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Abstract

Large language models are often expected to
constantly adapt to new sources of knowledge
and knowledge editing techniques aim to effi-
ciently patch the outdated model knowledge,
with minimal modification. Most prior works
focus on monolingual knowledge editing in
English, even though new information can
emerge in any language from any part of the
world. We propose the Cross-Lingual Multi-
Hop Knowledge Editing paradigm, for measur-
ing and analyzing the performance of various
SoTA knowledge editing techniques in a cross-
lingual setup. Specifically, we create a parallel
cross-lingual benchmark, CROLIN-MQUAKE
for measuring the knowledge editing capa-
bilities. Our extensive analysis over various
knowledge editing techniques uncover signif-
icant gaps in performance between the cross-
lingual and English-centric setting. Following
this, we propose a significantly improved sys-
tem for cross-lingual multi-hop knowledge edit-
ing, CLEVER-CKE. CLEVER-CKE is based
on a retrieve, verify and generate knowledge
editing framework, where a retriever is for-
mulated to recall edited facts and support an
LLM to adhere to knowledge edits. We de-
velop language-aware and hard-negative based
contrastive objectives for improving the cross-
lingual and fine-grained fact retrieval and veri-
fication process used in this framework. Ex-
tensive experiments on three LLMs, eight
languages, and two datasets show CLEVER-
CKE’s significant gains of up to 30% over
prior methods. Code and data are released at
https://github.com/HarmanDotpy/CroLin-KE

1 Introduction

Large language models (LLMs) are seeing an in-
creasing adoption across users having different cul-
tural and linguistic background, and need to be up
to date about the ever-changing knowledge in the
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Figure 1: The Cross-lingual Multi-hop knowledge edit-
ing problem. New fact(s) are provided in different lan-
guages (e.g. Hindi). An LLM should adapt to these facts
for answering complex, multi-hop questions correctly
in different languages (e.g. English).

world for maintaining their utility and reliability
in various applications. Due to the ever increasing
compute and data requirements to train these mod-
els, there has been a surge in the development of
knowledge editing techniques to modify the lan-
guage models in an efficient way, such that they
adhere to the world dynamics.

Prior work on knowledge editing has largely fo-
cused on editing LLMs in a monolingual setting
(Zhong et al., 2023; Gu et al., 2024a), where both
user queries and edited facts are expressed in the
form of English. These works can be grouped into
two categories: parameter-update and parameter-
preserving methods. The former directly updates
the parameters within LLMs for updating knowl-
edge about the edited facts through meta-learning,
fine-tuning, or knowledge locating (De Cao et al.,
2021; Dai et al., 2022; Mitchell et al., 2022a; Meng
et al., 2022a,b). The later approach freezes the pa-
rameters and explicitly stores the edited facts in an
external memory and retrieves them for answering
user queries (Zhong et al., 2023; Gu et al., 2024a;
Mitchell et al., 2022c; Hartvigsen et al., 2023). Ex-
isting monolingual knowledge editing techniques
aren’t broadly applicable since new knowledge can
emerge in different languages. Some works have
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made progress in this direction (Beniwal et al.,
2024; Xu et al., 2023a; Si et al., 2024), but they
have considered a simplistic setting of assuming
the edited facts as independent without any multi-
hop rippling consequences on entailed reasoning
process, and are primarily focused on parameter-
modifying based editing methods.

There has only been a limited focus on the re-
alistic case of cross-lingual multi-hop knowledge
editing (see Fig 1), where the edited knowledge
can come in through users who communicate in
different languages. Further, much of edited knowl-
edge often has a rippling effect on other facts of
the world. For example, the club change of Messi
affects deduction process of question "indicating a
superficial word matching rather than a contextual
grasp of the entities involved." This knowledge edit-
ing setting, which we argue is important to study,
is challenging since the model needs to transfer
knowledge about fact edits between different lan-
guages, while also reasoning about the facts which
are modified as a consequence to the given edit.
Poor knowledge transfer between languages can
lead to error propagation across reasoning steps
which can increase failure cases of model editing.

In this work, we formulate the notion of cross-
lingual multi-hop knowledge-editing and analyze
existing approaches for their editing ability in dif-
ferent languages, following which a simple yet
highly effective approach is designed. Specifically,
① We create one of the first benchmark datasets for
measuring cross-lingual multi-hop knowledge edit-
ing capabilities of knowledge editing methods. Be-
sides parameter-update based approaches, we con-
tribute strong retrieval-based baselines for knowl-
edge editing and provide a comprehensive analysis.
② We provide a detailed analysis and find signifi-
cant gaps in the performance of methods for cross-
lingual knowledge editing. The gaps are mainly
due to challenges in accurately recalling fact edits
made in language other than input query.
③ To bridge such gap, we design a competitive
method, termed as Contrastive Language-aware
Verification for Cross-lingual Knowledge Editing
(CLEVER-CKE), for improving performance of
cross-lingual multi-hop knowledge editing. Our ap-
proach is based on decomposing a multi-hop ques-
tion in a particular language into sub-questions and
retrieving fact edits (if any) from memory using
a cross-lingual retriever, which is integrated for
answering sub-questions. In particular, the cross-

lingual retriever is regularized by novel language-
guided and hard-negative based contrastive losses,
which leads to improved language and fine-grained
sentence understanding of the edits, leading to high
quality cross-lingual retrievals. CLEVER-CKE im-
proves over previous SoTA by up-to 30% increase
in knowledge editing accuracy when tested on mul-
tiple LLMs, datasets and languages.

2 Cross-lingual Multi-hop Editing

Following prior work (Zhong et al., 2023), a fact is
defined as a triplet (s, r, o), where s is the subject,
o is the object, and r is the relation (e.g., Shake-
speare, author of, Hamlet). Given that a parametric
LLM can become outdated or incorrect, knowledge
editing is required to be performed on it. An edited
fact stores information about updated knowledge
of an existing fact and is denoted as e = (s, r, o∗),
where the object is replaced with a new one o∗.
Cross-Lingual Knowledge Editing. Each knowl-
edge fact or edit is assumed to be represented in
natural language. Let T : E → L be a function
which takes any fact e ∈ E (e.g., Shakespeare,
author of, Hamlet) and converts it into a natural
language statement, (e.g., Shakespeare is the au-
thor of Hamlet). All the facts and edits can be
represented in a variety of languages {L1, L2, . . . }
via functions such as {TL1 , TL2 , . . . }. For example,
an edit e =(Shakespeare, author of, Lolita) can be
written as Tde(e) = Shakespeare ist der Autor von
Lolita in German and Ten(e) = Shakespeare is the
author of Lolita in English.

We consider a collection of n fact edits in the
diverse languages: E = {eL1

1 , eL2
2 , eL2

3 , ..., eLi
n },

where L1, L2, ..., Li are different languages for
e.g., German, Hindi, Swahili, etc. A language
model f is said to be edited with new knowledge
facts if the model generations adheres to all the
edits present in E . The model is required to seam-
lessly transfer knowledge about an edit in one lan-
guage to answer queries in other languages.
Multi-Hop Editing and Evaluation. We fol-
low Zhong et al. (2023) for evaluating knowl-
edge editing via multi-hop question answering.
Consider eL1 = (sL1

i , rL1
i , oL1∗

i ), an edited fact
in language L1. Also consider a chain of facts
P = ⟨(sL1

1 , rL1
1 , oL1

1 ), . . . , (sLk
n , rLk

n , oLk
n )⟩, where

object of a fact is the subject for the next fact. Any
edit to the first fact (sL1

1 , rL1
1 , oL1∗

1 ) will likely have
a rippling effect and change the subsequent facts
in the chain, and we expect a successfully edited
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model to be aware of all such entailed changes.
For evaluating models in a cross-lingual multi-

hop setting, we make use of multi-hop ques-
tions such as QLn , in language Ln which
is different from L1...k. The question asks
about the head entity sL1

1 for which the an-
swer is oLk

n before editing. After editing, the
fact chain changes to P∗ = ⟨(sL1

1 , rL1
1 , oL1∗

1 )
, (sL2

2 , rL2
2 , oL2∗

2 ), . . . , (sLk
n , rLk

n , oLk∗
n )⟩ since ed-

its in the first fact can affect the subsequent facts
it’s linked to. For answering QLn after editing, the
model has to account for this rippling effect, and
provide the final answer as oLk∗

n . For this, model
has to transfer knowledge of the edited fact and the
answer, between languages L1...k and Ln, while
correctly reasoning about fact edits via P∗.

3 CROLIN-MQUAKE Benchmark

We develop one of the first parallel cross-lingual
and multi-hop benchmarks for measuring the
knowledge editing capabilities of the existing ap-
proaches. A parallel benchmark across languages
has the same test examples across all the lan-
guages, enabling a direct comparison between
them. For this, we use existing datasets mea-
suring the multi-hop model editing in English:
MQuAKE-CF and MQuAKE-T released by Zhong
et al. (2023), which have counterfactual edits and
real-world temporal edits respectively. We translate
one fact edit per example in these datasets using
Google Translate (Google) into 7 languages with
diverse writing scripts across medium to high re-
sourcedness - German, Spanish, Chinese, Russian,
Hindi, Bengali, Swahili. This results in the bench-
mark: Cross-Lingual Multi-Hop QnA for Knowl-
edge Editing (CROLIN-MQUAKE). It has two
datasets, CROLIN-MQUAKE-CF and CROLIN-
MQUAKE-T, each having 8 languages, and 3k
and 1.8k parallel examples (same examples in all
languages) per language, respectively. The trans-
lations are verified by human experts proficient in
particular languages and evaluation of BLEU score
(Papineni et al., 2002) using backtranslation. We
find that the translation is highly accurate, since
we study medium to high resource languages. See
Section A.1 for more details.

Concurrently, Wei et al. (2024) created a multi-
lingual knowledge editing dataset using Wikipedia,
offering translocalized knowledge but lacking par-
allel multilingual examples like ours. CROLIN-
MQUAKE enables comparing the knowledge edit-

ing performance difference across languages di-
rectly without being affected by the variation of
test sets between different languages.

4 Benchmark Analysis on Cross-Lingual
Multi-hop Knowledge Editing

LLMs. We use SoTA propriety and open-source
LLMs: ChatGPT (Schulman et al., 2022), LLaMa-
2-7B (Touvron et al., 2023b), Vicuna-1.5-7B (Chi-
ang et al., 2023) as backbones to evaluate cross-
lingual multi-hop knowledge editing.
Evaluation Metrics. We use multi-hop accuracy
proposed by Zhong et al. (2023) which measures
the accuracy of the final answer of a multi-hop
question. We also adopt hop-wise answering accu-
racy for checking the correctness of intermediate
reasoning steps, as proposed by Gu et al. (2024a).
New Baselines. Based on existing work, we con-
tribute strong baselines for the new editing setup:
• MeLLo-CL: We modify the existing method of

MeLLo (Zhong et al., 2023) by replacing the
monolingual retriever used in their system with a
multilingual retriever. This minimal modification
allows the system to retrieve the cross-lingual ed-
its. MeLLo-CL is a simple retrieval-based knowl-
edge editing approach: LLM first breaks down
a multi-hop question into various sub-questions
and for each sub-question, the retriever then re-
calls the most relevant fact from an external mem-
ory. The LLM disambiguates if the retrieved fact
is useful for answering the question or not.

• PokeMQA-CL: PokeMQA (Gu et al., 2024a) is
similar to MeLLo but consists of a conflict dis-
ambiguator for retrieving as well as classifying if
a fact is useful to answer a sub-question. Follow-
ing PokeMQA, we train this disambiguator using
BCE loss with negative sampling for retrieving
the close edits, given a decomposed sub-question.
However, our training dataset now consists of
translated version of the training dataset used
in PokeMQA. This training set contains all 8
languages (the multilingual setting) or English
along with one of the 7 non-English languages
(the bilingual setting).

Multi-hop knowledge editing performance heav-
ily depends on the language of edits. As can
be seen in the Figure 2, the gaps in average ac-
curacy between English and other language edits
are 10% and 11.7% for methods MeLLo-CL and
PokeMQA-CL, respectively, highlighting the sig-
nificant drop in cross-lingual knowledge editing
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CROLIN-MQUAKE-CF CROLIN-MQUAKE-T

3k (All) 100 edited 1.8k (ALL) 100 edited

Method Acc. Hop-Acc Acc. Hop-Acc Acc. Hop-Acc Acc. Hop-Acc

LLaMa-2 Size: 7B

FT 0.0 0.0 0.3 0.0 0.0 0.0 0.0 0.0
ROME 1.9 0.0 2.3 0.0 - - - -
MEMIT 0.4 0.3 4.2 1.0 - - - -
MeLLo-CL 10.6 1.9 14.6 2.3 26.5 3.0 28.5 0.7
PokeMQA-CL 10.6 2.3 19.7 5.9 11.1 5.8 14.6 7.8
CLEVER-CKE 13.2 7.3 19.2 11.1 40.6 30.0 42.6 31.1

Vicuna-1.5 Size: 7B

MeLLo-CL 8.8 2.8 14.5 5.5 34.1 13.5 36.9 13.0
PokeMQA-CL 9.5 2.1 17.3 5.5 11.0 6.6 13.7 8.5
CLEVER-CKE 12.7 7.1 18.1 10.7 37.9 30.6 39.9 31.8

ChatGPT (GPT-3.5-turbo-instruct) Size: Undisclosed

MeLLo-CL 14.4 5.4 20.6 8.5 39.0 17.6 41.4 17.0
PokeMQA-CL 12.9 2.9 26.8 9.3 13.5 8.2 17.4 10.7
CLEVER-CKE 18.6 10.6 30.1 18.6 42.6 32.8 45.6 35.1

Table 1: Performance of parameter update based and in-context editing based methods on the cross-lingual
multi-hop knowledge editing problem, reported for three language models, and averaged over 8 diverse languages.
Parameter-update based methods – FT, ROME, MEMIT perform significantly worse than in-context editing methods,
MeLLo-CL, PokeMQA-CL and CLEVER-CKE, significantly outperform all baselines. Evaluation is performed
over two sizes of edited fact memory – 100 and 3k/1.8k following Zhong et al. (2023). See §4 for more details.

Figure 2: Comparison of multi-hop accuracy of Mello-
CL and PokeMQA-CL on the CROLIN-MQUAKE-CF
across the different languages.

setup. Performance of MeLLo-CL varies signif-
icantly across the different scripts. For language
written in Latin scripts, the accuracy is ∼20%. In
contrast, for languages written in non-Latin scripts
such as Devanagari, Chinese, or Cyrillic, the ac-
curacy drops to ∼11%. Another observation is
that, in case of edits made in Swahili, despite be-
ing a low-resource language, it outperforms more
resource-rich languages like Chinese, Russian, and
Hindi. This suggests that script plays a crucial role
in cross-lingual knowledge editing and retrieval.
The reason is intuitive, i.e., Latin script languages
have a higher presence in most pretraining data
which leads to better tokenization and better rep-
resentation in LLMs; whereas the non-Latin script

languages suffer from high tokenization fertility
and less effective representation in the model (Ahia
et al., 2023; Singh et al., 2024).

Parameter-modifying based knowledge editing
performs poorly in the cross-lingual setting.
Methods that update the parameters of the model,
such as ROME, MEMIT, FT, perform signifi-
cantly worse in the cross-lingual setting, achiev-
ing an accuracy under 5.0% (average across lan-
guages), as shown in Table 1. One key issue is
that knowledge edits may not transfer effectively
across different languages just via model weights,
leading to inconsistent and inaccurate retrievals.
Further, the problem is exacerbated due to cas-
cading error propagation in a multi-hop setting.
Hence the parameter-modifying methods struggle
to reliably edit the LLM across languages and
multi-hop contexts. This highlights the need for
memory-based approaches that rely on an exter-
nal edit memory, like our contributed baselines,
MeLLo-CL and PokeMQA-CL, which can cross-
lingually retrieve the relevant edits on the fly when
inferring from an LLM. These approaches sub-
stantially improve performance up to nearly 30%
on CROLIN-MQUAKE compared to parameter-
modifying based methods.

11998



Knowledge editing performance based on re-
triever training technique. MeLLo-CL retrieves
the edited fact from the memory using mContriever
and employs an LLM to disambiguate between
the generated answer and the retrieved fact and
hence ascertains if the generated fact needs any
update or not. On the other hand, the current
state-of-the-art knowledge editing method in En-
glish, PokeMQA-CL, uses a retrieve-then-verify ap-
proach, which offloads the knowledge disambigua-
tion to the retriever. This retriever is a light-weight
and fine-tuned distilbert-base model trained on a
(sub-question,edit) pair dataset using binary cross-
entropy loss with negative sampling. It retrieves
the closest edits (in fact memory) to a sub-question
and scores it on whether the edit answers the ques-
tion or not (called verification or disambiguation).
If it does, then it uses this new knowledge as the
answer to the sub-question in the n-th hop step and
performs in-context editing. PokeMQA-CL outper-
forms MeLLo-CL on in the monolingual (English)
setting, with a much smaller retriever as shown
in Gu et al. (2024a), however, when trained with
multilingual data, we find that it significantly under-
performs MeLLo-CL in most languages including
English as shown in Fig. 2. MeLLo-CL under-
performs in Hindi and Bengali – languages with
scripts very different from Latin, even though its
retriever is trained with 100+ languages.

Qualitative analysis of errors. We examine the
error cases of MeLLo-CL and PokeMQA-CL for
knowledge edits made in two languages: English
and Hindi. Our analysis identifies two primary
types of errors made by these methods. The first
type is a) incorrect retrieval, where the retrieved
information is not relevant to input queries. The
second type is b) incorrect LLM response, where a
LLM either makes a mistake in extracting the final
answer or errors in decomposing the question into
subquestions. Additionally, MeLLo-CL exhibits
c) contradiction error where the LLM makes mis-
take at the contradiction step. Figure 7 illustrates
the examples of these three types of errors. We
analyzed a random subset of 30 samples for these
methods and found the following:

❶ MeLLo-CL: When edits are made in English,
63.3% of the samples are correct, 29.3% have the
contradiction error, 3.6% have Incorrect retrieval,
and 3.6% have the incorrect LLM response. For
edits made in Hindi, 33.3% of the samples are cor-
rect, 60% exhibit an error combination of incorrect

retrieval and subsequent contradiction error, where
the model first makes an incorrect retrieval and
then fails in the contradiction step and 6.6% of
erroneous samples are due to the incorrect LLM re-
sponse. In the CROLIN-MQUAKE-CF case when
the multilingual edited fact memory contains edits
in English and Hindi, MeLLo-CL’s retriever rarely
retrieves edits in Hindi, indicating a limitation in its
multilingual capabilities. The limitation of MeLLo-
CL lies in its retriever-then-contradict mechanism
which is up to the LLM.

❷ PokeMQA-CL: When edits are made in En-
glish, 53.3% of the samples are correct and 46.3%
have the incorrect retrieval error. When edits are
made in Hindi, 43.3% are correct, 51% have er-
rors due to the incorrect retrieval and 5.6% are due
to the incorrect LLM response. The limitation of
PokeMQA-CL lies in its reliance on a bag-of-words
model for retrieval. For instance, when presented
with the sub-question "Who is the head of state of
the USA?", it retrieves the fact “The head of state
of Mongolia is Khürelsükh Ukhnaa." This example
underscores that PokeMQA-CL prioritizes facts
with the highest word overlap, specifically “head of
state" indicating a superficial word matching rather
than a contextual grasp of the entities involved.

❸ When trained in a cross-lingual setting,
PokeMQA-CL exacerbates the issue of bag-of-
words retrieval. For example, for the sub-question
“Where was Bob Dylan born?", it correctly retrieves
“Bob Dylan was born in the city of Nankoku" in
English. However, if the same edit is made in Ger-
man, it retrieves “Bob Dylan spricht die Sprache
von Malayalam" (Bob Dylan speaks the language
of Malayalam). This issue is a likely a consequence
of high word overlap in retriever’s internal transla-
tion process and is a limitation of current systems.

Section 4 hints signficant gapS between English-
only and cross-lingual case, and that proper knowl-
edge retrieval technique is critical to the perfor-
mance of cross-lingual knowledge editing.

5 CLEVER-CKE for Knowledge Editing

For overcoming limitations in cross-lingual multi-
hop knowledge editing, we design CLEVER-CKE,
a cross-lingual and light-weight model editor that
seamlessly integrates into any backbone LLM,
without changing its parameters. CLEVER-CKE is
inspired by memory-based and retrieval-augmented
knowledge editing methods (Zhong et al., 2023; Gu
et al., 2024a; Mitchell et al., 2022b) for mutlihop
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Figure 3: Our proposed method, CLEVER-CKE. On the left we show the LLM inference process for cross-lingual
multi-hop knowledge editing. Given a prompt (See §A.5), the LLM breaks down a multi-hop question into sub-
questions and answers them individually, utilizing a a retrieve and verify approach using the retriever. On the right,
we show new training objectives used in this work for training the retriever. See §5 for more details.

question answering. CLEVER-CKE follows the
following procedure: Given an input query, it a)
decomposes the multi-hop question into multiple
sub-questions for getting to the final answer, and
for answering each sub-question b) retrieves a rele-
vant fact from the edit memory, c) disambiguates
whether the retrieved new knowledge is relevant
to answering the sub-question, and d) continues
the model generation process based on that. In this
work, we primarily aim at showing the importance
of having a high-quality retriever for the retrieve-
and-verify steps at b) and c) described as follows.
See Fig. 3 for an overview.

Memory of Fact Edits: CLEVER-CKE explic-
itly stores a set of knowledge edits E in a memory
F . Each edit triplet e = (s, r, o) ∈ E is converted
to a natural language statement in either English or
another language using English or translated tem-
plates present in CROLIN-MQUAKE. This creates
a multilingual edited fact memory.

Sub-question Decomposition: Given a multi-
hop question Q, LLM is prompted using in-
context examples to decompose it into various sub-
questions Qsub = {q1, q2, . . . }. Note that Q and
the language model generation is assumed to be
in English in our work whereas the edited fact
memory can contain both English and non-English
knowledge edits. The LLM is instructed to answer
the generated sub-questions as follows.

Retrieve-and-Verify: For each sub-question q,
CLEVER-CKE retrieves the top-1 candidate r ∈
F using cosine similarity. Verification process then
answers the question: Does r help answer q? The

answer to this is yes if cos(f(r), f(q)) ≥ t where
cos(.) is the cosine similarity function, f(.) ∈ Rd

is the retriever embedding and t is a threshold (hy-
perparameter). In this case, r is passed to the LLM
which uses it for generating the answer to the sub-
question. If cos(f(r), f(q)) < t, only the LLM’s
internal knowledge is used to answer the question.
Following this, LLM will move on to answering the
next sub-question. Note that here, the disambigua-
tion of whether r is useful or not, happens external
to the LLM, reducing its reasoning complexity.

CLEVER-CKE Retriever Training: Motivated
by gaps found in Section 4, we create new ob-
jectives for training the retriever for improving
fine-grained and cross-lingual representations. We
then show that our simple losses provide significant
gains in knowledge editing performance.

Semantic Distinction Loss: We employ a con-
trastive, triplet margin loss LSD for improving fine-
grained cross-lingual retrieval. Assuming an edits
e = (s, r, o), we obtain its natural language forms
TL1(e), TL2(e) in languages L1, L2 respectively.
This creates a positive pair for the triplet loss. We
generate hard negatives for Ten(e) in English by
replacing an edits’ subject, object, or both object
with random entities, with a probability of 0.33
each. This process involves extracting all relations
in MQUAKE dataset and prompting the GPT-3.5
model to suggest head/tail entities for these rela-
tions. We then randomly sample any generated
head/tail (or both) for replacement in an edit con-
taining the corresponding relation. Following this,
the hard negative example Ten(eneg) is translated
to L1 and hence a negative pair (TL1(e), TL1(eneg)
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is obtained. The loss function is formulated as:

LSD = max(d(f(TL1(e)), f(TL2(e))

−d(f(TL1(e)), f(TL1(eneg)) + α, 0).
(1)

f(·) represents the retriever embedding, d(.) repre-
sents the distance function, and α is a gate hyper-
parameter. LSD promotes learning the fine-grained
knowledge about subject, relation and object in a
cross-lingual setting and encourages the model to
distinguish the semantic nuances in different edits.
This mitigates the redundant selection of edits with
significant word overlap.

Cross-Lingual Edit Consistency Loss: We em-
ploy a contrastive, triplet margin loss LCLEC fo-
cused on improving cross-lingual retrieval. Here,
the anchor is Qen, a question in English. The edited
fact for answering that question, TL1(e), serves as
the positive example, and a random edit TL2(erand)
forms the negative example:

LCLEC = max(d(f(Qen), f(TL1(e))

−d(f(Qen), f(TL2(erand)) + α, 0).
(2)

BCE Loss: Following (Gu et al., 2024a; Mikolov
et al., 2013) we add a binary cross-entropy loss
in the cross-lingual setting as a baseline loss for
training the retriever for retrieving edits in a cross-
lingual setting. The negative BCE Loss function
takes questions in English and their corresponding
edited facts in one of the seven languages as input.
We then compute the L2 norm between these edits
and questions, and sample 20 negatives. The loss
function L is defined similar to Gu et al. (2024a):

LBCE = − log g(TL1(e), f(Qen))

−Eqn∼Pn(q)[log(1− g(TL1(e), qn))],
(3)

where Pn is a uniform over each mini-batch, and
g(.) = exp(d(.)).
LCLEC and LBCE encourage it to differentiate

between edits in different languages and enhance
its ability to handle multilingual knowledge editing
tasks effectively. The total loss we use is then:

Ltotal = LSD + LCLEC + LBCE. (4)

5.1 Performance of CLEVER-CKE
We train the retriever with the above losses on a
dataset of 8 languages and measure performance
on the CROLIN-MQUAKE. In Table 1, on aver-
age across languages and across different LLMs,
CLEVER-CKE improves over previous methods
by up-to 5.7% in accuracy on CROLIN-MQUAKE-
CF and we see a much larger increase in the hop-
accuracy which suggests faithful reasoning. On the

Figure 4: Average accuracy of methods CLEVER-CKE,
PokeMQA-CL and MeLLo-CL reported on 2, 3, 4-hop
questions with ChatGPT as LLM with the case of all
edited on CROLIN-MQUAKE-CF.

real world temporal dataset CROLIN-MQUAKE-T,
we see a significant increase of about 30% accuracy
and more than 25% in hop-accuracy metric. Per-
formance gains are large and consistent or better
for larger and more capable models like ChatGPT,
as compared to LLaMa-2/Vicuna-1.5. Refer to
Figure 8 which illustrates an example where other
methods make errors, while CLEVER-CKE cor-
rectly answers the question.

Performance across n-hops: We compare the
performance of MeLLo, PokeMQA and CLEVER-
CKE in answering n-hop questions, n ∈ 2, 3, 4 us-
ing CROLIN-MQUAKE-CF dataset and ChatGPT
as the LLM. As shown in Fig. 4, CLEVER-CKE
outperforms PokeMQA-CL and MeLLo-CL with
an average performance increase of 30.7% for 2-
hop questions, 22.6% for 3-hop questions, and 5%
for 4-hop questions. Fig. 6 presents language-wise
accuracies for these methods for n-hop questions,
showing the superior performance of CLEVER-
CKE compared to other methods.

Bilingual vs Multilingual retriever: To com-
pare performance differences with increasing the
number of languages, we trained PokeMQA-CL
and CLEVER-CKE’s retrievers in a bilingual set-
ting using English and the target language. See Fig
5 for results. As expected, on average the bilin-
gual setting has greater performance than the mul-
tilingual setting, potentially due to interference of
multiple languages in the multilingual setting. We
interestingly observe that this gap is minimal in the
case of CLEVER-CKE, compared to PokeMQA-
CL. This is because CLEVER-CKE’s losses lead
to better cross-lingual knowledge transfer leading
to reduced interference of languages and more gen-
eralization. This observation generalizes across
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LLMs and datasets we tested on. Language-wise
performance comparison of the two retriever setups
for PokeMQA and CLEVER-CKE using ChatGPT,
LLaMa-2-7B and Vicuna-1.5-7B are in Tables 6-11.
Also see Figs. 9 to 16 for more results.

Figure 5: Average accuracy using bilingual vs multilin-
gual retriever, on the CROLIN-MQUAKE-CF dataset
in 3k setting using ChatGPT as the LLM.

Ablations: We conducted an ablation on the loss
functions we use, with results presented in Ta-
ble 2. We selected five languages for this study
and used the validation set of CROLIN-MQUAKE-
CF. LSD and LCLEC significantly improve per-
formance over LBCE , showing their importance
in inducing fine-grained understanding and cross-
lingual awareness in the retriever. Combining both
all three losses leads to a 75.3% and 109.5% in-
crease in average accuracy and hop-accuracy.

Loss ↓ Lang. → EN DE HI SW RU

LBCE 26.0 28.0 16.0 20.0 16.0
+ LSD 44.0 34.0 12.0 38.0 16.0
+ LCLEC 44.0 36.0 18.0 30.0 18.0
+ LSD + LCLEC 76.0 62.0 12.0 58.0 26.0

Table 2: Ablation results of different loss functions used
to train the retriever. Results on the validation set from
CROLIN-MQUAKE-CF.

Error analysis We performed an error analysis
of our method similar to the error analysis con-
ducted for PokeMQA-CL and Mello-CL. We an-
alyzed 30 samples each for edits made in En-
glish and Hindi. For English, based on ran-
dom subset, we found that 70% of the sam-
ples were correct, 8.1% had Incorrect Retrieval er-
ror, and 21.9% had Incorrect LLM Response er-
ror. In the case of Hindi, 46.6% of the sam-
ples were correct. Of the remaining samples,
26.6% had Incorrect Retrieval error, 16% had both
Incorrect LLM Response and Incorrect Retrieval
errors, and 10.6% had an Incorrect LLM Response
error. Refer Section A.7 for more details.

6 Related Works

Knowledge editing methods: Knowledge edit-
ing can be broadly classified intro two groups. 1)
Parameter-modifying based editing which locates
the parameters related to factual knowledge and
subsequently modify them (De Cao et al., 2021;
Dai et al., 2022; Mitchell et al., 2022a; Meng et al.,
2022a,b). These method requires an error-prone
analytic step to identify parameters, which might
be model-specific and not efficient. 2) Parameter-
preserving based editing keeps the model parame-
ters frozen and explicitly stores the fact edits in an
external memory, for retrieval and external valida-
tion (Zhong et al., 2023; Gu et al., 2024a; Mitchell
et al., 2022c; Hartvigsen et al., 2023). Some recent
works like that of Hernandez et al. (2023) have
also explored a decoding time approach for edit-
ing knowledge. Further, knowledge editing is also
explored in multimodal settings, such as for text-
to-image models (Basu et al., 2023, 2024; Xiong
et al., 2024; Gu et al., 2024b).
Cross-lingual knowledge editing. Recent stud-
ies have shifted focus to the multilingual capabil-
ities of SoTA LLMs like LLaMA (Touvron et al.,
2023a), ChatGPT (Schulman et al., 2022), and
GPT-4 (OpenAI, 2023). Wang et al. (2023a) inves-
tigated cross-lingual knowledge editing and its im-
pact on different target languages using a synthetic
dataset. (Si et al., 2024) introduced Multilingual
Patch Neuron (MPN) for efficient cross-lingual
knowledge synchronization, showing enhanced
performance on single-hop XNLI and XFEVER
datasets. (Xu et al., 2023b) proposed a frame-
work for language anisotropic editing, facilitating
simultaneous cross-lingual model editing. (Beni-
wal et al., 2024) explored the cross-lingual model
editing (XME) paradigm, revealing performance
limitations in multilingual LLMs for hypernetwrok
based parameter-modifying methods. (Wang et al.,
2023b) presented Retrieval-augmented Multilin-
gual Knowledge Editing (ReMaKE), a model-
agnostic knowledge editing method designed for
multilingual settings. ReMaKE retrieves new
knowledge from a multilingual knowledge base
and concatenates it with prompts to update LLMs.
Most of the above works have considered a sim-
plistic setting of assuming the edited facts as in-
dependent without any multi-hop consequences of
these edits, and are primarily focused on parameter
updating based methods. We focus on parameter-
preserving methods, and the more complex setting
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of multi-hop editing in a cross-lingual setup.
Multi-Hop QA and prompting methods: With
the advances in generative language technolo-
gies powered by Large Language Models (LLMs;
Brown et al., 2020; Rae et al., 2021; Chowdhery
et al., 2022; OpenAI et al., 2023; Tay et al., 2023;
Google, 2023), complex and multi-hop QA tasks
are often handled by a prompt based and retrieval
augmented approach (Press et al., 2022; Yao et al.,
2023; Khattab et al., 2022). Works that tackle multi-
hope knowledge editing have started to use this
retrieve-then-generate framework to effeciently pe-
form knowledge editing in an in-context setting,
without changing the parameters of the base LLM,
and have achieved SoTA performance on knowl-
edge editing. Given their success, we use a similar
retrieve, verify and generate strategy for knowledge
editing with CLEVER-CKE, while explicitly fo-
cussing on the retriever for enhanced knowledge
editing performance.

7 Conclusion

In this paper, we contributed a benchmark hav-
ing parallel multilingual examples for evaluating
cross-lingual multi-hop knowledge editing. We
provide new baselines and a detailed analysis of
SoTA knowledge editing methods and find vari-
ous gaps in existing methods, particularly in the
cross-lingual setting. Motivated by this, we pro-
pose a generic, simple and highly effective method,
CLEVER-CKE, for improving the knowledge edit-
ing capabilities of parameter-preserving, retrieval
augmented editing methods. CLEVER-CKE im-
proves cross-lingual and fine-grained retrieval in
the case of knowledge editing, by introducing lan-
guage aware and hard-negative mining based con-
trastive losses to train retrievers. Improved retrieval
leads to precise knowledge retrieval and reduced
error propagation in the multi-hop reasoning set-
ting. CLEVER-CKE is parameter-preserving in
terms of the LLM weights, and uses a lightweight
retriever with low latency as compared to methods
like Zhong et al. (2023).

8 Limitations

Our analysis and methods has some limitations.
Firstly, although CROLIN-MQUAKE is a parallel
cross-lingual benchmark, it predominantly contains
fact edits related to English-speaking knowledge
changes, while the edits could be localized to any
part of the world in practice. This reliance on trans-

lation rather than trans-localization may lead to
gaps in accurately understanding regional and local
fact edits. However, having parallel data in all lan-
guages is advantageous to accurately measure per-
language performance without confounding factors.
Secondly, our method is primarily focused on the
retriever component and does not address the inher-
ent inaccuracies of the LLMs. This includes issues
such as understanding and generation capabilities
of LLMs in different languages, correctly breaking
down multi-hop questions into sub-questions, ac-
curately extracting the final answer in the desired
language. Lastly, our analysis is currently limited
to a broad range of medium to high-resource lan-
guages. Extending this analysis to low-resource
languages presents a significant challenge due to
the inaccuracies in translation, which can hinder the
proper representation and understanding of facts
in low resource languages. Improving translation
accuracy and extending our work to low-resource
languages is part of our future work.
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A Appendix

A.1 Verification of Translated Data in
CROLIN-MQUAKE

A.1.1 Human Verification of Translation
We randomly selected 50 edits in four lan-
guages—German, Chinese, Hindi, and Ben-
gali—and had the translations verified by expert
human annotators to ensure accuracy. For each
sample, we provided two sentences: one in English
and its translation in the respective language. The
annotators were asked to verify whether the seman-
tic information was consistent between the two sen-
tences. Given the brevity of the edit sentences, the
potential for translation errors was minimal. Only
one sample from Hindi in the CROLIN-MQUAKE-
CF dataset encountered an issue during transla-
tion due to a special character error; the remaining
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samples were successfully processed. The expert
human annotators suggested only minor stylistic
changes for 1-2 words out of all 50 edit sentences
in one language.

A.1.2 Verification of Translations via
Backtranslation

To ensure the quality of translations, we employed
back-translation, converting the translations from
other languages back into English, and then calcu-
lated the average BLEU scores for 50 samples with
the original English sentence as the ground truth.
Table 3 presents these BLEU scores, indicating that
six out of seven languages exhibit translations of
very high quality, adequacy, and fluency 1. For
Chinese, the BLEU score suggests that the gist is
clear, although there are some grammatical errors.
However, with the addition of human verification
(an expert gave a 100% score to the translations
in terms of preserving semantic content), we can
conclude that the semantic information is preserved
in the data translated to Chinese.

Language BLEU Score

de 70.6
hi 59.2
bn 49.7
es 71.7
sw 65.9
ru 40.0
zh 23.0

Table 3: BLEU Scores for back-translation to English
for different languages.

A.2 Training Details
We employ the training dataset to train the retriever
component of the CLEVER-CKE framework, us-
ing the same training set as utilized in training
PokeMQA-CL (Gu et al., 2024a). Subsequently,
we translate this dataset into seven other languages
and generate hard negatives following the method
outlined in Section 5. The training dataset contains
6688 samples along with translations into 8 langu-
gaes and hard-negative pairs for each edit in the
dataset, both of which is created by us for training
CLEVER-CKE’s retriever. For training the multi-
lingual retriever, we utilize data from all languages,
while for training the bilingual retriever, we focus

1https://cloud.google.com/translate/automl/
docs/evaluate#interpretation

on English and the target language data. To opti-
mize our method’s performance, we conduct hyper-
parameter tuning on a validation set derived from
CROLIN-MQUAKE-CF, comprising 50 samples
exclusively for this purpose without involvement
in inferencing tasks. The hyperparameters used for
tuning are mentioned in Table 4. Our experiments
are expensive (See Appendix A.6) and we do not
perform experiments on multiple seeds.

A.3 Method Details
We finetuned distilbert-base-multilingual-cased
(Sanh et al., 2019) with approximately 130.7M
parameters from the HuggingFace transformers li-
brary on the training data we created by translation
and hard negative mining for the edits as described
in Section 5 using our designed training objectives
for the retriever. We used held out 20% of the sam-
ples for the validation set and used Adam optimizer
to update the parameters during training.

Hyperparameter Value

Learning Rate 5.00× 10−5

Batch Size {1024, 2048}
Epoch 200
Margin 1
Threshold {0.5 , 0.7}

Table 4: Hyperparameter values searched for tuning
the multilingual retriever in and CLEVER-CKE and
PokeMQA-CL.

A.4 CROLIN-MQUAKE Benchmark
Statistics

See Table 5 for the dataset statistics of our bench-
mark CROLIN-MQUAKE, which we create in this
work and use it for evaluating the cross-lingual
multi-hop knowledge editing capabilities of vari-
ous model editing techniques. Languages studied
in this work and supported by CROLIN-MQUAKE
are English, German, Spanish, Hindi, Swahili, Ben-
gali, Russian, Chinese.

A.5 Prompts for LLM inference
To help the LLM break down questions into sub-
questions, generate answers for the subquestions,
and extract the final answer, we provide four in-
context example demonstrations. These examples
include edits from different languages based on the
edits made. We include a mix of 2, 3, and 4-hop
example demonstrations in the prompt. Below, we
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#Edits Hop-Wise Stats (per-language/total) #Languages

2-hop 3-hop 4-hop Total

CROLIN-MQUAKE-CF

1 513 / 4k 356 / 2.8k 224 / 1.8k 1093 / 8.7k 8
2 487 / 3.9k 334 / 2.7k 246 / 2k 1067 / 8.5k 8
3 - 310 / 2.5k 262 / 2.1k 572 / 4.6k 8
4 - - 268 / 2.1k 268 / 2.1k 8

All 1000 / 8k 1000 / 8k 1000 / 8k 3000 / 24k 8

CROLIN-MQUAKE-T 1 (All) 1421 / 11368 445 / 3560 2 / 16 1868 / 14944 8

Table 5: Statistics of CROLIN-MQUAKE created and used in our experiments. Statistics per language are same as
those reported in Zhong et al. (2023).

present an example demonstration for a prompt
used for edits in German and Swahili. In these
demonstrations, the text written in blue represents
the updated fact from the edited fact memory, and
the text written in teal indicates the answer extrac-
tion.

Here is the 3-hop question example demonstra-
tion used in the prompt when edits are made in
German:

Question: What is the capital city of the country of
citizenship of Ivanka Trump’s spouse?
Subquestion: Who is Ivanka Trump’s spouse?
Generated answer: Der Ehemann von Ivanka
Trump ist Jared Kushner.
According to Generated answer, the entity of
Subquestion in English is: Jared Kushner
Subquestion: What is the country of citizenship of
Jared Kushner?
Generated answer: Jared Kushner ist kanadischer
Staatsbürger.
According to Generated answer, the entity of
Subquestion in English is: Canada
Subquestion: What is the capital city of Canada?
Generated answer: Die Hauptstadt Kanadas ist
Ottawa.
According to Generated answer, the entity of
Subquestion in English is: Ottawa.
Final answer: Ottawa

Following is the 2-Hop example demonstration
when edits are made in Swahili:

Question: Who is the head of state of the country
where Rainn Wilson holds a citizenship?
Subquestion: What is the country of citizenship of
Rainn Wilson?
Generated answer: Rainn Wilson ni raia wa
Kroatia.

According to Generated answer, the entity of
Subquestion in English is: Croatia
Subquestion: What is the name of the current head
of state in Croatia?
Generated answer: Jina la mkuu wa sasa wa nchi
nchini Kroatia ni Kolinda Grabar-Kitarović.
According to Generated answer, the entity of Sub-
question in English is: Kolinda Grabar-Kitarović
Final answer: Kolinda Grabar-Kitarović

A.6 Compute Resources

We performed all experiments using 8 NVIDIA
A100 80 GB GPUs. The training duration for the
retriever, including both bilingual and multilingual
retrievers for both PokeMQA-CL and CLEVER-
CKE, was approximately 2 hours per run. Infer-
ence tasks took between 4 to 6 hours to complete
when using ChatGPT as the LLM in the case of
CLEVER-CKE, and between 10 to 24 hours with
Llama-2-7b and Vicuna-1.5. Each MeLLo baseline
run varied in duration from 8 to 24 hours, depend-
ing on the language and the LLM used.

A.7 Error Analysis

Figure 7 presents real examples of errors made by
different methods. The first column displays er-
rors related to incorrect retrieval, where the model
fails to understand the context of the subquestion
and either retrieves a fact with some word overlap
with the subquestion or a random edit. The second
column shows instances where the LLM makes
mistakes in breaking down the subquestion. In the
first example, it deviates from the question, asking
when Giles Gilbert Scott died, and then in the third
hop, it just repeats the original question. The sec-
ond example of this column contains an example
where the LLM fails to adhere to the strict pattern
of the prompt, misunderstands the context, and gen-
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erates incorrect information, causing a cascading
effect of errors. The third column highlights er-
rors specific to the MeLLomethod, where the LLM
struggles to disambiguate between the generated
answer and the retrieved fact. In the first example
of this column, the retrieved fact contradicts the
generated answer, but the LLM fails to identify the
correct entity from the generated answer/retrieved
fact after resolving the contradiction, leading to a
wrong answer. In the second example, although
the retrieved fact does not contradict the generated
answer, the LLM incorrectly perceives it as a con-
tradiction, resulting in a mistake.

Our method, CLEVER-CKE, addresses and
improves upon these errors, as demonstrated in
Figure 8. In the same question scenario, where
MeLLo-CL exhibits a contradiction error high-
lighted in yellow and red, and PokeMQA-CL
makes a retrieval error based on word overlap, our
method follows all the correct steps, leading to the
accurate final answer.

A.8 Licensing
The baseline methods ROME, MEMIT, FT,
MeLLo, and PokeMQA are distributed under the
MIT License. Similarly, the datasets MQUAKE-
CF and MQUAKE-T are available under the MIT
License. The models Vicuna-1.5-7B (v1.5) and
distilbert-base-multilingual-cased are released un-
der the Apache License 2.0, while LLaMa-2-7B is
licensed under the LLAMA 2 Community License.
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Figure 6: Accuracy of methods CLEVER-CKE, PokeMQA-CL and MeLLo-CL reported on 2, 3, 4-hop questions
in CROLIN-MQUAKE-CF with ChatGPT as LLM for all languages. We take the 3k edit case using CROLIN-
MQUAKE-CF.

Figure 7: Examples of types of errors made by different methods such as MeLLo-CL, PokeMQA-CL and CLEVER-
CKE. Text in red highlights the step at which the error is made. Text highlighted in yellow means the steps that are
correct but lead to error in contradiction. Examples are provided in English and Hindi.
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Figure 8: Sample of data showing how CLEVER-CKE doesn’t make the errors of MeLLo-CL and PokeMQA-
CL-CL. Text in red highlights the step at which the error is made. Text highlighted in yellow means the steps that
are correct but lead to error in contradiction. Text highlighted in green means the correct final answer achieved by
taking all correct steps.

Edits Bilingual 3k Multilingual 3k Bilingual 100 Multilingual 100

Acc Hop-Acc Acc Hop-Acc Acc Hop-Acc Acc Hop-Acc

Po
ke

M
Q

A
-C

L

en 39.1 30.7 17.0 7.3 55.9 47.2 35.9 19.5
de 25.1 14.5 15.7 3.7 29.3 16.6 33.0 12.5
es 20.6 9.4 12.8 2.8 29.7 13.5 28.2 9.2
hi 6.8 0.2 10.9 1.0 16.0 1.3 21.4 4.0
sw 17.0 9.2 14.4 4.0 22.3 13.4 30.7 11.5
bn 11.1 0.3 10.5 1.2 15.9 1.5 21.6 4.4
ru 7.9 0.7 10.4 1.5 20.2 4.3 23.2 7.7
zh 7.1 0.6 11.5 1.5 16.3 3.0 20.5 5.4

PokeMQA-CL 16.8 8.2 12.9 2.9 25.7 12.6 26.8 9.3

C
L

E
V

E
R

-C
K

E

en 36.2 28.7 33.1 25.0 57.5 48.8 54.8 43.8
de 29.2 16.0 24.3 14.3 38.1 23.9 39.2 24.3
es 21.4 11.3 19.1 10.0 34.2 18.4 31.6 17.6
hi 10.5 4.9 10.5 4.4 22.8 10.6 17.3 8.2
sw 21.9 14.3 22.0 13.6 34.7 24.6 37.9 24.6
bn 12.0 4.5 12.3 4.3 16.8 7.8 16.8 7.1
ru 13.0 7.1 15.2 7.9 25.7 14.7 24.4 14.1
zh 8.6 3.1 12.3 5.4 16.5 6.8 19.2 9.5

CLEVER-CKE 19.1 11.2 18.6 10.6 30.8 19.5 30.1 18.6

Table 6: Performance of PokeMQA-CL and CLEVER-CKE by Language and Number of Edits on the CROLIN-
MQUAKE-CF Dataset Using ChatGPT Backbone: Bilingual and Multilingual Training of the Retriever with All
and 100 Edits.
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Figure 9: Knowledge Editing accuracy of
PokeMQA-CL using LLaMa-2 as the LLM in the
Bilingual and Multilingual Case, for two cases –
edited fact memory size kept as 3k and 100 edits.

Figure 10: Knowledge Editing accuracy of
PokeMQA-CL using ChatGPT as the LLM in the
Bilingual and Multilingual Case, for two cases –
edited fact memory size kept as 3k and 100 edits.

Figure 11: Knowledge Editing accuracy of
CLEVER-CKE using LLaMa-2 as the LLM in the
Bilingual and Multilingual Case, for two cases –
edited fact memory size kept as 3k and 100 edits.

Figure 12: Knowledge Editing accuracy of
CLEVER-CKE using ChatGPT as the LLM in the
Bilingual and Multilingual Case, for two cases –
edited fact memory size kept as 3k and 100 edits.

Figure 13: Hop-Accuracy of PokeMQA-CL using
LLaMa-2 as the LLM in the Bilingual and Multilin-
gual Case, for two cases – edited fact memory size
kept as 3k and 100 edits.

Figure 14: Hop-Accuracy of PokeMQA-CL using
ChatGPT as the LLM in the Bilingual and Multilin-
gual Case, for two cases – edited fact memory size
kept as 3k and 100 edits.

Figure 15: Hop-Accuracy of CLEVER-CKE using
LLaMa-2 as the LLM in the Bilingual and Multilin-
gual Case, for two cases – edited fact memory size
kept as 3k and 100 edits.

Figure 16: Hop-Accuracy of CLEVER-CKE using
ChatGPT as the LLM in the Bilingual and Multilin-
gual Case, for two cases – edited fact memory size
kept as 3k and 100 edits.
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Edits Bilingual 1.8k Multilingual 1.8k Bilingual 100 Multilingual 100

Acc Hop-Acc Acc Hop-Acc Acc Hop-Acc Acc Hop-Acc
Po

ke
M

Q
A

-C
L

en 79.1 69.1 23.7 17.6 79.3 69.5 30.0 22.5
de 45.1 32.3 13.7 08.9 46.5 33.5 17.7 11.1
es 41.0 28.2 06.7 03.6 45.2 31.2 13.3 8.0
hi 13.4 6.4 8.6 4.8 15.7 8.6 12.4 7.0
sw 54.8 41.9 15.5 9.4 58.7 44.3 19.3 11.6
bn 11.7 5.7 13.8 6.0 12.8 6.4 14.2 7.2
ru 12.5 7.5 14.9 10.0 14.2 9.4 16.9 10.9
zh 10.8 5.9 11.0 5.6 14.2 8.4 15.1 7.4

PokeMQA-CL 33.5 24.6 13.5 8.2 35.8 26.4 17.4 10.7

C
L

E
V

E
R

-C
K

E

en 80.6 69.9 66.6 54.7 81.0 70.3 67.4 55.4
de 63.6 50.2 59.3 46.5 64.1 50.6 59.7 46.6
es 45.7 32.2 28.7 19.9 46.3 32.9 29.3 20.2
hi 39.3 25.6 17.0 9.6 42.0 27.2 16.8 9.5
sw 47.7 37.3 51.8 37.6 50.1 39.1 52.1 37.8
bn 20.7 14.1 14.3 8.3 20.9 14.2 14.5 8.5
ru 58.0 45.2 31.4 22.2 62.5 50.2 32.0 22.5
zh 46.6 34.3 35.7 23.3 49.0 35.7 35.6 23.2

CLEVER-CKE 50.3 38.6 38.1 27.7 52.0 40.0 38.4 28.0

Table 7: Performance of PokeMQA-CL and CLEVER-CKE by Language and Number of Edits on the CROLIN-
MQUAKE-T Dataset Using ChatGPT Backbone: Bilingual and Multilingual Training of the Retriever with All and
100 Edits.

Edits Bilingual 3k Multilingual 3k Bilingual 100 Multilingual 100

Acc Hop-Acc Acc Hop-Acc Acc Hop-Acc Acc Hop-Acc

Po
ke

M
Q

A
-C

L

en 31.5 23.3 13.1 5.4 41.8 31.8 27.7 12.6
de 16.8 9.2 11.8 3.4 24.1 13.5 23.8 9.3
es 18.5 8.9 10.8 2.9 25.4 12.1 22.0 7.2
hi 7.0 0.1 9.8 1.1 12.7 0.8 14.7 2.7
sw 11.8 5.7 11.9 2.3 14.9 8.2 21.9 5.0
bn 7.0 0.2 8.0 0.5 14.0 0.5 12.0 1.6
ru 8.0 0.6 10.7 1.4 17.4 2.9 18.6 5.0
zh 8.4 0.5 9.1 1.2 15.0 2.4 16.7 3.5

Average 13.6 6.1 10.6 2.3 20.7 9.0 19.7 5.9

C
L

E
V

E
R

-C
K

E

en 27.8 21.0 23.6 17.1 41.5 31.9 37.3 28.3
de 23.5 13.7 19.7 12.1 29.5 18.6 26.4 17.4
es 20.0 10.6 8.4 8.4 27.8 16.2 23.6 13.0
hi 9.6 3.3 10.3 3.3 13.4 5.8 10.8 4.2
sw 15.5 9.1 14.8 7.7 21.3 13.6 20.1 11.7
bn 7.2 2.2 6.9 1.7 7.9 2.3 7.3 2.1
ru 10.0 4.4 12.0 5.2 17.7 9.4 15.8 8.0
zh 7.6 1.4 9.9 3.4 12.1 3.7 12.1 4.3

Average 15.1 8.2 13.2 7.3 21.4 12.7 19.2 11.1

Table 8: Performance of PokeMQA-CL and CLEVER-CKE by Language and Number of Edits on the CROLIN-
MQUAKE-CF Dataset Using LLaMa-2-7B Backbone: Bilingual and Multilingual Training of the Retriever with
All and 100 Edits.
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Edits Bilingual 1.8k Multilingual 1.8k Bilingual 100 Multilingual 100

Acc Hop-Acc Acc Hop-Acc Acc Hop-Acc Acc Hop-Acc
Po

ke
M

Q
A

-C
L

en 73.1 58.1 25.6 16.6 73.4 58.2 30.7 19.8
de 44.0 33.6 11.6 7.8 63.8 51.6 15.0 10.7
es 52.9 38.5 11.6 5.7 63.3 47.1 18.6 9.2
hi 10.3 3.2 8.0 3.9 12.7 3.9 10.5 4.6
sw 45.4 33.8 13.5 4.7 47.6 35.0 16.3 6.8
bn 5.6 1.0 5.0 2.1 7.0 1.6 7.3 3.3
ru 10.5 5.1 8.7 3.6 13.4 7.2 12.2 6.2
zh 4.1 1.9 5.1 2.1 6.4 3.3 6.2 2.4

Average 30.7 21.9 11.1 5.8 36.0 26.0 14.6 7.8

C
L

E
V

E
R

-C
K

E

en 71.8 57.9 71.5 57.2 72.1 58.1 72.0 57.5
de 63.2 50.4 59.6 48.1 63.5 50.5 62.2 50.1
es 57.9 45.0 51.6 40.0 58.0 45.1 52.7 40.8
hi 33.2 19.0 25.4 15.0 34.9 20.1 27.9 16.2
sw 43.1 33.1 45.3 33.7 44.0 33.6 46.7 34.6
bn 10.3 5.8 7.8 4.6 10.5 5.8 9.6 5.2
ru 58.5 37.2 30.3 18.6 62.4 40.5 34.3 21.1
zh 40.5 29.0 33.7 22.8 42.0 30.1 35.0 23.6

Average 47.3 34.7 40.6 30.0 48.4 35.5 42.6 31.1

Table 9: Performance of PokeMQA-CL and CLEVER-CKE by Language and Number of Edits on the CROLIN-
MQUAKE-T Dataset Using LLaMa-2-7B Backbone: Bilingual and Multilingual Training of the Retriever with All
and 100 Edits.

Edits Bilingual 3k Multilingual 3k Bilingual 100 Multilingual 100

Acc Hop-Acc Acc Hop-Acc Acc Hop-Acc Acc Hop-Acc

Po
ke

M
Q

A
-C

L

en 28.6 21.8 13.5 5.4 37.5 29.5 25.5 13.0
de 13.6 7.5 11.2 3.3 21.8 12.4 21.5 8.9
es 18.2 9.5 10.5 2.7 23.1 12.7 19.6 7.2
hi 6.8 0.2 7.9 0.8 11.9 0.7 13.3 2.0
sw 11.4 6.3 10.3 2.5 14.5 8.3 17.5 5.3
bn 6.1 0.2 6.2 0.4 13.4 0.3 9.7 1.0
ru 7.4 0.6 7.8 1.0 14.4 2.6 16.1 4.2
zh 8.0 0.3 8.7 0.7 13.3 2.0 15.0 2.6

Average 12.5 5.8 9.5 2.1 18.7 8.6 17.3 5.5

C
L

E
V

E
R

-C
K

E

en 27.5 21.4 22.7 17.7 38.5 31.0 36.0 28.1
de 19.6 12.8 17.5 12.0 27.2 17.8 25.9 17.6
es 19.3 11.9 15.5 8.7 25.8 16.6 22.4 13.5
hi 8.5 2.7 8.2 02.2 12.2 4.6 9.7 3.2
sw 13.0 8.2 12.6 7.7 19.5 12.3 19.2 11.7
bn 5.5 1.2 5.9 1.4 5.9 1.1 5.8 1.2
ru 8.6 3.6 10.0 3.8 15.5 7.0 14.0 6.5
zh 7.2 1.7 8.8 2.9 11.3 2.9 11.5 3.5

Average 13.6 7.9 12.7 7.1 19.5 11.7 18.1 10.7

Table 10: Performance of PokeMQA-CL and CLEVER-CKE by Language and Number of Edits on the CROLIN-
MQUAKE-CF Dataset Using Vicuna-1.5-7B Backbone: Bilingual and Multilingual Training of the Retriever with
All and 100 Edits.
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Edits Bilingual 1.8k Multilingual 1.8k Bilingual 100 Multilingual 100

Acc Hop-Acc Acc Hop-Acc Acc Hop-Acc Acc Hop-Acc

Po
ke

M
Q

A
-C

L

en 68.5 56.4 22.6 15.7 68.6 56.6 27.0 18.5
de 59.1 47.5 10.3 7.2 59.4 47.7 13.6 9.6
es 59.5 50.0 11.3 6.8 60.1 50.1 16.8 11.0
hi 11.4 5.5 6.8 4.1 13.5 5.9 10.9 5.8
sw 49.1 39.3 12.4 4.8 49.7 39.9 13.9 7.5
bn 6.5 1.3 7.9 4.5 7.7 2.1 8.1 4.5
ru 8.0 6.3 8.1 5.1 10.4 8.4 10.2 6.3
zh 11.4 6.6 8.8 4.8 12.4 7.1 9.4 4.8

Average 34.2 26.6 11.0 6.6 35.2 27.2 13.7 8.5

C
L

E
V

E
R

-C
K

E

en 69.0 57.3 68.0 56.5 69.2 57.5 68.8 57.0
de 60.9 48.7 52.1 41.7 61.3 49.0 54.5 43.8
es 56.9 47.3 49.6 41.8 57.0 47.3 51.0 42.7
hi 23.4 14.8 24.1 16.9 26.0 16.9 27.1 19.0
sw 44.4 36.6 47.3 39.9 45.3 37.5 48.7 41.0
bn 11.3 08.0 11.4 08.5 11.1 08.0 13.2 09.3
ru 51.9 40.5 26.4 20.7 55.5 44.3 28.9 22.9
zh 32.5 24.5 24.7 19.0 34.5 26.3 27.1 19.0

Average 43.8 34.7 37.9 30.6 45.0 35.8 39.9 31.8

Table 11: Performance of PokeMQA-CL and CLEVER-CKE by Language and Number of Edits on the CROLIN-
MQUAKE-T Dataset Using Vicuna-1.5-7B Backbone: Bilingual and Multilingual Training of the Retriever with
All and 100 Edits.
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