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Abstract

This paper introduces LADAM, a novel
method for enhancing the performance of text
classification tasks. LADAM employs atten-
tion mechanisms to exchange semantically sim-
ilar words between sentences. This approach
generates a greater diversity of synthetic sen-
tences compared to simpler operations like
random insertions, while maintaining the con-
text of the original sentences. Additionally,
LADAM is an easy-to-use, lightweight tech-
nique that does not require external datasets
or large language models. Our experimental
results across five datasets demonstrate that
LADAM consistently outperforms baseline
methods across diverse conditions.

1 Introduction

Text classification is a prominent research area in
natural language processing (NLP), where perfor-
mance heavily relies on dataset quality. With the re-
cent emergence of large language models (LLMs),
there has naturally been an increasing need for sub-
stantial datasets. For example, GPT-3 (Brown et al.,
2020) utilizes 175 billion parameters, emphasizing
the crucial requirement for extensive dataset train-
ing. In this context, data augmentation (DA) plays
a critical role in improving text classification tasks.

Previous studies on DA have employed simple
noising operations such as random insertions and
deletions of words (Wei and Zou, 2019; Karimi
et al., 2021). These techniques often struggle to
generate diverse contexts in augmented texts and
can inadvertently alter the original meaning due to
their random nature. Alternatively, model-based
methods (Kobayashi, 2018; Wu et al., 2019) have
been employed to replace words with synonyms,
aiming to maintain the original context of sentences.
However, the effectiveness of this approach heavily
relies on the quality of the pre-trained dataset used
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for the model and may be challenging to implement
due to dependencies on external resources like
heavy language models. Interpolation is another
DA method (Zhang et al., 2017; Guo et al., 2019;
Sun et al., 2020). However, when applied directly
to raw data such as words, this approach tends
to produce nonsensical sentences that can alter la-
bels or meanings of the original sentences (Thulasi-
dasan et al., 2019).

To address these limitations, we propose
LADAM (Lightweight Attention-based Data
Augmentation Method), which utilizes attention
mechanisms to identify synonyms. LADAM gen-
erates diverse new sentences by replacing words
with synonyms while preserving the original mean-
ing. It is lightweight, as it operates without external
datasets or language models, ensuring ease of use.
Our evaluation results demonstrate it’ s effective-
ness in text classification tasks, and we have made
LADAM publicly available1.

2 Related Work

Noising Methods. One approach in text data
augmentation (DA) uses noising operators (e.g.,
insertion and deletion). Easy Data Augmentation
(EDA) (Wei and Zou, 2019) employs four oper-
ations: Random Insertion, Random Swap, Ran-
dom Deletion, and Synonym Replacement on se-
lected words from sentences. EDA utilizes an
external datasets for insertion and replacement,
such as WordNet (Miller, 1995). Text AutoAug-
ment (TAA) (Ren et al., 2021) uses EDA’s four
operations with a language model to select opera-
tions. In addition, An Easier Data Augmentation
(AEDA) (Karimi et al., 2021) inserts one of the six
punctuation marks (e.g., “.”, “;”, “?”, “:”, “!”, “,”).
Model-based Methods. Another line of text DA
research utilizes model-based methods. Contex-
tual Augmentation (Kobayashi, 2018) employed

1https://github.com/kalpa093/ladam
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[SEP]
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Figure 1: Overview of the data augmentation process in LADAM.

bi-directional LSTM-RNN to replace words with
synonyms identified by the model. Similarly, Con-
ditional BERT (C-BERT) (Wu et al., 2019) incor-
porated BERT and a conditional Masked Language
Model to find synonyms.

Interpolation Methods. Interpolation meth-
ods, such as Mixup (Zhang et al., 2017) originally
developed for image DA, have been adapted for
text data in recent studies such as wordMixup and
senMixup(Guo et al., 2019). In wordMixup, sen-
tences are zero-padded to uniform length, and in-
terpolation is performed across each dimension of
the words in a sentence. Conversely, senMixup
generates hidden embeddings for two sentences,
followed by linear interpolation between them.
Mixup-Transformer (Sun et al., 2020) adapted a
similar approach to senMixup but utilizes BERT
for generating embeddings for the two sentences.

3 LADAM

LADAM generates synthetic texts while preserv-
ing the original sentence’s meaning. Key differ-
ences from existing methods include: 1 minimiz-
ing the scope of word replacements, 2 directly ap-
plying to raw data, and 3 being the first approach
to use attention scores to preserve the original sen-
tence’s context.

Figure 1 illustrates the overall architecture of
LADAM, which consists of two phases: Context-
based Sentence Selection and Attention-based Word
Selection. In the context-based sentence selection
phase, a random target sentence T is selected for
augmentation, and another random sentence A with
the same label L is chosen as the assistant sen-
tence. The two sentences are tokenized into words,
and each word is vectorized using BERT Word
Embedding (Devlin et al., 2019) and concatenated
in the format "[CLS] T [SEP] A [SEP]". In the
attention-based word selection phase, LADAM

Datasets # Classes Avg. Length Train Set Test Set
CR 2 19 2,715 679
SST2 2 22 9,096 2,274
SUBJ 2 24 8,000 2,000
MPQA 2 3 8,587 1,061
TREC 6 10 4,906 500
biased_CR 2 18 1,830 458
biased_SST2 2 22 5,144 1,287
biased_SUBJ 2 23 4,400 1,100
biased_MPQA 2 2 3,293 1,061
biased_TREC 6 10 1,436 500

Table 1: Statistics of the datasets.

employs the attention mechanism in Transformer
models (Vaswani et al., 2017), deriving attention
scores using scaled dot-product for each word in
sentences T and A. The attention scores are ex-
tracted via softmax(QKT

√
dk

) where Q is query, K
is key, and dk is dimension of key. At this stage,
only the attention scores from T with respect to the
A need to be extracted, so we focus on the attention
scores where the query (Q) is T and the key (K)
is A. Next, based on the random word in the T ’s
embeddings, we identify the position of the word
in the A’s embeddings that has the highest atten-
tion score, then generate a synthetic sentence by
exchanging the original target word with the word
we choose from A. Note that as we did not modify
the embeddings to create synthetic text, plaintext
is obtained without detokenization. For sentences
of different lengths, padding equalizes them, and
masking distinguishes padding from actual tokens
to minimize its impact on results.

4 Experimental Setup

4.1 Baselines

As baselines, we selected 1 two recent noising
approaches (EDA and AEDA), 2 one model-
based method (C-BERT), and 3 one interpolation
method (senMixup) - all of which are open source.
These baselines were selected based on their popu-
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Figure 2: Optimal degree based on number of words for baselines and LADAM.

larity, as reflected by the number of citations and
GitHub stars. To ensure a fair comparison, we used
the original codebases of these methods without
making any modifications to their architectures.

4.2 Datasets

We used five benchmarks, as outlined in Table 1.
CR2 (Ding et al., 2008) contains customer reviews
and forum posts labeled as positive or negative.
SST-23 (Socher et al., 2013) consists of single sen-
tences from movie reviews, also labeled as positive
or negative. SUBJ4 (Pang and Lee, 2004) includes
movie reviews labeled as subjective or objective.
MPQA5 (Wiebe et al., 2005) contains short news
phrases labeled for positive or negative sentiment.
TREC6 (Hovy et al., 2001; Li and Roth, 2002)
consists of question sentences categorized into six
different labels.

For the SUBJ and TREC datasets, we used the
same versions as the baseline methods. However,
while the SUBJ dataset was identical, there was a
slight difference in size; we applied an 8:2 split for
cross-validation, whereas the baselines used a 9:1
split. For SST-2, we employed the same dataset
version as C-BERT and senMixup (Socher et al.,
2013). For MPQA, we used version 1.2, the latest
version focused on contextual polarity, which had
not been used by the baseline methods. Similarly,
for CR, we used the latest version (Ding et al.,
2008), which differs from the version used by EDA
and AEDA (Hu and Liu, 2004).

Using the same benchmarks, we also constructed
a biased dataset by reducing the size of all labels,
except one, to 10% of their original size to evaluate
LADAM under biased conditions. We also prepro-
cessed each dataset as detailed in Section B. These

2https://huggingface.co/datasets/SetFit/CR
3https://github.com/YJiangcm/

SST-2-sentiment-analysis
4https://www.cs.cornell.edu/people/pabo/

movie-review-data/
5https://mpqa.cs.pitt.edu/corpora/mpqa_corpus/
6https://huggingface.co/datasets/CogComp/trec

datasets are open-source, freely available, and have
been validated to ensure ethical compliance.

4.3 Models
For text classification models, we employed
four models: BERTbase (Devlin et al., 2019),
RoBERTa (Liu et al., 2019), DeBERTa (He et al.,
2020), and distilBERT (Sanh et al., 2019) for clas-
sifiers of our experiments from huggingface (Wolf
et al., 2019). They were selected due to their high
performance in text classification as demonstrated
by GLUE (Wang et al., 2018) and SQuAD (Ra-
jpurkar et al., 2016). We initialized the classi-
fiers with pre-trained parameters from the Hugging-
Face (Wolf et al., 2019) and employed automatic
training with early stopping, using a patience of 20
epochs. All hyperparameters of each model is used
by default settings except learning rate (1e−7) and
batch size (16).

5 Results

We compared LADAM with baseline methods un-
der various conditions, repeating each experiment
five times and reporting the average results. All
experiments were conducted on a GeForce RTX
3060 GPU with 12 GB of memory.

5.1 Degree of Augmentation
The degree parameter, which determines the num-
ber of word-level operations in sentence genera-
tion, significantly impacts model performance (Ren
et al., 2021). We analyzed the optimal degree for
both baselines and LADAM, as shown in Figure 2.
For EDA and AEDA, the optimal degree remains
consistently small (e.g., 1), even for long sentences,
and is not proportional to sentence length. There-
fore, we set the degree to a constant value of 1,
regardless of sentence length. In contrast, the opti-
mal degree for C-BERT and LADAM varies with
sentence length. Using linear regression, we calcu-
lated the degree-to-word ratios as 0.16 for C-BERT
and 0.17 for LADAM, and applied these optimal
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Datasets Biased Datasets
Methods CR SST2 SUBJ MPQA TREC Avg. CR SST2 SUBJ MPQA TREC Avg.
No Aug 87.62±2.98 94.03±2.68 95.40±1.93 90.57±2.59 94.58±2.63 93.52 73.67±3.29 76.18±3.05 90.76±2.58 81.58±2.93 38.07±4.46 79.55
EDA 92.95±3.21 94.03±3.07 98.32±1.05 90.33±2.83 90.50±3.57 93.77 76.50±3.67 89.23±2.52 96.08±1.27 81.30±2.64 38.03±5.61 85.24
AEDA 95.47±2.09 97.14±1.39 98.43±1.27 90.67±3.21 96.47±2.18 95.79 81.38±2.56 90.11±2.03 96.04±1.26 81.30±2.86 53.59±3.37 86.71
C-BERT 93.50±1.98 96.52±1.53 98.17±1.26 89.85±3.13 96.12±1.60 95.13 64.94±3.09 81.85±2.47 91.90±2.56 78.54±3.39 45.40±4.91 80.05
senMixup 93.96±1.34 96.03±1.05 97.21±0.91 90.44±2.37 97.29±0.86 95.06 85.13±2.61 89.37±1.84 96.57±1.22 80.35±2.91 46.79±3.89 86.20
LADAM 95.70±2.35 98.12±0.89 98.74±0.93 90.85±2.18 94.78±2.50 96.01 86.81±2.05 90.38±2.28 98.18±0.71 80.67±2.81 46.40±3.82 87.21

Table 2: F1-scores of a BERTbase classifier for each augmentation method applied to five datasets. Number after ±
is a variance of five results.

DA Methods RoBERTa DeBERTa distilBERT Avg.
No Aug 93.71±2.42 93.90±1.73 92.18±1.83 93.22
EDA 95.97±2.89 95.81±2.70 93.19±2.77 94.68
AEDA 96.43±2.50 96.18±2.16 94.85±2.29 95.81
C-BERT 95.34±1.52 95.34±1.68 94.52±1.61 95.01
senMixup 96.10±1.88 96.24±1.59 93.73±1.77 95.28
LADAM 96.69±2.09 96.40±1.93 95.94±1.75 96.23

Table 3: Average F1-scores of various BERT classifiers
on five datasets. Number after ± is an average variance.

values in our experiments. Notably, we did not ana-
lyze the degree for senMixup, as it does not involve
word-level editing. The process for determining
the optimal degree is detailed in Section A.

5.2 Main Results

Original Datasets. Table 2 presents F1-scores
of the BERTbase model for the text classification
task, comparing the performance of LADAM with
baselines on five datasets. As shown, LADAM
achieved the highest average performance.
Biased Datasets. LADAM’s performance may
be affected by imbalanced label distributions, as
it replaces words from sentences with the same
label. However, as shown in Table 2, LADAM
outperforms the baselines, proving its effectiveness
despite dataset imbalance.
Classifiers. We applied LADAM to various
BERT model families. As summarized in Table 3,
LADAM consistently shows better performance
than the baselines. This indicates that LADAM
can be effectively applied across different models.

5.3 Context Preservation
Now, we verify LADAM’s preservation of the orig-
inal sentence meaning using Cosine Similarity (Li
and Han, 2013) and Locally Linear Embedding
(LLE) (Roweis and Saul, 2000).
Cosine Similarity. Using Cosine Similarity, we
measured the similarity between vectors of the
original and augmented sentences across five dif-
ferent datasets. The Cosine Similarity values for
each dataset are as follows: CR (0.9996), SST-2
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Figure 4: Performance achieved with various naug .

(0.9999), SUBJ (0.9982), MPQA (0.9977), and
TREC (0.9999). These high Cosine Similarity val-
ues indicate that LADAM effectively preserves the
meaning of the original sentences.
LLE. Figure 3 visualizes the vectors of original
and augmented sentences on the SST-2 dataset
using LLE. It confirms that LADAM preserves
the meaning of the original sentences, as the aug-
mented sentences closely cluster around the origi-
nal sentences.

5.4 Ablation Study
In this section, we evaluted LADAM under various
configurations.

5.4.1 Size of Augmentation
The parameter naug denotes the number of aug-
mented sentences derived from a single sentence.
To assess whether naug impacts text classification
performance, we evaluated LADAM using naug

values of 1, 2, 4, 8, 16 with a BERTbase model. As
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Methods CR SST2 SUBJ MPQA TREC
No Aug 87.62±2.98 94.03±2.68 95.40±1.93 90.57±2.59 94.58±2.63

LADAM 95.70±2.35 98.12±0.89 98.74±0.93 90.85±2.18 94.78±2.50

LADAM v.A 94.64±2.66 97.52±1.32 97.70±1.06 89.65±2.25 94.50±2.49

LADAM v.B 83.68±3.05 90.85±2.23 90.65±2.44 89.00±1.85 93.81±2.41

Table 4: F1-scores of variations of LADAM.

shown in Figure 4, performance converges at naug

8.

5.4.2 Effectiveness of Attention Mechanism
We evaluated LADAM in two additional config-
urations: LADAM v.A, which performs random
word replacement without attention scores, and
LADAM v.B, which replaces all words at corre-
sponding positions in the target sentence, similar
to applying SenMixup to raw data. As shown
in Table 4, LADAM consistently outperforms
both v.A and v.B. Notably, LADAM v.B under-
performs compared to no augmentation across all
benchmarks. This highlights the effectiveness of
attention-based word selection and the importance
of reducing interpolation to words in the raw data.

6 CONCLUSION

We propose LADAM, a lightweight text data
augmentation approach designed to generate di-
verse augmented data while preserving the origi-
nal sentence context. Our experiments show that
LADAM outperforms baselines on both original
and biased datasets, demonstrating it’s effective-
ness in text classification tasks. Future work will
explore whether alternative attention scoring func-
tions, such as concat and Bahdanau, can enhance
LADAM’s performance.

Limitations

Although LADAM outperforms baselines in text
classification on the original MPQA dataset, the
performance improvement is not significant. On
the biased MPQA dataset, performance degrada-
tion is observed, with no augmentation outperform-
ing all augmentation methods. This suggests that
text data augmentation may not be effective for
certain datasets. We plan to conduct a detailed
analysis of this issue and improve LADAM in
future work. Also, the classifiers used in the ex-
periments have a relatively smaller number of pa-
rameters compared to the recently proposed large
language models. However, the RoBERTa model,
used in our experiments as an example, contains
355 million parameters, which is not insignificant.

In fact, it is considered one of the largest models
that can be practically used for current research
purposes.

Additionally, LADAM employs a scaled dot-
product attention function with a single attention
layer. This poses a potential risk: alternative func-
tions or multi-layered attention could either de-
grade or improve its ability to generate context-
preserving synthetic sentences. In future research,
we plan to explore various functions and multi-
layered attention mechanisms for deriving attention
scores in LADAM’s architecture. Investigating the
impact of different approaches on LADAM’s per-
formance will be a valuable area of study.

Ethics Statement

We employed five classification benchmark
datasets in our experiments. Data augmentation
conducted by LADAM is a recomposition of sen-
tences in the training datasets. Each benchmark
dataset has been officially released and has under-
gone validation to ensure ethical considerations
using human annotators. Furthermore, even if the
pre-trained language model, used as the backbone
for attention scoring, could have been exposed to
toxic data during pre-training process, since atten-
tion scores are just used for word selection which
does not generate unprecedented synthetic data.
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A Process of Deriving Optimal Degree

We define a parameter representing the number
of edited words in a single sentence as the “De-
gree” (D). In previous methods, such as AEDA
or C-BERT, researchers manually set degree val-
ues to a specific proportion of words in the entire
sentence (Ren et al., 2021; Wu et al., 2019). If
a single operation is conducted, the similarity of
context may vary depending on the length of sen-
tences, i.e., the number of words in the sentence.
Consequently, we hypothesized that dynamically
adjusting this value based on the length of the sen-
tence could be beneficial for every baselines. To
test this hypothesis, we divided the dataset based
on the number of words and experimented with
varying the D value accordingly. This approach
enables us to conduct data augmentation with an
optimal D value, ensuring optimal performance
regardless of the length of the sentence. Since the
Degree D is regarding to number of words, the
augmentation methods targeting sentence cannot

be applied the degree of augmentation. This ex-
periments includes augmentations targeting word
such as EDA, AEDA, C-BERT and LADAM. First,
we have analyzed data distribution of number of
words from each datasets. As shown in Figure 5,
datasets are not evenly distributed. TREC dataset
contains fewer than 30 instances where the num-
ber of words exceeds 20. MPQA dataset is con-
centrated on short phrases including 2,757 single
word which is 32.1% from 8,587 data (Wiebe et al.,
2005). SST-2 is excluded since it has literally no
sentences with length under 15. To increase relia-
bility throughout length of sentences, CR and SUBJ
datasets are employed in this experiment in light of
their even data distribution. The datasets were split
into subsets based on the number of words in each
instance, and training was conducted with varying
degrees. In cases where some subsets contained too
less than 100 instances for effective training, they
were merged with adjacent subsets having a similar
number of words. Consequently, the optimal de-
gree for each subset, based on the number of words,
was identified through this training approach. The
training was conducted using the BERT model, and
the dataset was split into an 8:2 ratio of training to
testing sets. We set N as the number of words in
the sentences. Figure 2 depicts the optimal degree
D corresponding to each N based on the results
of our experiments that the model shows highest
performance on the degree D. EDA and AEDA ex-
hibit an increase in performance when D remains
low, even at high N values. Therefore, we set
the D value as 1 for them. On the other hand, C-
BERT and LADAM involve augmenting sentences
by replacing a random number of words with dif-
ferent words, implying a proportional relationship
between N and D. We could get D for C-BERT
and LADAM by linear regression to y = βx. C-
BERT yields the D as 0.16 of number of words,
which is almost equivalent to the original ratio (i.e.,
0.15) used in previous study. LADAM yields the
D as 0.17 of number of words.

B Preprocessing Datasets

Prior to training, we performed several preprocess-
ing steps on the dataset. First, we replaced spe-
cial characters such as "’", "-", "‘", "\t", and "\n"
with spaces. Second, all uppercase letters were
converted to lowercase. Third, we removed ex-
tra spaces at the beginning and end of sentences.
Fourth, we eliminated duplicate entries and any
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Figure 5: A distribution of each dataset based on the number of words per sentence.

Datasets
DA Methods CR SST-2 SUBJ MPQA TREC Avg.
No Aug 87.68±2.98 94.07±2.68 95.40±1.93 90.61±2.60 94.76±2.65 93.57
EDA 93.07±3.22 94.03±3.07 98.32±1.05 90.41±2.84 90.55±3.58 93.81
AEDA 95.49±2.09 97.17±1.39 98.43±1.27 90.78±3.22 96.50±2.20 95.83
C-BERT 93.57±1.99 96.53±1.53 98.17±1.86 89.93±3.14 96.22±1.62 95.18
senMixup 93.98±1.34 96.03±1.05 97.21±0.91 90.48±2.37 97.40±0.89 95.11
LADAM 95.73±2.35 98.13±0.89 98.74±0.93 90.92±2.19 94.81±2.50 96.03

Table 5: Accuracy of a BERTbase classifier for each augmentation method applied to five datasets. The numbers
following ± is a variance of five results.

DA Methods RoBERTa DeBERTa distilBERT Avg.
No Aug 93.75±2.43 93.93±1.77 92.20±1.80 93.22
EDA 95.99±2.79 95.82±2.69 93.21±2.78 94.68
AEDA 96.47±2.48 96.21±2.15 94.88±2.29 95.81
C-BERT 95.39±1.50 95.38±1.68 94.53±1.61 95.01
senMixup 96.16±1.87 96.29±1.58 93.75±1.74 95.28
LADAM 96.73±2.04 96.42±1.93 95.96±1.76 96.23

Table 6: Average accuracy of various BERT classifiers
on five datasets.

empty data consisting solely of spaces. Finally,
we encoded the sentences in UTF-8 format. These
preprocessing steps resulted in dataset sizes that
differ from those used by the baselines, and the
statistics of the preprocessed datasets are detailed
in Section 4.

C Accuracy

This section provides the accuracy of the exper-
imental results conducted in Section 5. Table 5
shows the accuracy of LADAM on our main ex-
periment. Along with the F1-scores presented in
Table 2, LADAM outperforms the baselines in ac-
curacy. Moreover, as shown in Table 3 and Table 6,
LADAM achieved the best performance among
various families of BERT models in both accuracy
and F1-score.
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