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Abstract

Word embeddings represent language vocabu-
laries as clouds of d-dimensional points. We
investigate how information is conveyed by
the general shape of these clouds, instead of
representing the semantic meaning of each to-
ken. Specifically, we use the notion of persis-
tent homology from topological data analysis
(TDA) to measure the distances between lan-
guage pairs from the shape of their unlabeled
embeddings. These distances quantify the de-
gree of non-isometry of the embeddings. To
distinguish whether these differences are ran-
dom training errors or capture real information
about the languages, we use the computed dis-
tance matrices to construct language phyloge-
netic trees over 81 Indo-European languages.
Careful evaluation shows that our reconstructed
trees exhibit strong and statistically-significant
similarities to the reference.

1 Introduction

Does the shape of an unlabeled, monolingual word
embedding carry relevant information about the
language it represents? Word embeddings are well-
established objects of interest in natural language
processing, being d-dimensional vector representa-
tions that capture the semantics of each vocabulary
word. The vocabulary of language L can thus be
viewed as a cloud of points, whose geometric and
structural properties encode considerable informa-
tion about the language. In this paper, we demon-
strate that, even after disassociated from their bind-
ings to particular words, the “shape” of these point
clouds correlates with the history of the languages
they represent. We use techniques from topolog-
ical data analysis (TDA), a field studying spatial
aspects of data, to quantify this correlation.

How much shapes of word embeddings differ,
and for what reasons, is an ongoing debate with im-
portant consequences. Many authors assume that
the word embeddings of different languages are

essentially isometric: meaning they only differ by
an orthogonal transformation. Such assumptions
are necessary, for example, to construct translators
between languages via bilingual lexicon induction
(Miceli Barone, 2016; Lample et al., 2018; Zhang
et al., 2017). This assumption has been disputed by
Søgaard et al. (2018) or Patra et al. (2019). Later
Vulić et al. (2020) argued that observed deviations
from isometry are largely due to insufficient data
or training in construction of embeddings for some
languages. In this paper, we demonstrate that these
observed non-isometries across languages contain
real information and are thus not random train-
ing artifacts. We analyze FastText embeddings
of 81 Indo-European languages and quantify non-
isometry among the 10k most frequent tokens of
each language with TDA-based distance matrices.
To show that those distances contain real informa-
tion we construct phylogenetic trees and compare
these to a gold-standard reference tree from Ethno-
logue (Lewis et al., 2024).

The history of language evolution is typically
studied by identifying cognate word pairs of lan-
guages L1 and L2, namely homologous word forms
inherited from the common ancestor of these lan-
guages. Cognates usually share some level of
surface-form similarity between them, with lan-
guage pairs sharing more cognates presumed to
be more closely related. The identification of cog-
nate pairs traditionally requires extensive labor by
skilled linguists, although computational methods
for detecting cognate pairs are emerging (Kondrak,
2001; Lefever et al., 2020; St Arnaud et al., 2017).

An interesting aspect of TDA on word embed-
dings is that it makes no assumption or use of trans-
lation pairs, surface similarities between words, or
cognate pairs. Word embeddings are treated as un-
labeled sets of points, shorn of any binding to corre-
sponding tokens. TDA compares the relative shape
of word embeddings in terms of structural prop-
erties like components of connectivity and holes.
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That we demonstrate even a weak ability to recon-
struct language phylogenies through TDA is quite
surprising, and suggests that there are hitherto un-
known structures reflected in word embeddings that
go beyond the semantics of individual words.

Our major contributions in this paper include:

Further evidence that even within the Indo-
European family the non-isometry between un-
labeled word embeddings is not completely erro-
neous. The fact that we reconstruct phylogenetic
trees that, despite not very precise, are consider-
ably better than chance, suggests that there is some
real information represented in the differences be-
tween unlabeled shapes of embeddings. It is fair
to argue that more careful training, normalization
and lemmatisation could yield more similar em-
beddings that miss the information; were that the
case, it would suggest that the differences mitigated
by those processes correlate with language history,
which is an equally interesting observation.

A case study of natural generalizations of pre-
viously used methods to quantify non-isometry.
TDA provides a relatively new set of tools for data
science able to capture features often missed by
more traditional approaches. Due to the general
framework it provides, there are many parameters
to choose from and a priori no obvious canoni-
cal choices. Our analysis on word embeddings
represents a rigorous evaluation for an interesting
use-case of this technology.

A particular instance of TDA was used in Pa-
tra et al. (2019); Vulić et al. (2020) as an ap-
proximation (Chazal et al., 2009) of difficult-to-
compute Gromov-Hausdorff distance to quantify
non-isometry of word embeddings. In the TDA
terminology, they computed bottleneck distance
between degree 0 persistent diagrams—we addi-
tionally explore degrees 1 and 2, and three different
distances in addition to bottleneck; each combina-
tion for both Euclidean and cosine metric on the
word embedding. Altogether this totals to 24 differ-
ent combinations of parameters, and for each we
obtain a distance matrix between the studied lan-
guages. All those notions of distances are invariant
under orthogonal transformations1, and therefore
serve as quantifications for non-isometry. The alter-
native combinations can be better suited for study-
ing word embeddings, e.g., by being less prone to

1Cosine distances can change with translation—a shift of
the whole point cloud.

irrelevant outliers that can artificially significantly
increase the GH distance. Our analysis also shows
that degree 2, which is not that often used in large
high-dimensional data because of the expense in
constructing them and difficulty to interpret them,
yield statistically-strong results in our experiments,
in some cases outperforming degrees 0 and 1.

Statistical Evaluation of TDA-Based Language
Distances with Phylogenetic Trees. Evaluating
the information content of language distance matri-
ces inferred using TDA is best done by converting
these matrices into phylogenetic trees, and then as-
sessing the quality of these trees against a reference
standard. Each of 24 different TDA matrices, con-
structed based on different combinations of parame-
ters, was evaluated on two popular tree construction
algorithms—UPGMA and neighbor joining—and
compared against a gold-standard language tree
from Ethnologue under six different tree-similarity
metrics.

Certain choices of parameters prove less capable
of recognizing the structural similarities inherent in
word embeddings. But permutation tests show that
for 484 out of 864 combinations of parameters2, the
quality of the reconstructed trees were significant to
the 0.05-level, and many substantially stronger than
that. Even stronger bounds come in the number of
standard deviations our TDA trees are closer to the
gold-standard tree compared to the mean statisti-
cal background. Many of our TDA-based trees sit
from four to seven σ from the mean. Under assump-
tions of normality, the maximum achieved 6.87σ
corresponds to a Bonferroni-corrected p-value of
2.77× 10−9 of seeing a result like this by chance.

We presume a reader from computational lin-
guistics, with a basic familiarity with the concepts
and literature of word embeddings and language
phylogenies, but no prior exposure to topological
data analysis. Our paper is organized as follows.
Important TDA concepts like persistence diagrams
are reviewed in Section 2. Algorithms for construct-
ing language phylogenies from distance matrices
and evaluating the resulting trees are presented in
Section 3. We describe our TDA-based analysis
pipeline in Section 4 with computational results
reported in Section 5, and conclude with Section 6.

Our primary goal in this work is to initiate the
study of the shape of languages via word embed-

2See Section 4 for a break-down of the 864 = 2·3·4·3·2·6
combinations of parameters.
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dings, not to advance the state-of-the-art in lan-
guage phylogeny reconstruction. Indeed, cognate-
based analysis should clearly dominate our unla-
beled point methods except perhaps in pathological
situations, such as completely undeciphered written
languages. But we do believe that the new TDA-
based tools hold promise for richer computational
language analysis, and raise interesting questions
about which properties in language-space the topo-
logical features we employ correspond to.

2 Topological Data Analysis

Topological data analysis (TDA) is a growing field
that applies methods developed for studying shapes
to data, both geometrical and abstract, to extract
features that are often not captured by classical
approaches of data science. In the case of points
or vectors in 2D or 3D, we observe patterns like
clusters of points, loops, voids or tunnels.

In this paper, the input is a word embedding of a
language—collection of points in high-dimensional
Euclidean space, one for each token—and the out-
put is a summary of its topological features. We
compute such summaries for embeddings of dif-
ferent languages, and use them to compare the
structural similarity. As orthogonal transformations
would preserve the summaries, those differences
quantify non-ismoetry of the different embeddings.

To keep the explanation intuitive, we stay with
low dimensional point sets, but the general frame-
work is limited neither by dimension of the data
nor by the Euclidean metric—indeed, we use 300-
dimensional word embedddings and impose both
Euclidean and cosine metrics. For a gentle in-
troduction to TDA see Edelsbrunner (2014). For
more technical details, see Edelsbrunner and Harer
(2010). For applications of TDA to a wide vari-
ety of real-world data, see the database of non-
theoretical uses of topology (Giunti et al., 2022).

2.1 Persistent Homology
We describe the idea of persistent homology in a
simple intuitive setting—a data set of points in a
Euclidean plane. To define the ‘shape’ of such a set,
choose a radius, place a disk of that radius centered
at each point, and consider the union of the disks;
see Figure 1. Two simple descriptors for such a
shape are the number of connected components
and the number of holes—Betti numbers3 β0 and

3The formal definition of Betti numbers depends on the
choice of coefficients for homology. We use the field of size
two, which is the standard choice for persistent homology.

β1, respectively. The notion is formally defined by
homology from the mathematical field of algebraic
topology; see, e.g., Hatcher (2002).

For different radii of the disks, we get different
Betti numbers. Consider growing the radius from
zero to infinity. We can plot the Betti numbers
depending on the radius, and treat the curves, β0(r),
β1(r), as descriptors for the shape of our point set.
The problem is that such a curve can differ a lot
when we slightly perturb the points. For a stable
descriptor, we turn to persistent homology, which,
in addition, pairs the birth and death radii of each
component or hole. Components are all born at
radius 0 and each time two components merge at
radius r, we get a birth-death pair [0, r). For a
hole or a loop, there is a minimum birth radius, rb,
for which the disks enclose a space in the plane,
separating it from its surroundings, and there is
a larger minimum death radius, rd, for which the
area we previously enclosed is fully covered by the
disks. The interval [rb, rd), often called a bar, is a
single feature recorded by persistent homology. It
is the interval of radii during which this particular
hole contributes “plus one” to the corresponding
Betti number.

We collect all such intervals. Each interval is
described by its two endpoints, so we can plot them
all in a scatter plot with axes “birth radius” and
“death radius”; see Figure 1(c). This plot is the
persistence diagram of the data. For a point set in
a plane, we get two persistence diagrams: one for
components of connectivity—degree 0—and one
for ‘holes’ or ‘loops’—degree 1. Usually we plot
both in the same figure, separating them by color
or shape of the markers.

When we increase the dimension of the data,
we can have more different kinds of features. In
3D, we grow balls rather than disks around the
points. A degree 2 feature is an uncovered space
completely surrounded by covered space—like a
hole completely inside a Swiss cheese. A degree 1
feature is a loop drawn into the union of the balls
that cannot be contracted to a point within that
union. As loops in 3D, a 2-dimensional feature
in higher dimensional data would not be a com-
pletely enclosed space, but rather a drawing of a
2-dimensional sphere that cannot be contracted to
a point.

Although our actual data is 300-dimensional, we
only consider features of degree 0, 1 and 2, mainly
for computational reasons. Examples of diagrams
from our analysis are in Appendix Figure 9.
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Figure 1: Unions of disks centered at data points in a Euclidean plane define a ‘shape’ that varies with the radius
of the disks. In our setting, each point is one token of a word embedding, and the space is R300 rather than R2.
Persistent homology studies different types of ‘gaps’ within this growing shape—0-dimensional gaps between
components of connectivity, and 1-dimensional holes within the shape. Each such feature is born at some radius,
and dies at some later radius, spanning an interval [rb, rd). Those intervals are summarised in a persistence diagram;
each interval is represented by a dot with coordinates (rb, rd). The left and middle figures correspond to birth and
death radii of the loop in the lower-right corner: [rb, rd) = [0.072, 0.119). Overlaid is the Vietoris-Rips complex
discretizing the pink shape to allow for computations (see A.1). On the right is the persistence diagram of the
growing disks with highlighted blocks corresponding to radii rb, rd.

Persistent homology is stable against perturba-
tions. That is, if the data points are perturbed a bit,
the points on the persistence diagrams are also only
perturbed a bit (Cohen-Steiner et al., 2007). Note
that in contrast, it is not very stable against outliers,
which is a limitation of the tool that can be some-
what mitigated with the right choice of distance
between persistence diagrams.

2.2 Distances Between Persistence Diagrams

In this section, we describe several established no-
tions of distances between persistent diagrams. The
list we use is by no means exhaustive—see, e.g.,
Ali et al. (2023) for a survey of methods, and Car-
rière et al. (2020) for an approach unifying many
of those methods under a common framework. We
chose four distances that are widely used in theory
or in applications and have readily available imple-
mentations. Two of those are defined directly on
the diagrams, while the other two first vectorize
each diagram and then compare the vectors with
the standard Euclidean metric. Note two properties
that make defining distances somewhat involved:
firstly, different persistence diagrams have gener-
ally different number of points with no canonical
matching between them; secondly, slightly perturb-
ing data can create or remove points at the diagonal,
which needs to be taken into consideration.

We fix two persistent diagrams, PD1 and PD2,
describing topological features of the same degree.
An element r of PDi is a point in a plane represent-

ing an interval, and we will denote its endpoints by
r = [rb, rd) for “birth” and “death”.

Bottleneck distance. The first distance that was
proved to be stable (Cohen-Steiner et al., 2007) is
the bottleneck distance, which is defined as “the
biggest difference for the best matching”. A match-
ing, M, between two persistence diagrams is a
pairing of the points they contain, with an added
flexibility—we can match points with any points
on the diagonal. That is, if (r, s) ∈ M, then either
r ∈ PD1 and s ∈ PD2 or only one of those holds
and the other element is [x, x) for some number x.
The bottleneck distance between PD1 and PD2 is
then

W∞(PD1,PD2) =

inf
M

max
(r,s)∈M

max{|rb − sb| , |rd − sd|}.

Bottleneck distance is a classical notion, but it is
computationally costly since we have to search the
space of matchings. It is comparing the similarity
of the diagrams “on the nose”. This is well-suited
for those applications in which objects are consid-
ered similar only if their “hole-structure” is almost
identical, but can be too penalising when we are
interested more vaguely in the distribution of dif-
ferent kinds of holes. It is also very sensitive to
outliers.

(Sliced) Wasserstein distance. The maxima in
the bottleneck distance can be seen as l∞-norm,
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which suggests that they can be replaced by lp
norms, for various p ∈ N, to get different notions
of distances. In particular, replacing both maxima
by l1-norm, we get 1-Wasserstein distance between
persistence diagrams:

W1(PD1,PD2) = inf
M

∑

(r,s)∈M
|rb − sb|+|rd − sd|

This distance takes each interval in either diagram
into consideration, not just the worst match as
the bottleneck distance. For discussion on stabil-
ity with respect to data perturbations see Cohen-
Steiner et al. (2010); Skraba and Turner (2023).
In our analysis, we use a computationally more vi-
able variant—sliced Wasserstein distance which ap-
proximates 1-Wasserstein distance (Carrière et al.,
2017).

Persistence image. Rather than directly compar-
ing the diagrams, we can first transform each into a
vector and then compare the vectors. One approach
to vectorize a diagram is to blur the points and then
treat the plot as a raster image, called persistence
image (Adams et al., 2017). Persistence images are
stable and approximate the 1-Wasserstein distance.
More formally, we put a two-dimensional Gaus-
sian over each dot in the persistence diagram, and
consider their sum. Then we overlay a grid over
the domain, and compute the integral of the sum
of Gaussians over each grid square. This yields a
value for a pixel. Since the dots further away from
the diagonal are more relevant, there is a weight
function defining the height of the Gaussian based
on the distance away from the diagonal. The dis-
tance between two diagrams is then the Euclidean
distance between their persistence images viewed
as vectors.

Persistence images are easy to compute, but
there is several parameters we need to fix—the
size of the pixels and the grid, the σ-parameter of
the Gaussians, and the weight function controlling
the heights of the Gaussians based on the distance
from the diagonal.

Bars statistics. A somewhat naive, but surpris-
ingly successful vectorization is to collect several
simple statistics of the collection of dots (also
called bars) in the persistence diagram (Pun et al.,
2022; Cang et al., 2015; Ali et al., 2023). We used
40 numbers—10 statistics for 4 values. For each
dot, (b, d), the 4 values are birth, death, persistence
and midpoint, i.e., b, d, d− b and d+b

2 , respectively.

The 10 statistics are: median, standard deviation,
interquartile range, full range, 10th percentile, 25th
percentile, 75th percentile, 90th percentile, and en-
tropy. To compare two diagrams, we compute the
Euclidean distance between the vectorizations.

This vectorization method misses theoretical
guarantees like the stability, but is very easy to
compute, the meaning of the features is clear, and
may mitigate the negative effects of outliers.

3 Constructing Phylogenetic Trees

To evaluate whether the distances between lan-
guages calculated based on persistence homology
are relevant, we use this data to attempt to recon-
struct the historical evolution of Indo-European
languages. We perform a hierarchical clustering,
obtain a phylogenetic tree, and compare this tree to
a ground-truth reference tree.

We emphasize that reconstructing language phy-
logenies is not the goal of our analysis, but rather
we use it as a tool to evaluate whether the com-
puted distances carry a relevant signal, meaning
the unlabeled topological “shape” of word embed-
dings retain and reflect broader properties of the
underlying languages. Phylogeny reconstruction is
an enormous area within computational linguistics,
and space does not permit us to make a substan-
tial survey of work in this field. See Dunn (2015);
Pereltsvaig and Lewis (2015); Pompei et al. (2011)
for recent reviews of this literature.

In this paper, we experiment with two popular
agglomerative hierarchical clustering algorithms
for reconstructing phylogenetic trees from a pair-
wise distance matrix, d(·, ·). We start with each lan-
guage as an individual cluster, and then we connect
two closest clusters in each step. The difference is
what “closest” means for each of the algorithms:

Unweighted Pair Group Method with Arith-
metic Mean (UPGMA). The UPGMA method
(Sneath and Sokal, 1973) approximates distances
between clusters as the average distance between
the elements: for clusters A, B, the distance is

d(A,B) :=
1

|A | · |B |
∑

a∈A
b∈B

d(a, b).

Starting with singleton clusters, in each step it
merges the two closest clusters into one.

Neighbor Joining (NJ). The NJ method (Saitou
and Nei, 1987) defines distances between clusters,
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D(·, ·), inductively through a merging process. Let
C be the collection of current clusters. For each
cluster, a ∈ C, define

α(a) :=
1

|C | − 2

∑

b∈C
b̸=a

D(a, b).

In each step, find a pair a, b ∈ C minimizing
D(a, b) − α(a) − α(b). Then replace a, b by
the union, a ∪ b, and define the new distances
D(a ∪ b, c) := (D(a, c) + D(b, c) − D(a, b))/2
for each other c. The length of the new tree edge,
(a∪ b, a) is defined as D(a, b) +α(a)−α(b), and
symmetrically for (a ∪ b, b).

4 Analysis Pipeline

This section details the data, the process of going
from the data to trees, and finally the evaluation of
the reconstructed trees. Our code for the analysis
is published on GitHub.4

4.1 Data

Our study requires two types of data over a large
set of languages: (a) a source of directly compa-
rable, high quality word embeddings, and (b) a
ground-truth reference phylogenetic tree reflecting
the origin and relative similarity of languages in
this set. We limit our attention here to the broad
family of Indo-European languages for this study.

The historical origin of languages has been ex-
tensively studied, and much is known, but debate
remains vigorous even for the Indo-European lan-
guages we study here (Gray and Atkinson, 2003;
Pereltsvaig and Lewis, 2015; Longobardi et al.,
2013). The reference tree we use comes from
Ethnologue5, which is the most widely consulted
inventory of the world’s languages (Lewis et al.,
2024). First published in 1951 and now in its 26th
edition, Ethnologue currently records data about
7,168 living languages. Although there is no univer-
sal agreement on language origins (see e.g. Ham-
marström (2015) for a critique of Ethnologue), it
provides a broadly acceptable reference tree for
our evaluation purposes, particularly for the major
Indo-European languages we consider here. One
downside of this reference is the lack of weights
on the edges of the tree—we only get the topology.
An alternative for a follow-up research could be

4https://github.com/OnDraganov/
shape-of-word-embeddings

5https://www.ethnologue.com

to compare to other computationally reconstructed
trees that are considered reliable, e.g., Serva and
Petroni (2008).

FastText6 (Grave et al., 2018) provides a set
of pre-trained, 300-dimensional word embeddings
for 157 languages, trained on Common Crawl and
Wikipedia. There are 81 Indo-European languages
that appear in the Ethnologue reference tree and
also have pre-computed FastText embeddings. To
protect against the risk that low-resource languages
might have less reliable embeddings, we will also
evaluate filtrations to the most popular 30 and 50
languages. The Ethnologue reference trees for all
filtrations are provided for inspection in Appendix
Figure 7.

4.2 From Language Embeddings to a Tree

In this section we describe our pipeline to go from
the embeddings of languages to a phylogenetic tree,
list the parameter choices at each step, and provide
details about the implementation.

We start with a set of embeddings of languages.
For each language, we compute a distance matrix
between its words. For each such matrix, we use
persistent homology and get a set of persistent dia-
grams. Computing distances between the persistent
diagrams yields a distance matrix labeled by lan-
guages. From this language distance matrix we
finally construct a phylogenetic tree.

Language embeddings. As described in Sec-
tion 4.1, we work with language embeddings from
FastText. We filter the data in two ways. Firstly,
we use the V = 10,000 most frequent tokens of
each language—a threshold chosen to be as high
as possible considering computational feasibility7.
Secondly, we only choose a subset of the languages
to work with. Because low-resource languages may
skew our analysis, we filter the languages by the
number of Wikipedia articles8, and consider the
first 30, 50 or all 81 available Indo-European lan-
guages.

Token-to-token distance matrices. As input
to the persistent homology pipeline we use, for
each language, we generate a V × V matrix,
each entry being the distance between two 300-
dimensional vectors, u, v. We use two differ-

6https://fasttext.cc/
7Degree 2 PH is expensive; for 0 and 1, V can be in-

creased.
8https://meta.wikimedia.org/wiki/List_of_

Wikipedias, extracted on November 8, 2023
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ent notions of distances: either the standard Eu-
clidean distance, ||u− v ||, or the cosine distance,
1 − a · b / (|| a || · || b ||), which is often used in
language processing.

Persistence diagrams. For the token-to-token
distance matrix of each language, we compute the
persistence diagram9 as described in Section 2, us-
ing an efficient implementation of this computation,
Ripser10 (Bauer, 2021). In this step, we choose
the degree of the topological features to use—either
0, 1 or 2.

Languages distance matrix. From the set of per-
sistence diagrams, we get a single distance matrix
representing the proximity of language pairs. The
distance between diagrams is one of the four de-
scribed in Section 2.2—this is the fourth parameter.

We use bottleneck distance implementation from
GUDHI library11 (François, 2016), and slice Wasser-
stein and persistence image implementations from
persim Python library12. Bar statistics are com-
puted directly.

Persistence images take several parameters. Our
choices depend on the embedding metric used and
persistence diagram degree considered. For de-
grees 1 and 2 we use a 10×10 grid. For degree 0 it
is just 1×10 grid. The range of radii covered by the
grid is [0, 10] for Euclidean embedding metric, and
[0, 1] for cosine. Note that if there is a dot outside
of this range in the persistence diagram, the Gaus-
sian is still put over it, and spills into the considered
range, so even those dots are still considered in the
distance. The weight function is linear in all cases,
w(d − b) = d − b. Careful optimization of these
parameters might lead to better results.

For the bars statistics, in degree 0 we only use
the death, d, value, as b = 0 for all dots. That
is, the vectorization is 10-dimensional in this case
rather than 40-dimensional as in the other cases.

Tree construction. Finally, we construct a phy-
logenetic tree based on the language distance ma-
trix. We try two different approaches. We use
either of the two agglomerative clustering algo-
rithms described in Section 3—neighbor joining
(NJ) or unweighted pair group method with arith-
metic mean (UPGMA). Both of those algorithms
are implemented in biopython package13 under

9We use Vietoris-Rips complex, described in Section A.1.
10https://github.com/Ripser/ripser
11https://gudhi.inria.fr
12https://github.com/scikit-tda/persim
13https://biopython.org/wiki/Phylo

DistanceTreeConstructor class. Figure 8 in Ap-
pendix gives examples of reconstructed and refer-
ence trees.

Two aspects of this approach make comparisons
of thus reconstructed trees to the reference diffi-
cult. Firstly, the reference Ethnologue tree has no
weights on edges, so we cannot meaningfully use
the weights of the reconstructed trees either. Sec-
ondly, the Ethnologue tree is flat and neither binary
nor rooted, while the reconstructed trees are gen-
erally somewhat deep binary trees. Our solution
to this difference in topology is to test the recon-
structed trees against their copies with permuted
leaf labels.

We also conducted a second set of experiments
to allay the concerns about the difference in height
and topology between reconstructed and reference
trees. We fix the topology of the reference Eth-
nologue tree, and try to assign languages to the
leaves—to do that, we optimise the similarity of
the path-distance matrix given by the labeled tree to
the distance matrix computed using TDA. We then
evaluate this optimized labeling against 100,000
random labelings. Consistent with the results re-
ported below, we perform substantially better than
chance for almost all combinations of parameters,
typically by two or more standard deviations from
the mean. Details of this alternative analysis are
presented in the Appendix (A.2).

Summary of the parameters. To construct one
tree we choose a number of languages (30, 50,
81), an embedding (Euclidean, cosine), a degree of
persistence diagrams (0, 1, 2), a distance between
persistence diagrams (bottleneck, sliced Wasser-
stein, persistence image, bars statistics), and a
construction of a tree (UPGMA, NJ)—altogether
3 · 2 · 3 · 4 · 2 = 144 variants. For each there are
six tree distances to evaluate how well we recon-
structed the phylogeny, as described below.

4.3 Evaluating Phylogenetic Trees

To compare the reference Ethnologue tree E to
each phylogenetic tree T constructed using the
language distances inferred by TDA, we employ
six different tree distances, using implementa-
tions from the R package TreeDist version 2.6.3.
These include (i/ii) Jaccard-Robinson-Foulds dis-
tance for k = 1 and k = 2 (Nye et al., 2005;
Böcker et al., 2013), (iii) matching split distance
(Bogdanowicz and Giaro, 2012; Lin et al., 2012),
(iv/v) the phylogenetic and clustering information
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Figure 2: The statistical significance of TDA trees for 30, 50, and 81 languages against the Ethnologue reference, E,
for trees reconstructed by UPGMA and NJ for each combination of parameters described in Section 4. Each dot
represents a single reconstructed tree, T , and a tree distance, D. We performed 100,000 random permutations of the
leaves of T , and compared each to the reference E using the distance D. This yields a distribution with mean µ and
standard deviation σ. To evaluate the reconstruction T , we plot (µ−D(T,E))/σ. The higher the value, the better
the reconstruction. A star inside a dot signifies that D(T,E) is smaller than 95,500 of the permuted tree distances.

distances (Smith, 2020), and (vi) path distance (Far-
ris, 1969; Steel and Penny, 1993). We provide de-
tailed descriptions of these distances in Appendix
Section A.3.

To assess whether the reconstructed trees capture
part of the real phylogeny, we evaluate them in
terms of leaf label permutations—comparing the
distance d(T,E) between the algorithmic tree T
and reference E to the distribution of d(T ′, E),
where T ′ is obtained from T by shuffling the leaf
labels.

For each of the 144 constructed trees, T , we
performed 100,000 permutations of its leaf labels.
For each permuted tree, we measure the six tree
distances to the reference Ethnologue tree with
the corresponding number of leaves—30, 50 or 81.
Then, separately for each of the six tree distances,
we identify where in this distribution of distances
d(T,E) lies. The measure of success is to check
how many random permutations did worse than T .

5 Results of the Experiments

The experiments show correlation between the
word embedding dissimilarity and language
phylogeny—for 484 out of 864 distributions, at
least 95,000 (95%) of the permutations are further
from the reference tree E than the reconstructed
tree T is.

Figure 2 is the primary result in this paper, pre-
senting the results of evaluations of 144 different
tree reconstructions based on TDA, each evaluated
on six different tree similarity measures, for a total
of 864 different points. By employing permutation
tests, we can map each such point to a significance
level, expressed in terms of (a) the fraction of ran-
dom samples dominated by the reconstructed tree
or (b) the number of standard deviations the recon-
structed tree sits from the mean value over 100,000
permutations of leaves; the options are tightly cor-
related. Figure 2 summarises (b); analogous figure
for (a) is in Appendix Figure 6.

12087



10 410 310 210 1100

p-value [log scale]

0%
5%

10%
15%
20%
25%
30%
35%
40%
45%
50%
55%
60%
65%
70%
75%
80%
85%
90%
95%

100%
fra

ct
io

n 
of

 p
ar

am
et

er
 c

om
bi

na
tio

ns
30 languages
50 languages
81 languages
p=.5

Figure 3: The fraction of parameter combinations (out
of 288) in Figure 2 bested by ≤ p·100,000 permutations.

Further summary of these results is in Figure 3.
The cumulative distribution plots show the fraction
of experimental conditions which satisfy a given
permutation test p-value. With respect to this value,
484 out of the 864 conditions proved significant to
at least the 0.05-level. Of these, 255 were signifi-
cant to at least 0.01, 57 to at least 0.001, and 10 to
0.0001. In one case the algorithmic tree dominated
all t = 100,000 random permutations evaluated.

Our statistically strongest results came when us-
ing 50 languages: possibly large enough to encode
topologies hard to find by chance while avoiding
low resource languages with poorly shaped embed-
dings. Twice as many tests for UPGMA trees (114)
were significant to the 0.005-level as NJ trees (63),
demonstrating that better combinatorial optimiza-
tion leads to more significant phylogenies.

Different distances between persistent diagrams
seem to fit well with different degree and token-to-
token metric. Overall, bars statistics and sliced
Wasserstein seem to perform better, while bot-
tleneck is the least successful—this might be ex-
plained by its strong sensitivity to outliers, and sug-
gests that the other notions might be better suited
for analyses of word embeddings’ (dis)similarities.
Detailed breakdowns of the success of different
parameters are provided in Tables 1, 2, 3, 4 in the
Appendix.

That our best tree beats all trial t permutations in
our experiment implies it is significant beyond the
1/t level. By measuring the quality score of each
tree with respect to each distance in terms of the
number of standard deviations above its random
background mean and assuming normality, we can
obtain a p-value associated with each such z-score.
The maximum achieved 6.87σ corresponds to a
Bonferroni-corrected p-value of 2.77 × 10−9 =
P [x ≥ 6.87]∗864, assuming a normal distribution.

Coupled with all other presented permutation test
results, clearly TDA is picking up real signal from
the shape of word embeddings.

6 Conclusions

Our analysis of FastText word embeddings of 81
Indo-European languages suggests that deviations
from pair-wise isometry correlates with the histor-
ical origin of the languages—an interesting con-
tribution to the debate about the extent to which
the variance between monolingual embeddings
is explained by essential differences between the
languages versus scarcity of resources and under-
training when constructing them.

A natural question is to what extent the presented
results generalize. Would we get comparably sig-
nificant results for word embeddings trained with
different algorithms, with different parameters or
on a different corpus? And if more careful training
should lead to isometric embeddings, as suggested
by Vulić et al. (2020), is there an explanation for
a correlation of lower quality of embeddings with
language phylogeny?

The results suggest that TDA methods can help
us better understand the structure of word embed-
dings, and further research can lead to useful in-
sights. Different parameters can be better suited for
comparing word embeddings than the previously
used bottleneck lower bound of Gromov-Hausdorff
distance. Furthermore, better understanding of the
particular detected topological features could lead
to interesting insights. For example, looking at a
single language embedding, we can look back at
concrete loops in degree 1 persistence diagrams
and ask whether the collection of words it passes
through has some meaningful linguistic interpreta-
tion. Or, identifying a large loop in one language,
we can ask whether the translation of the words
also forms a large loop in other languages.
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Limitations

In this paper, we have demonstrated that TDA meth-
ods are capable of reconstructing a real (albeit
somewhat weak) signal about language structure
and history from unlabeled word embeddings.

However, there are reasons to be optimistic that
the strength of this signal may be increased with
further research and experience. We note that our
TDA analysis is “blind”, with no statistical nor-
malizations of numerical range across the different
language embeddings. Orthogonal transformations
preserve distances and angles, so they do not influ-
ence persistent homology, but scaling does change
Euclidean distances, and translation (shifts) can
change the cosine distances.

Outlier points may impact persistent homologies
in misleading ways. For example the “U-” token
in the English language embedding skewed the
Euclidean 0-dim homology, even though it was
completely isolated. This motivates the question of
whether we can preprocess data to eliminate clear
outliers before analysis.

There is somewhat of a gap between the low-
dimensional persistent homologies of dimensions
0 ≤ d ≤ 2 which are computationally accessible
and the 300-dimensional word vectors we analyze.
In hopes of capturing more of the higher order be-
havior of high-dimensional data, data is often first
reduced to fewer dimensions before persistent ho-
mology is applied. Standard methods like PCA,
t-SNE or U-Map can be used to reduce dimension-
ality to ∼ 10 or ∼ 50.

We restrict our attention here to one popular but
particular set of GloVe embeddings, without evalu-
ating other methods such as word2vec, which are
geometrically quite different and may in principle
have even better topological properties. There are
also reasonable questions of whether our results
may strengthen if we used a different reference tree
than provided by Ethnologue which is difficult to
compare to: it is unrooted, non-binary, and very
flat.

The phylogeny of languages might also not be
the aspect most correlated with the distances we
see. For example geographical and structural simi-
larities as studied in Bjerva et al. (2019) could lead
to closer correlations.

Our results demonstrate that TDA invariants cap-
ture properties of languages, but what aspects of
language are they keying on? What do tunnels and
voids in embeddings tell us about languages?
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A Supplemental Material

A.1 Vietoris-Rips complex

To compute persistent homology, the continuous
spaces of growing balls around the points in the
cloud need to be replaced by a discrete structure
easily represented in a computer. Concretely, by a
simplicial complex, a (hyper)graph-like structure.
A simplicial complex consists of a set of vertices,
and a set of faces. Each face is a subset of vertices,
and for each face, a simplicial complex has to also
include all its subsets. A filtration of a simplicial
complex is a function that assigns a real number to
each face, and is monotone with respect to inclu-
sion, that is, a subset of a face has to have smaller
or equal value. A collection of all faces with value
at most r ≥ 0 is then a simplicial complex. This
yields a chain of growing simplicial complexes.

For low-dimensional Euclidean data, persistent
homology is usually computed using Delaunay
complexes with alpha filtration. From the topo-
logical perspective, those complexes exactly reflect
the spaces of growing disks. However, comput-
ing Delaunay complexes is not practically viable
for data in dimensions beyond ∼ 10. A widely
used alternative is the Vietoris-Rips complex. It
can be constructed from any distance matrix, and
for Euclidean data offers a good approximation of
the alpha filtration. Its low-dimensional persistent
homology can be computed efficiently, and a fast
implementation is readily available.

Given an n× n distance matrix D, and a radius
r > 0, the Vietoris-rips complex, VRr(D), is the
flag complex of all the edges {i, j} with Di,j ≤ r.
That is, σ ⊆ [n] = {1, . . . , n} is a face of VRr(D)
iff Di,j ≤ r for all {i, j} ⊆ σ. As the radius grows
to infinity, the complex grows to become the full-
simplex 2[n] whose size grows exponentially with
respect to n. The reason that this is not a problem
for computations is that the full complex need not
be computed to obtain persistent homology. Firstly,
only edges, triangles and tetrahedra are relevant
when we only care for 0-, 1- and 2-dimensional
persistent homology, secondly, there exists a radius
cut-off after which the homology is guaranteed to
be trivial, and finally, the relevant structures can
be used implicitly rather than stored explicitly in
memory. For more details see (Bauer, 2021).

For completeness we provide the formal defini-
tion of a ‘feature’ within a VR complex. A bound-
ary ∂σ of a face σ ∈ VRr(D) is the collection of
subsets σ \ {i} for each i ∈ σ. An addition op-

eration is defined on boundaries as the symmetric
difference of the collections. A boundary of a col-
lection of faces is then the sum of their boundaries.
For example, the boundary of two triangles sharing
an edge are the four edges on the outside.

There is a bar [rb, rd) in the p-dimensional per-
sistence diagram of VR•(D) iff there exist two
collections of faces, B ⊆ VRrb(D) and D ⊆
VRrd(D), with the following properties. First, the
boundary ∂B is empty, and one of the faces in B
appears for the first time in VRrb(D). Second, the
boundary ∂D is B, and one of the faces in D ap-
pears for the first time in VRrd(D). For example,
a 1-dimensional bar means that an edge appears in
rb which completes a loop, and then this loop is
filled by a collection of triangles, the last of which
appears in rd.

A.2 Preserving the Ethnologue Tree Topology
Our previous experiments compared
algorithmically-constructed trees (UPGMA
and NJ) built using TDA-based distance matrices
against the Ethnologue reference trees on identical
sets of languages. A possible objection to this
approach is that the reference trees are generally
much shallower than those constructed by the
algorithms, perhaps affecting our evaluation.

Thus we investigated an optimization procedure
to construct TDA-based trees consistent with the
reference tree topology. Instead of constructing
a new tree, we try to find the best assignment of
labels (languages) to the leaves based on the given
distance matrix. A tree always yields a distance
matrix between the leaves—the distance of two
leaves is the length of the unique path connecting
them. We set up an optimization process to find the
label assignment leading to the tree distance matrix
that best correlates with our given distance matrix.
To compare distance matrices, we use the Pearson
correlation coefficient. Therefore, if E is the tree
distance matrix of the Ethnologue tree, and D is
the distance matrix computed from the pipeline as
described above, we want to find a permutation
matrix P that maximizes the Pearson correlation
coefficient between P TEP and D.

This is, however, a difficult optimization prob-
lem. To compute the Pearson correlation, the en-
tries in the matrices are first replaced by their ranks,
leading to matrices E′, D′, and the coefficient is
then the covariance cov(E′, D′) divided by the
standard deviations. The collection of entries does
not change when we permute the matrices, so we
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retain the same ranks, means, and standard devia-
tions. This means that we search for P maximizing
⟨P TE′′P, D′′⟩F , where E′′, D′′ are the matrices
whose entries are ranks minus the mean of ranks,
and ⟨·, ·⟩F is the Frobenius inner product, which is
the standard scalar product of the matrices viewed
as unraveled vectors. This is, however, an instance
of the quadratic assignment problem, which is gen-
erally NP-hard.

Our search for an optimal permutation is a naive
flip-heuristic. Starting with a random permutation,
we try random transpositions, and keep them if they
improve the correlation. This procedure gets stuck
in a local optimum after a few thousand flips. For
each distance matrix, we ran this process 100 times
and took the maximum of the local optima.

Our results are presented in Figure 4. Consistent
with the results reported previously, we perform
substantially better than chance for almost all com-
binations of TDA variant and tree distance metric,
typically by two or more standard deviations from
the mean.

A.3 Tree Similarity Metrics
To evaluate the experimental results, we need to
quantitatively compare phylogenetic trees built us-
ing topological data analysis against the reference
language tree from Ethnologue. Many labeled tree-
to-labeled tree distances have been defined in the
literature. We chose six different distances in our
analysis, considering meaningfulness in our set-
ting, availability of implementation, and efficiency
of computation.

Generally there are two main directions in com-
paring trees. One is to define some notion of dis-
tances between pairs of leaves—e.g., the length of
the shortest path connecting leaves or the distances
of the closest common ancestor to either the root or
to the leaves—and compare the distance matrices.
This approach is not particularly well suited for our
application, as reference Ethnologue tree is very
flat. Nevertheless, we include one such distance.

Path distance (Farris, 1969; Steel and Penny,
1993). A path distance matrix of a tree is labeled
by the leaves, and an entry is the length of the
unique path in the tree that connects the correspond-
ing two leaves. The distance of two trees is then the
Frobenius distance of their path distance matrices—
that is, the Euclidean distance when the matrices
are unraveled into vectors.

The other option is to compare the different ways

that the tree can partition its leaves into two groups
by removing an edge. The first and simplest such
method is the Robinson-Foulds (RF) metric (Robin-
son and Foulds, 1981). The distance of two trees,
T1, T2, with the same leaves, is the number of parti-
tions achievable by T1, but not T2, plus the number
of partitions achievable by T2 but not T1; possibly
normalised to range from 0 to 1. Partitioning is
intuitively a good way to measure success of our
method—after all, when naively comparing a con-
structed tree to the reference, we argue with claims
like “Slavic languages are well separated from the
others”. The problem with RF is that comparing
partitions on the nose is too penalizing. For exam-
ple with a single swap of Portuguese with Czech in
the 30-language Ethnologue tree (Figure 7), we go
from distance zero to more than half of the maxi-
mum. Even reasonably similar trees can often get
the maximum distance.

To fix the issue, generalizations of RF metric
quantify the similarity of any pair of partitions.
To compute how similar two trees are, we find
the matching of the partitions defined by T1 with
the ones defined by T2 that maximizes the sum of
similarities of the matched partitions. To go from
similarity to distance, we take the difference of
theoretically maximal similarity and the computed
similarity, and normalize to fit in the range 0 to 1.
All the distances below follow the same logic, but
differ in the definition of the similarity between two
partitions. For the explanations, consider A0, A1

a partition of the leaves obtained by removing an
edge from the tree T1, and B0, B1 another partition
arising the same way from T2.

Jaccard-Robinson-Foulds distance (Nye et al.,
2005; Böcker et al., 2013). JRF is a fam-
ily of distances with one parameter, k. Its
name comes from using the Jaccard index:
J(Ai, Bj) := |Ai ∪Bj |/|Ai ∩Bj |. The simi-
larity of two partitions is defined as the bigger of
the two values, min (J(A0, B0), J(A1, B1)) and
min (J(A0, B1), J(A0, B1)), raised to the power
k. As k tends to infinity, JRF distance converges to
RF. In our analysis, we use k = 1 and k = 2.

Matching split distance (Bogdanowicz and Giaro,
2012; Lin et al., 2012). The matching similarity
of two partitions is the maximum of |A0 ∩B0 |+
|A1 ∩B1 | and |A0 ∩B1 |+ |A1 ∩B0 |. The idea
is that the number of leaves minus the similarity is
the number of leaves that need to be swapped in
order to obtain identical partitions.
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Figure 4: The statistical significance of the labelings of the Ethnologue tree that optimize distance matrix correlation
(see Section A.2), for each combination of parameters described in Section 4. Each dot represents the distance of a
single reconstructed labeling to the reference Ethnologue tree, and its position shows how many standard deviations
away from the mean it lies in a distribution of 100,000 random labelings of the Ethnologue tree.

Phylogenetic and Clustering information dis-
tances (Smith, 2020). These metrics use notions
from information theory to quantify similarity of
partitions. The former measures the information in
bits shared between the two partitions, while the
latter quantifies the similarity with shared entropy.

For further details on both the intuition and the
technicalities of the tree distances, see the docu-
mentation14 of TreeDist package for R, which we
used for the computations.

A.4 P-values from Permuting Labels

Although there exist many distance metrics for
comparing rooted, labeled trees, these metrics can
be difficult to interpret because they conflate dif-
ferences in tree topologies (e.g height and width)
with differences in leaf labelings (e.g. which label
pairs are siblings of each other). In our experiments
with language phylogenies, we observed that the

14https://ms609.github.io/TreeDist/reference/
index.html

toplogies of trees built from different heuristics
(NJ and UPGMA) differed dramatically, and that
both differed substantially in shape from both the
reference tree and random trees constructed from
natural agglomerative processes.

To evaluate the statistical significance of TDA-
inspired trees, we propose the following procedure
to mitigate impact of differing topology on our dis-
tance metrics. To evaluate how well an algorithmic
tree (T ) agrees with a given reference tree (R) with
respect to a given distance metric d(T,R), we con-
struct a set of n random label-permuted algorithmic
trees T ′(i), 1 ≤ i ≤ n. These label-permuted trees
will each have the exact same topology as T , but
the leaf-labels of T be randomly and independently
permuted in each T ′(i).

Comparing d(T,R) to d(T ′(i), R) reflects only
the differences in labeling while conserving topol-
ogy. The degree to which T is better than the
background of label-permuted can be assessed in
two different ways. First, the rank r of the value
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d(T,R) against the universe of n label-permuted
trees yields a p-value of (r − 1)/n. Second, af-
ter computing the mean µ and standard deviation
σ of the distribution of d(T ′(i), R), we can in-
terpret d(T,R) in terms of the number of stan-
dard deviations from the mean, which map directly
to p-values assuming a normal distribution. We
employ both techniques in the analysis to follow.
The Spearman correlation of the two approaches is
larger than 0.99, which indicates that we can use
them interchangeably. We prefer the latter as it also
takes the spread of the distribution into account,
and can additionally identify meaningful p-values
of statistical significance greater than 1/100,000.

A.5 Significance Results

The result for the number of standard deviations
from the mean are presented in Figure 5. Fully
451 out of 864 conditions yielded results that sat at
least 2σ above the mean, with 229 at least 3σ, 74 at
least 4σ, and five conditions at least 6σ above the
mean, peaking at 6.87σ. For detailed breakdown
see Table 3.
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Figure 5: The fraction of parameter combinations (out
of 288) in Figure 2 further away from the mean than σ
standard deviations.

A.6 Evaluation of TDA Methods

To better understand which parameters perform the
best, we aggregate the information from Figure 2
in two ways. In Table 1, we give the averages of
standard deviations away from the mean when we
fix some parameters and vary others, while in Ta-
ble 2 we show the numbers of dots that performed
better than 99.5% of the random permutations. In
the first block of each table we compare metric
for the word embedding and persistent homology
dimension to compare the different distances. In
the second block we compare the persistence dia-

gram distance to compare how meaningful different
topological features were. In the third block we
compare tree construction algorithms.

Overall dimension 1 seems to outperform 0 and
2 for both Euclidean and cosine metric, and there
is no clear winner between the two metrics. It
is, however, surprising that Euclidean metric with
2-dimensional topological features is not too far
behind. When we look at the persistence diagrams
on Figure 9, we see that the 2-dimensional dia-
grams for Euclidean metric are somewhat sparse
and all the features seem to be close to the diagonal.
Indeed, probing all the diagrams, the maximum
persistence of 2-dimensional features is roughly
comparable to the smallest distance between the
embeddings of any two words for the given lan-
guage. Since features can pop up or disappear at
the diagonal with small perturbations of data, such
low-persistent features would often be discarded
as noise. Yet, in combination with bars statistics
distance, the trees constructed with UPGMA algo-
rithm based on this data are among the best per-
forming in our analysis.

From the persistence diagram distances, sliced
Wasserstein and bars statistics lead to clearly
stronger results than bottleneck distance and persis-
tence images. Bottleneck distance is expected to be
subpar, as having one more or one fewer feature can
already yield a large distance. It is a bit less clear
why persistent images do not perform so well, espe-
cially when they should approximate 1-Wasserstein
distance just as the sliced Wasserstein. One possi-
ble reason is that the method has many parameters
and our choice might not be ideal—we chose range,
for both birth and death, (0, 1), σ = .1, for cosine;
and (0, 10), σ = 1, for Euclidean; grid 10× 10.
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# σ from mean j_k1 j_k2 mat phy clust path mean
Euclidean, dim 0 2.19 2.54 1.37 2.14 2.19 0.83 1.88
Euclidean, dim 1 2.74 2.57 2.33 2.74 3.10 1.14 2.43
Euclidean, dim 2 2.38 2.17 2.17 2.38 2.74 0.76 2.10
cosine, dim 0 2.19 2.19 1.53 2.63 2.58 0.62 1.95
cosine, dim 1 2.41 2.14 2.58 3.28 3.27 1.46 2.52
cosine, dim 2 1.72 1.36 1.76 2.89 2.71 0.93 1.90

bottleneck 1.80 1.70 1.57 2.28 2.36 0.93 1.78
sliced Wasserstein 2.63 2.49 2.40 2.95 3.12 1.05 2.44
persistence image 2.25 2.17 1.69 2.21 2.38 0.88 1.93
bars statistics 2.40 2.28 2.17 3.26 3.19 0.97 2.38

nj 2.20 2.14 1.70 2.48 2.65 0.90 2.01
upgma 2.34 2.18 2.21 2.88 2.87 1.02 2.25

Table 1: Averages of the values presented in Figure 2
(number of standard deviations away from the mean). In
each block we fix one of the parameters, and aggregate
over all others.

# ≥ 99500 j_k1 j_k2 mat phy clust path sum

Euclidean, dim 0 6 6 2 6 4 0 24
Euclidean, dim 1 8 4 4 7 12 0 35
Euclidean, dim 2 7 3 8 6 9 0 33
cosine, dim 0 2 1 2 5 7 0 17
cosine, dim 1 5 3 6 13 14 1 42
cosine, dim 2 2 0 4 10 10 0 26

bottleneck 4 2 3 9 12 0 30
sliced Wasserstein 10 7 9 14 19 0 59
persistence image 5 3 4 7 8 0 27
bars statistics 11 5 10 17 17 1 61

nj 12 7 8 15 21 0 63
upgma 18 10 18 32 35 1 114

Table 2: The number of dots in Figure 2 corresponding
to parameters that performed better than 99,500 random
permutations of the tree leaves (labeled by star in the
figure). The total number of dots for a fixed distance
that meet the parameters in each block is 24, 36 and 72,
respectively.

full fig all jrf_k1 jrf_k2 match phylo clust path

total 864 144 144 144 144 144 144
σ > 1 681 121 111 117 134 134 64
σ > 2 451 84 74 72 99 103 19
σ > 3 229 36 41 29 59 63 1
σ > 4 74 13 15 7 17 22 0
σ > 5 17 2 4 1 5 5 0
σ > 6 5 0 2 0 2 1 0

30 lang all jrf_k1 jrf_k2 match phylo clust path

total 288 48 48 48 48 48 48
σ > 1 242 43 40 43 44 45 27
σ > 2 155 31 31 24 26 30 13
σ > 3 69 12 19 11 13 13 1
σ > 4 22 3 4 3 4 8 0
σ > 5 7 1 1 1 2 2 0
σ > 6 4 0 1 0 2 1 0

50 lang all jrf_k1 jrf_k2 match phylo clust path

total 288 48 48 48 48 48 48
σ > 1 230 40 36 39 47 46 22
σ > 2 162 28 26 24 40 40 4
σ > 3 92 16 17 10 23 26 0
σ > 4 39 8 9 2 10 10 0
σ > 5 9 1 3 0 3 2 0
σ > 6 1 0 1 0 0 0 0

81 lang all jrf_k1 jrf_k2 match phylo clust path

total 288 48 48 48 48 48 48
σ > 1 209 38 35 35 43 43 15
σ > 2 134 25 17 24 33 33 2
σ > 3 68 8 5 8 23 24 0
σ > 4 13 2 2 2 3 4 0
σ > 5 1 0 0 0 0 1 0
σ > 6 0 0 0 0 0 0 0

Table 3: The number of parameters in Figure 2 with
value greater than a given threshold.

full fig all jrf_k1 jrf_k2 match phylo clust path

total 864 144 144 144 144 144 144
top 10.00% 613 113 102 98 121 128 51
top 5.00% 484 90 75 76 102 112 29
top 1.00% 255 39 34 42 65 72 3
top 0.50% 177 30 17 26 47 56 1
top 0.10% 57 10 4 10 14 19 0
top 0.05% 32 5 3 5 9 10 0
top 0.01% 10 1 2 2 2 3 0

30 lang all jrf_k1 jrf_k2 match phylo clust path

total 288 48 48 48 48 48 48
top 10.00% 217 40 39 33 36 44 25
top 5.00% 172 34 33 26 28 34 17
top 1.00% 75 13 15 14 12 18 3
top 0.50% 46 11 5 9 9 11 1
top 0.10% 16 2 1 3 4 6 0
top 0.05% 9 1 1 3 2 2 0
top 0.01% 5 1 1 1 1 1 0

50 lang all jrf_k1 jrf_k2 match phylo clust path

total 288 48 48 48 48 48 48
top 10.00% 212 38 33 34 47 43 17
top 5.00% 169 30 25 25 41 41 7
top 1.00% 100 17 15 13 27 28 0
top 0.50% 74 13 10 9 18 24 0
top 0.10% 29 6 3 3 8 9 0
top 0.05% 18 3 2 1 6 6 0
top 0.01% 3 0 1 0 1 1 0

81 lang all jrf_k1 jrf_k2 match phylo clust path

total 288 48 48 48 48 48 48
top 10.00% 184 35 30 31 38 41 9
top 5.00% 143 26 17 25 33 37 5
top 1.00% 80 9 4 15 26 26 0
top 0.50% 57 6 2 8 20 21 0
top 0.10% 12 2 0 4 2 4 0
top 0.05% 5 1 0 1 1 2 0
top 0.01% 2 0 0 1 0 1 0

Table 4: The number of parameters in Figure 2 with dis-
tance smaller than the given percentage of the 100,000
permutations.
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Figure 6: The statistical significance of TDA trees for 30, 50, and 81 languages against the Ethnologue reference for
trees reconstructed by UPGMA and NJ for each combination of parameters described in Section 4, as in Figure 2.
Each dot represents the distance of a single reconstructed tree to the reference, and its position shows what fraction
of 100,000 random permutations of the tree’s leaves lead to smaller distances.
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Figure 7: The reference Ethnologue language phylogenic trees (Lewis et al., 2024) employed in this study, for sets
of the most popular 30, 50 and 81 Indo-European languages with FastText word embeddings.
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Figure 8: The 30-language reference Ethnologue tree with representative UPGMA and NJ reconstructed trees using
TDA (here 2-dimensional persistent homology using Euclidean distance and inferred distances between languages
based on bars statistics between the persistent diagrams). Although far from perfect agreement, the reconstructed
trees captures many meaningful language subgroups; for UPGMA, e.g. (i) clusters of Balto-Slavic languages (sl, sr,
lt, hr, bg, be), (ii) the Romance Italo-Western group (pt, fr, es, it) mixed with Germanic languages (de, nl, en, sv),
while (iii) the more distant Indo-Aryan languages (bn, hi, ur) are clustered and well-separated.

(a) Czech (cs), Euclidean (b) Czech (cs), cosine (c) English (en), Euclidean (d) English (en), cosine

(e) Slovak (sk), Euclidean (f) Slovak (sk), cosine (g) Irish (ga), Euclidean (h) Irish (ga), cosine

Figure 9: Eight persistence diagrams for language embeddings analysed in this paper including Czech and Slovak,
which are very closely related, and English and Irish, which belong to distant branches (Germanic and Celtic) of
the Indo-European family. For each language we show diagrams for distinct Euclidean and cosine metrics. Each
diagram shows features for dimensions 0, 1 and 2, that is, connected components, loops, and 2-spheres.
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