity while preventing the generation
of toxic content. This cannot be done by NADO as
their approach is only a decoding method.

Attribute controlled fine-tuning for LLMs
When controlling attributes during fine-tuning, the
most straightforward way is to filter out training
data that contain the attribute (Wang et al., 2022).
However, this approach tends to cause performance
degradation as it can filter out large portions of the
training set and does not actively leverage negative
examples. Neuro-symbolic approach (Ahmed et al.,
2023) incorporates symbolic constraints as loss
added to the training objective; however, it cannot
handle complex or implicit constraints. RL (Rama-
murthy et al., 2023; Snell et al., 2023; Mudgal et al.,
2023) can be utilized to control an attribute via the
use of an attribute-related reward. RLHF (Ouyang
et al., 2022; Xu et al., 2022; Ziegler et al., 2019;
Bai et al., 2022a) and RLAIF (Bai et al., 2022b;
Lee et al., 2023) leverage feedback from humans
and LLMs, respectively, to control the required at-
tributes. However, they are more focused on being
aligned with humans (or LLMs) rather than specific
attribute control. RL-based methods are effective
but often inefficient due to the large variance in
feedback provided by the reward models.

3 Methodology

3.1 Notation and Formalization

We use pθ to denote the LLM and θ is its trainable
weights, x ∈ X is the input (e.g. prompts), and y
is the generated output sequence of the model. We
denote y<i = (y0, y1, . . . , yi−1) as the prefix of y.

C(x,y) : X × Y → {0, 1} denotes a black box
oracle function which takes prompt x and model
output y as input, and outputs whether the gen-
eration y satisfies the constraints.1 For example,
in detoxification, the oracle takes a user prompt x
and the model response y as input, then returns 0
when the response is offensive, indicating that the
response is unacceptable.

Given an LLM pθ, a black box oracle C(x,y),
and a training dataset D = {xi,yi}Ni=1, our goal
is to fine-tune the LLM as pθ̃ so that the model
retains its utilities while satisfying the constraints
in expectation:

∀x ∈ X , Ey∼pθ̃(y|x)[C(x,y)] ≥ δ. (1)

Here, δ is a user-specified parameter. When δ = 1,
the training will push the model to satisfy all con-
straints, while choosing 0 < δ < 1, soft constraints
are enforced.

3.2 Fine-tuning LLM with Posterior
Regularization

Given a training data (x,y), typically the objective
we fine-tune the LLM pθ is defined as

LLM (pθ;x,y) =
∑

i
LCE(pθ(yi|x,y<i), 1),

where LCE is the cross-entropy loss. To achieve
attribute control, we propose to add a regularization
term that penalizes the violation of constraints.

The general idea of our approach is to fine-tune
LM with a regularizer to penalize the following
posterior regularization (Ganchev et al., 2010), we
define

Q := {q | ∀x ∈ X ,Ey∼q(y|x)[C(x,y)] ≥ δ}
DKL(pθ∥Q) := minq∈QDKL(pθ∥q).

The feasible region Q is the set of distributions
that satisfy the constraint in Eq. (1). Illustrated by
Fig. 1(a), the regularization term DKL is defined
as the smallest divergence from Q measured by
Kullback–Leibler (KL) divergence. The overall
objective of fine-tuning is

L(pθ;x,y, Q) := LLM (pθ;x,y)+λDKL(pθ∥Q),
(2)

where λ is the hyper-parameter balancing the two
terms.

1We can extend our approach to handle real value con-
straints in the form of C(x,y) ∈ [0, 1]. For simplicity, we
consider binary constraints in this paper.
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However, the second term is intractable and
hard to compute: when the base model distribu-
tion changes in fine-tuning, the closest distribution
also changes. To address this issue, we design an
iterative fine-tuning process: we first fix the base
model distribution and estimate the closest distribu-
tion in the feasible set (Sec. 3.3, 3.4), and then we
fix the estimated distribution as the reference distri-
bution in the KL regularizer to fine-tune the LLM
(Sec. 3.5). To speed up the process, we further
propose parallel fine-tuning (Sec. 3.6).

3.3 Optimal Distribution in Feasible Region
To compute the regularizer term in fine-tuning, we
need to find the optimal distribution q∗ as the refer-
ence distribution by solving the following problem

q∗ = argminq:Ey∼q(y|x)[C(x,y)]≥δ DKL(q∥p).
(3)

Meng et al. (2022b) shows the close-form solu-
tion can be derived as

q∗(yi|x,y<i) ∝ pθ(yi|x,y<i)·
[(δ −Rp

C(x))R
p
C(x,y<i ⊕ yi) + (1− δ)Rp

C(x)]

if δ > Rp
C(x). Otherwise the constraint is already

satisfied and q∗(yi|x,y<i) = pθ(yi|x,y<i).
Specifically, when δ = 1, we have

q∗(yi|x,y<i) ∝ pθ(yi|x,y<i)R
p
C(x,y<i ⊕ yi),

(4)
where ⊕ is the concatenation operation.
Rp

C(x,y<i) is the probability that the gener-
ated output will satisfy constraints when the
generation finishes given input x and prefix y<i,
and is given by

Rp
C(x,y<i) = Pry∼pθ(y|x,y<i)

[C(x,y) = 1],

Rp
C(x) = Pry∼pθ(y|x)[C(x,y) = 1].

Basically, the satisfaction probability Rp
C is the

token-level decomposition of the sentence-level
oracle C. Based on δ and Rp

C , the solution shows
how to adjust the next token distribution from the
original distribution pθ.

Unfortunately, although the function Rp
C is well-

defined, it is not tractable. To achieve the optimal
solution in Eq. (3), in this work, we estimate Rp

C

from the training data and the LLM, and update
the two terms in Eq. (3) iteratively. In sections 3.4
and 3.5, we describe how we estimate Rp

C from the
data and the current model pθ, and how we update
the model pθ with the help of the estimated Rp

C .

Note that in fine-tuning objective Eq. (2), the
reference distribution q is fixed, and we update pθ,
so the regularizer is DKL(pθ∥q). However, here
the model p is fixed and we seek the optimal q,
so we minimize DKL(q∥pθ). Empirically, when
we optimize the KL divergence term, the trainable
weights in the reference distribution usually lead
to unstable training. Thus, we always set the fixed
distribution as the reference distribution.

3.4 Estimating Rp
C from LLM and Data

To estimate Rp
C , we train an auxiliary model Rϕ

from the training data D̃ weighted by the base LLM
pθ. We assume the empirical distribution is drawn
from unseen training distribution D, and has no
repetition2, and set the objective function for a
particular example (x,y) ∈ D̃ as the cross-entropy
loss between the predicted satisfaction probabil-
ity and oracle output, weighted by the sequence
probability pθ(y|x)

L(Rϕ;x,y)

=pθ(y|x)
∑

i
LCE(Rϕ(x,y<i), C(x,y<i)).

(5)
Considering the expected loss on distribution D,

we have

ED̃∼D,(x,y)∼D̃[L(Rϕ;x,y)]

=ED̃∼D,(x,y)∼D̃[pθ(y|x)
∑

i

LCE(Rϕ(x,y<i), C(x,y))]

=Ex∼D,y∼pθ(y|x)[
∑

i

LCE(Rϕ(x,y<i), C(x,y))]

=
∑

i

LCE(Rϕ(x,y<i), R
p
C(x,y<i)).

(6)

Therefore, the global minimum of the expected
loss function is reached when Rϕ(x,y<i) =
Rp

C(x,y<i).
In Meng et al. (2022b) the auxiliary model is

trained by the data sampled from pθ without weight-
ing the data by its probability as Eq. (5). The
expected loss is the same as Eq. (6). In our
experiments, we apply sampling to train the aux-
iliary model, when there is no available training
data. Hereafter in this work, we follow Meng et al.
(2022b) and refer to this auxiliary model as the
neurally-decomposed oracle (NADO). In practice,
NADO architecture is similar as the base LLM,
with the same hidden dimension and fewer layers.

2If there are repeated examples we can remove them be-
fore training. This assumption makes sure that the following
weighted empirical loss mimics the expectation loss from
sampling.
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3.5 Iteratively Updating pθ by Regularized
Fine-tuning

Once we estimate RC
p by NADO Rϕ, we are able

to get the estimated optimal distribution q from
Eq. (3) by replacing RC

p with Rϕ. We then plug in
the estimated optimal distribution to the fine-tuning
objective in Eq. (2) as

L(pθ;x,y, q)

=LLM (pθ;x,y) + λDKL(pθ(y|x)∥q(y|x))
=
∑

i
log pθ(yi|x,y<i)

+λDKL(pθ(yi|x,y<i)∥q(yi|x,y<i)).

(7)

Intuitively, a model fine-tuned with the objective
in Eq. (7) exhibits a trade-off between the model
quality and the amount of control. Fine-tuned on
this objective, the model converges at some mid-
point between pθ and q.

Now we are able to estimate RC
p by Rϕ from the

training data and model pθ (Sec. 3.4), and fine-tune
pθ with estimated optimal distribution q derived
from Rϕ. A straightforward way is to update these
models iteratively, which we call “sequential fine-
tuning”. In this process, we gradually push the base
model distribution towards the feasible region, and
the estimated optimal distribution is more accurate.
As shown in Fig. 2(a) and described in Sec. 3.1,
we iteratively run the following three steps:

• Based on current LLM p
(i)
θ , sample or weight

data D(i) labeled by the oracle.
• Train NADO R

(i)
ϕ using the data D(i) initial-

ized with R
(i−1)
ϕ .

• Fine-tune the LLM p
(i)
θ with the KL-

divergence between p
(i)
θ and q(i) given by

Eq. (4).
The distribution of the base model can be con-

ceptually visualized in Fig. 1(b) during fine-tuning.
As the base model p(i)θ getting closer to the feasible
region, the estimated optimal distribution q(i) will
be more accurate compared to the estimation from
the original base model distribution q(1).

3.6 Parallel Fine-tuning

The iterative fine-tuning process outlined in Sec-
tion 3.5 executes its steps sequentially by solv-
ing the optimization problem in Eq. (3) in each
round. However, while accurate, it is also ineffi-
cient. In this section, we propose a parallel fine-
tuning method to improve efficiency.

In parallel fine-tuning, we propose a set-up that
processes the three steps outlined in Sec. 3.5 in par-
allel (see Fig. 2(b)). Given p

(i)
θ , D(i) and q(i), the

following three steps are processed simultaneously:
• Based on current LLM p

(i)
θ , sample or weight

data D(i+1) labeled by the oracle.
• Train NADO R

(i+1)
ϕ using data D(i) initial-

ized with R
(i)
ϕ .

• Fine-tune the LLM p
(i+1)
θ with the KL-

divergence from q(i) given by Eq. (4).
After one round, we get p(i+1)

θ , D(i+1) and q(i+1).
The LLM keeps fine-tuning on the dataset with a
regularizer, and the regularizer is updated at ev-
ery checkpoint. In sequential fine-tuning, the pro-
cess will terminate at each checkpoint, waiting for
the regularizer to update with the data sampled or
weighted by the LLM. Compared to a baseline,
which fine-tunes without control, the extra time
cost in our method is only the extra computation on
the regularizer and the time cost in dumping check-
points. The additional memory cost for NADO is
not significant, because it is relatively small com-
pared to the base LLM.

In practice, we select proper hyperparameters3

to ensure the three steps take similar computational
time. In such a case, parallel fine-tuning achieves
3x speed up compared to sequential fine-tuning.

3.7 Adaptive Regularizer
The data for fine-tuning an LLM often includes a di-
verse mix of sources. Fine-tuning on a specific do-
main may lead to performance degradation in other
domains due to catastrophic forgetting. A popular
approach is to add KL-divergence to the original
model to avoid the model deviating from the origi-
nal model (Schulman et al., 2017). To effectively
incorporate this mechanism into our approach, we
can implement domain-specific regularizers during
the fine-tuning process.

Specifically, we denote the training dataset as
D =

⋃
iDi. For each subset Di with a correspond-

ing constraint oracle Ci. We use the base LLM to
weight the subset, and Ci to label them. According
to Eq. (5), we train NADO Rϕi

for the constraint
oracle Ci, and compute the estimated optimal dis-
tribution qi. We use qi as the reference distribution
in the KL-divergence. Specifically, when we set qi
as the original distribution, the regularizer sets as

3Including the number of examples we sample or weight,
number of epochs to fine-tune LM, and number of epochs to
train NADO.
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Figure 2: An illustration of sequential and parallel fine-tuning for three iterations. We use T (time step) to indicate
the time. Oracle, symbolizes the process of sampling data from an LLM, labeling with an oracle, and training the
NADO model. On the left, we show sequential execution with the grey arrows showing the direction of flow. On the
right, we show the parallelized execution. Note that in this case, all components (left to right) of each iteration are
run at the same time step (except in iteration 1). Note also, that the grey dashed arrows (from iteration 2 onwards)
do not flow across components within the same iteration level, indicating the independence of each component from
other components in the same level. This allows them to be executed in parallel.

the KL-divergence to the original model. We refer
to this regularizer as the preserving regularizer.

In this work, we demonstrate how to effectively
control the toxicity of an LLM while preserving its
performance level. We apply the regularize for tox-
icity control when fine-tuning it on toxicity-related
datasets, while using the preserving regularize on
a general dataset (like Wikitext). Formally, we de-
note p0 as the original LLM, q as the estimated
optimal distribution under toxicity constraint ora-
cle, and DT ⊂ D as the toxicity-related training
set. We adopt the fine-tuning objective in Eq. (2) to

L(pθ;D, q) =
∑

(x,y)∈D
LLM (pθ;x,y)

+λ
∑

(x,y)∈DT

DKL(pθ(y|x)∥q(y|x))

+λ
∑

(x,y)/∈DT

DKL(pθ(y|x)∥p0(y|x)).

(8)

4 Case Study on Detoxification

To test the effectiveness of the proposed approach,
we apply it to detoxify an LLM. Toxicity, as dis-
cussed in Section 1, is of significant importance as
a metric for the evaluation of LLM (Brown et al.,
2020; Touvron et al., 2023a; Chowdhery et al.,
2022; Touvron et al., 2023b). In this context, we
apply our fine-tuning schema in three different sce-
narios; (1) detoxification: testing the effectiveness
of our proposed approach in attribute control, (2)
multi-task scenario: testing that the controlled
model preserves the same level performance on
other tasks, and (3) toxicity classification: testing
whether the control affects the model performance
on attributes related tasks.

Model API Tox. ToxiGen

Llama baseline 0.315 23.0
Reinforcement Learning 0.269 12.3
NADO Decoding Control 0.289 14.4

Ours (sequential) 0.259 11.0
Ours (parallel) 0.261 10.9

Table 1: Toxicity scores of Llama-7B model with differ-
ent detoxification methods. The proposed fine-tuning
methods outperform RL and decoding-time control in
detoxification. Parallel fine-tuning achieves similar con-
trol compared to sequential, with 3x fine-tuning speed.

In all experiments, we set δ = 1 to set toxic-
ity as a hard constraint. Detailed notes on data
pre-processing, hyper-parameter choice for model
training, and the architecture of auxiliary models
can be found in the Appendix.

4.1 Detoxification

Given a corpus and a toxicity oracle, we first show
the effectiveness of our approach in detoxification.
We also show that parallel fine-tuning achieves a
similar performance as the sequential one.

Setup We use Llama-7B (Touvron et al., 2023a)
as the base model. NADO has a similar architecture
but with only 8 layers. For our experiments, we use
RealToxicPrompts (RTP) (Gehman et al., 2020)
and ToxiGen (Hartvigsen et al., 2022) datasets.
For each dataset, we sample 50k prompts for fine-
tuning and another 5k for evaluation. During the
evaluation, we prompt the model with each data
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point from the evaluation set and generate 32 to-
kens. For the RTP dataset, we measure the average
toxicity across the generations by using Perspec-
tiveAPI. For ToxiGen, we use the pre-trained Toxi-
gen (RoBERTa) classifier, which was released with
the dataset, to calculate the percentage of generated
sentences that are toxic. We test three detoxifica-
tion methods, in addition to the Llama baseline:

• Reinforcement Learning: For each prompt
in the evaluation set, we sample 32 genera-
tions. We utilize the PerspectiveAPI and Toxi-
Gen classifier confidence scores as reward for
the two test sets, respectively. We then use the
policy gradient (Sutton et al., 1999) to update
the base language model.

• NADO controlled decoding: For each
prompt in the two test sets, we sample 32
sentences and obtain binary labels from Per-
spectiveAPI and the ToxiGen classifier, re-
spectively. When using PerspectiveAPI we set
a threshold of toxicity score > 0.1 as toxic.

• Ours: We follow the NADO-controlled de-
coding oracle setup. We split the 50k fine-
tuning set into 5 groups. We separately run
iterative sequential fine-tuning and parallel
fine-tuning for 5 rounds using these groups.

Results The results are shown in Tab. 1. We ob-
serve that on both datasets our method achieves
the best detoxification (given the same amount of
training data). We observe that there is a significant
performance improvement brought on by iterative
fine-tuning when compared to NADO-controlled
decoding, which shows that directly estimated the
optimal distribution is not optimal. The iterative
process enables the gradual push of the base model
distribution towards the feasible region (Fig 1), and
the estimated optimal distribution improves in its
accuracy. The sequential and parallel fine-tuning
results show comparable performance. Since par-
allel fine-tuning is more efficient, we focus on this
method from this point onward.

Preference optimization (Rafailov et al., 2023)
is a popular RL method in fine-tuning LLMs. It
leverages human preference between a pair of gen-
eration to achieve an alignment between model
output and human. However, in our setup, the goal
is to control the toxicity of the model output. The
metric is clearly defined by PerspectiveAPI or Tox-
iGen classifier. Directly applying the toxicity value
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listed baselines in Table 2. The trade-off is controlled
by the coefficient λ in Eq. (8). We observe that to con-
trol the language model in the same level of toxicity, our
approach, with adaptive regularizer, achieves the best
commonsense reasoning performance compared to the
listed methods.

as the reward in RL is much more effective than
the pairwise preference.

4.2 Balance between Utility and Detoxification
We further study how our method can reduce toxic-
ity generation while maintaining model utility. As
RTP and ToxiGen datasets are small, fine-tuning
only on them would lead to catastrophic forgetting
and degradation in utility. Therefore, we fine-tune
the LLM on a mix of general Wikitext corpus and
toxicity corpus. We show that the proposed method
achieves the best trade-off between toxicity con-
trol and maintaining performance on general utility
benchmarks.

Setup We use Llama-7B (Touvron et al., 2023a)
and Falcon-7B (Almazrouei et al., 2023) as base
models, and fine-tune each of them on a mixture of
ToxiGen and Wikitext (Merity et al., 2016) data in
equal proportions. We evaluate model performance
on ToxiGen toxicity, and the utility on MMLU
and commensense reasoning. The details about
evaluation metrics can be found in the Appendix.
We test 5 different methods:

• Filtering: We filter out all the data labeled as
toxic by the ToxiGen classifier.

• Reinforcement Learning: We take the confi-
dence score provided by the ToxiGen classi-
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Model ToxiGen MMLU(5-shot) Com. Reasoning (0-shot)

Llama-7B

Baseline 23.0 35.1 75.6
Filtering 21.9 34.6 75.1

RL 15.2 33.6 73.2
NADO decoding 16.8 31.1 71.4

Ours w/o Adaptive 13.6 30.4 71.9
Ours w/ Adaptive 14.2 33.9 73.6

Falcon-7B

Baseline 14.0 27.2 76.1
Filtering 13.6 26.4 74.9

RL 9.8 25.4 74.4
NADO decoding 7.3 23.6 72.5

Ours w/o Adaptive 7.1 24.1 71.8
Ours w/ Adaptive 7.3 26.1 74.5

Table 2: Benchmark performance of Llama-7B and Falcon-7B with toxicity control. The models are fine-tuned on a
mixture corpus including ToxiGen and Wikitext in equal proportions. Results show that our approach achieves a
better trade-off between toxicity control and benchmark performance compared to RL. Filtering is not effective in
controlling toxicity. With the adaptive regularizer, LLM has a significant performance improvement on benchmarks.

fier as the reward, and apply policy-gradient
to minimize the toxicity.

• NADO decoding: We train the auxiliary
model on ToxiGen sampled data, and control
the model generation at decoding time.

• Ours (without Adaptive): We apply parallel
fine-tuning on both datasets with the auxiliary
model trained on ToxiGen sampled data.

• Ours (with Adaptive): We apply an adaptive
regularizer as described in Eq. (8). We use the
preserving regularizer on Wikitext data, while
using the toxicity control regularizer on the
ToxiGen sampled data.

Results The results are shown in Tab. 2. We
observe that all detoxification methods cause a per-
formance drop on our utility metrics (i.e. MMLU
and commonsense reasoning). Filtering is not ef-
fective for detoxification. In Fig. 3 we show the
trade-off curve between ToxiGen and Common-
sense reasoning tasks of our method compared to
other methods. Our method with the adaptive regu-
larizer achieves the best trade-off between toxicity
control and model utility.

When used without the adaptive regularizer, our
method achieves the best toxicity control. However,
this comes at the cost of utility loss. This indicated
that the toxicity regularizer trained on ToxiGen
sampled data does not perform well on the Wikitext
data. The adaptive regularizer helps preserve the
model utility while fine-tuning on Wikitext data.

Win rate Base Filter RL Ours

Base N/A 44.3 45.1 51.4
Filter 55.7 N/A 53.4 61.6
RL 54.9 46.6 N/A 61.3

Ours 48.6 38.4 38.7 N/A

Table 3: Pairwise comparison by OPT-30B on ToxiGen
sampling data. The value shows the win rate of the
method on the top row in pairwise comparison. Our
model is indistinguishable from base model and out-
performs Filter and RL approaching, demonstrating it
retains the quality of generation.

We note that Falcon-7B has much lower toxic-
ity when compared to Llama-7B. The consistent
performance trends observed in both base models,
demonstrate that our method is robust to different
base models independent of its levels of toxicity.

We further analyze model generation quality by
leveraging a larger model, OPT-30B (Zhang et al.,
2022), to do pairwise comparison on model gen-
erations for ToxiGen prompts from 4 systems: (1)
the base Llama-7B model, (2) filtering, (3) RL and
(4) ours with the adaptive regularizer. We do not
consider NADO controlled decoding and ours with-
out the adaptive regularizer, as they are obviously
worse in terms of model quality. The results are
shown in Tab. 3. We show that OPT-30B prefers
our system (with the adaptive regularizer) the best,
with slight improvement over the base model.
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Model API Tox. Classify ROC

baseline 0.315 0.910
SFT(LLM loss) 0.344 0.966
Ours(LLM loss) 0.288 0.959

SFT(classification) 0.314 0.972

Table 4: Jigsaw dataset performance of Llama-7B model
with toxicity control. SFT with LLM loss shows a trade-
off between the generation toxicity and classification
performance, while our approach is capable to reduce
the generation toxicity while improve toxicity classifi-
cation performance.

4.3 Toxicity Classification and Generation
An LLM cannot avoid generating toxic outputs if
it is unable to recognize toxic language. There-
fore, it is essential for LLM to comprehend the
characteristics of toxic content so that it can ac-
tively filter out harmful elements while maintaining
the integrity of the generated output. However, a
generic fine-tuning method often cannot improve
the toxicity classification and reduce toxic genera-
tion at the same time. We design an experiment to
test whether our approach can effectively enhance
the LLM’s ability to classify toxic content without
increasing its generation of such content.

Setup We fine-tune the Llama-7B on the Jigsaw
toxicity classification dataset (Jain et al., 2022). We
compare the performance of models fine-tuned us-
ing our controlled method to ones fine-tuned using
uncontrolled fine-tuning. We use classification per-
formance and generation toxicity (as evaluated by
PerspectiveAPI) as metrics of comparison. Specifi-
cally, we compare three methods:

• Supervised fine-tuning with LLM loss: We
concatenate each question and answer in the
Jigsaw dataset, and fine-tune with a language
modeling objective.

• Ours with LLM loss: We train an auxil-
iary model on RTP sampled data labeled by
PerspectiveAPI, and fine-tune the language
model same as above on Jigsaw dataset with
the toxicity regularizer.

• Supervised fine-tuning as classification: We
treat each question in Jigsaw as the prompt
and only calculate loss on the answers. This
is regarded the upper bound of performance
for this task.

Results The results are shown in Tab. 4. We ob-
serve that if we fine-tune the LLM on the Jigsaw
dataset without toxicity control, the generation tox-
icity increases significantly (9.2%, from 0.315 to
0.344). The reason is that Jigsaw consists of toxic
content and fine-tuning on this shifts the model out
distribution to be toxic. In comparison, when using
our fine-tuning schema which leverages the toxic-
ity regularizer, we achieve decreased toxicity. No-
tably our method also improves classification per-
formance, achieving almost similar performance
to uncontrolled fine-tuning, demonstrating our ap-
proach makes the model understand the toxicity
rather than simply make model ignore the toxicity
contents in training data.

5 Conclusion

We propose a novel fine-tuning approach for at-
tribute control in LLM generations and we demon-
strate its effectiveness using toxicity as our chosen
attribute. While this work focuses on toxicity, our
approach is general enough to accommodate other
types of attributes as well. With adaptive regu-
larizers, our method can further extend to control
multiple attribute across various domains.
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Limitation

In this work we assume that a decent oracle (Per-
spectiveAPI, ToxiGen classifier) for the attribute
we would like to control is available. A low qual-
ity oracle may rely on superficial shortcut between
generation and constraint labels, resulting in that
the fine-tuned model captures such shortcut. There-
fore, it is possible that we need to train a decent
oracle before applying the proposed method.

Although our method is general to apply dif-
ferent kinds of constraints since we have no as-
sumption on the black-box oracle, in experiment
we focus on detoxification. We leave the study on
controlling other attributes in future work.

As a attribute control method, we note that there
is a potential risk that malicious users could use
this approach to ’toxify’ the LLM by opposite the
oracle. In addition, the generated texts may con-
tain new toxic contents that cannot be generated
in original LLM, since it may learn from the toxic
fine-tuning corpus. However, on the other hand,
the controlled LLM is generally less risky in gener-
ating toxic contents.
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A Model Architecture and Optimizer

In all experiments, the NADO model has the same
configuration as Llama-7B model but with only 8
layers. We use AdamW as optimizer with learning
rate 3e− 5 and weight decay 1e− 2.

In detoxification and toxicity classification ex-
periments, we train NADO from data sampled by
base LLM. We use simple random sampling with-
out any decoding configuration.

B LLM Fine-tuning

We fine-tune the base LLM with AdamW optimizer
with learning rate 1e− 5 and weight decay 1e− 2.
λ = 10.0 in the multi-task scenario experiment,
and λ = 5.0 in the detoxification and toxicity clas-
sification experiments.

C Metrics in Multitask Experiment

We evaluate the model performance on the follow-
ing three metrics:

• ToxiGen (toxicity): Same set up as the detox-
ification experiment in Section 4.1.

• MMLU (utility): We do 5-shot evaluation
on the MMLU benchmark (Hendrycks et al.,
2021) and report the average score.

• Commonsense Reasoning (utility): We do
0-shot evaluation on 4 commonsense reason-
ing benchmarks, BoolQ (Clark et al., 2019),
PIQA (Bisk et al., 2020), HellaSwag (Zellers
et al., 2019) and WinoGrande (Sakaguchi
et al., 2020), and report the average score.

D Data Preprocessing

RTP and ToxiGen: We randomly select prompts,
and use the LLM to randomly sample 32 tokens in
both training and evaluation.

Jigsaw: The data are comment-label pairs. We
templatize the data as:

The comment [comment] is a [label name] com-
ment.

In evaluation, we query the model by template:
Is the comment [comment] a [label name] com-

ment? Answer: [Yes / No]

MMLU and commensense reasoning: We fol-
low the standard o-shot and few-shot evaluation
scripts.

E License of Datasets

The licenses of datasets we use in this paper list
below:
ToxiGen: MIT License
Wikitext: CC BY-SA License and GFDL License
Jigsaw: MIT License
MMLU: GNU AGPL
BoolQ: CC BY-SA License
PIQA: Apache License
HellaSwag: MIT License
WinoGrande: Apache License
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