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Abstract

Recently, significant progress has been made in
employing Large Language Models (LLMs) for
semantic parsing to address Knowledge Base
Question Answering (KBQA) tasks. Previous
work utilize LLMs to generate query statements
on Knowledge Bases (KBs) for retrieving an-
swers. However, LLMs often generate incor-
rect query statements due to the lack of rele-
vant knowledge in the previous methods. To
address this, we propose a framework called
Augmenting Reasoning Capabilities of LLMs
with Graph Structures in Knowledge Base
Question Answering (ARG-KBQA), which
retrieves question-related graph structures to
improve the performance of LLMs. Unlike
other methods that directly retrieve relations
or triples from KBs, we introduce an unsu-
pervised two-stage ranker to perform multi-
hop beam search on KBs, which could pro-
vide LLMs with more relevant information to
the questions. Experimental results demon-
strate that ARG-KBQA sets a new state-of-the-
art on GrailQA and WebQSP under the few-
shot setting. Additionally, ARG-KBQA signifi-
cantly outperforms previous few-shot methods
on questions with unseen query statement in the
training data. Our code is available at https:
//github.com/Maydaytyh/ARG-KBQA.

1 Introduction

Knowledge Bases (KBs), such as Freebase (Bol-
lacker et al., 2008), Wikidata (Vrandečić and
Krötzsch, 2014), and DBpedia (Auer et al., 2007),
storing a tremendous amount of world knowledge
in the way of triples, is crucial in many domains as
it can provide highly accurate information. Knowl-
edge Base Question Answering (KBQA) (Berant
et al., 2013; Yih et al., 2015), which retrieves an-
swers from knowledge bases in response to nat-
ural language questions, has been widely studied
in recent years. As the scale of KB continues to
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Figure 1: The difference between our method and previ-
ous ICL methods.

expand, the models (Ye et al., 2021; Das et al.,
2021; Shu et al., 2022) used for KBQA often re-
quire large amounts of manually annotated data,
extensive training processed, and complex model
architectures. Therefore, finding ways to achieve
good performance with limited data has become an
urgent problem that needs to be addressed.

Recently, Large Language Models (LLMs) have
demonstrated the ability to complete complex rea-
soning tasks, like generating executable code, with
only minimal labeled data. This is due to their In-
Context Learning (ICL) capabilities (Hasan et al.,
2024; Cahyawijaya et al., 2024). Following the
ICL paradigm, Li et al. (2023) and Nie et al. (2024)
use a few (question, logical form) example pairs to
guide LLMs in generating executable logical forms
for retrieving answers from KBs. Since LLMs do
not have direct access to KBs, these examples can
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provide helpful information for generating correct
logical forms. Nonetheless, when the logical form
involved in the test question has not appeared in the
training set, and the examples provided in a few-
shot scenario all come from the training set, they
cannot offer directly useful information for the cur-
rent problem. For example, as shown in Figure 1a,
when the LLMs lack information relevant to the
question, it may generate a logical form that is in-
correct. Therefore, it is crucial to equip LLMs with
comprehensive and relevant information to enhance
their performance. Some works (Nie et al., 2024;
Wang et al., 2023) retrieve relations or triples from
KBs to provide more useful information. How-
ever, there are many questions requiring multi-hop
reasoning on the knowledge base (KB) to get the
answers. Therefore, merely providing relations or
triples is still insufficient to solve the problem, as
shown in Figure 1a.

To address this challenge, we propose an innova-
tive method called Augmenting Reasoning Capa-
bilities of LLMs with Graph Structures in Knowl-
edge Base Question Answering (ARG-KBQA).
Our method aims to provide LLMs with infor-
mation more helpful for generating logical forms,
specifically in the zero-shot generalization sceario
mentioned above. Unlike previous works which
retrieve relations or triples from KBs as supply in-
formation, we leverage the graph structures within
the KB to enhance the performance of LLMs as
shown in Figure 1b. To efficiently retrieve question-
related graph structures from the KB, we design
an unsupervised two-stage ranker that performs
multi-hop beam search on the KB. In this process,
we perform a two-stage ranking at each hop using
a pre-trained Language Model without additional
training, enhancing the efficiency and effective-
ness of retrieving related graph structures (paths)
from the KB. Furthermore, to facilitate the under-
standing of LLMs, we convert the extracted graph
structures (paths) into logical forms that match the
target format.

We conduct extensive experiments on two
datasets, GrailQA and WebQSP. ARG-KBQA sets
a new state-of-the-art (SOTA) in the few-shot set-
ting, demonstrating that retrieved graph structures
provide LLMs with sufficient information. When
it comes to the questions unseen in training set of
GrailQA, ARG-KBQA significantly surpasses the
existing SOTA, with improvements of 8.1 in EM
and 7.4 in F1. These results suggest that related
graph structures can enhance LLMs’ reasoning ca-

pabilities, especially when the KB schema in the
correct logical form is absent from the training set.

Our contributions can be summarized as follows:

• To the best of our knowledge, we are the first
to propose integrating the graph structure of
the KB to augment reasoning capabilities of
LLMs for KBQA.

• We introduce an unsupervised two-stage
ranker to extract graph structures from the KB,
efficiently retrieving question-relevant graph
structures.

• Through extensive experiments on GrailQA
and WebQSP, we demonstrate that ARG-
KBQA sets a new state-of-the-art (SOTA) in
the few-shot setting.

2 Related Work

2.1 Knowledge Base Question Answering.

Current KBQA methods are divided into Informa-
tion Retrieval (IR-based) and Semantic Parsing-
based (SP-based).

IR-based methods retrieve relevant subgraphs
from the KB and then use ranking algorithms to de-
termine the answer. SR (Zhang et al., 2022) empha-
sizes the importance of subgraph retrieval accuracy
and introduces a trainable, decoupled subgraph re-
triever that enhances the performance of subgraph-
oriented KBQA models. UniKGQA (Jiang et al.,
2022) proposes an unified framework that inte-
grates retrieval and reasoning across learning pa-
rameters and architectures. EPR (Ding et al., 2024)
accelerates the retrieval of atomic patterns by in-
dexing the atomic adjacency patterns of resource
pairs and introduced an algorithm for constructing
evidence patterns.

SP-based methods aim to convert natural lan-
guage questions into query statements for KB, such
as SPARQL or S-expressions. RnG-KBQA (Ye
et al., 2021), TIARA (Shu et al., 2022), and DE-
CAF (Yu et al., 2022) use sequence-to-sequence
models to entirely create S-expressions and pro-
vide multiple improvements to the semantic pars-
ing procedure. FC-KBQA (Zhang et al., 2023) ex-
tracts relevant fine-grained knowledge components
from KB and reformulate them into middle-grained
knowledge pairs for generating the final logical ex-
pressions. Besides, KB-BINDER (Li et al., 2023),
and KB-Coder (Nie et al., 2024) utilize few-shot in-
context learning to enable the large language model
to generate the logical form for a given question.
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2.2 KG-enhanced LLM for KBQA.

Considering the few-shot and in-context learning
capabilities of LLMs, current studies (Gu et al.,
2023; Li et al., 2023; Nie et al., 2024; Jiang et al.,
2023; Xiong et al., 2024; Sun et al., 2023) utilize
LLMs for reasoning on knowledge bases (KB).
Pangu (Gu et al., 2023) uses LLM as an agent
to explore the environment(KB) to construct valid
plans incrementally. KB-BINDER (Li et al., 2023)
provides the (question, logical form) pairs to the
LLM as information from KB. KB-Coder (Nie
et al., 2024) additionally retrieves similar rela-
tions from the KB and adds them to the input of
LLM for each question. StructGPT (Jiang et al.,
2023) constructs the specialized function to col-
lect relevant evidence from structured data (e.g.,
KB) and lets LLMs concentrate the reasoning task
based on the collected information. Interactive-
KBQA (Xiong et al., 2024) develops three generic
APIs for LLMs to interact with KB to generate
logical forms. ToG (Sun et al., 2023) proposes a
paradigm called “LLM⊗KG” which use the LLM
as an agent to explore related entities and relations
on KB interactively and performs reasoning based
on the retrieved knowledge.

3 Preliminaries

In this section, we introduce two crucial concepts:
Knowledge Base (KB) and Logical Form.

3.1 Knowledge Base

Knowledge Base (KB) stores structured knowledge
as a collection of triples G = {(h, r, t) ∈ E ×R×
E}, where h, r and t denote head, relation, and
tail , respectively, and E is the set of entities, R is
the set of relations. It should be noted that each
entity in KB has a machine identifier (mid) and a
corresponding surface name. For example, there is
an entity whose mid is m.03ck28v and the surface
name is “Sunnyside”. Obviously, different entities
can share the same surface name.

3.2 Logical Form

A logical form is a statement used to query a KB
to obtain the answer given a problem. Common
types of logical forms include SPARQL and S-
expressions (Gu et al., 2021). SPARQL is a query
language for RDF databases that is similar in syn-
tax to SQL. Its core idea is to extract a subject or
object from a triple based on a given predicate verb.

The format of SPARQL can typically be shown as
follows.

SELECT <variables >
WHERE {

<graph pattern >
}

The structure of SPARQL is relatively complex. To
improve compactness, compositionality, and read-
ability, Gu et al. (2021) proposed S-expressions,
a linearized version of query statements. S-
expressions include operators such as JOIN, AND,
COUNT, ARGMAX, and ARGMIN, enabling basic opera-
tions for querying a knowledge base. In this article,
we discuss and use S-expressions.

4 Methodology

Overall, our proposed ARG-KBQA model, as illus-
trated in Figure 2, aims to generate a logical form
for a given question to access the KB and retrieve
the answers. The ARG-KBQA model consists of
three modules: Multi-hop Path Enumeration, Tar-
get Logical Form Generation, and Alignment and
Answer Extraction. Next, we will introduce these
three modules separately.

4.1 Multi-hop Path Enumeration

In this module, we perform a multi-hop beam
search using an unsupervised two-stage ranker on
the KB to extract question-related graph structures,
which are actually ranked question-related paths in
our work. Furthermore, we convert the top k paths
into logical forms that are consistent with the target
format. Specifically, since most of the questions
are either one-hop or two-hop (We provide a de-
tailed analysis in the appendix A.1 ), we perform a
two-hop beam search here.

For a given question, there may be entities or lit-
erals (which are usually “integer”, “float”, “year”,
or “date”) present. For example, in the question “
the distance of at least 57.05 is attained by which
star system? ”, the entity is “John Elliott” and the
literal is “57.05”. Given a question, we first iden-
tify all entities and literals within it. To ensure a
fair comparison, we use the same settings as KB-
Coder (Nie et al., 2024), utilizing the question’s
golden entities. We refer to the set containing all
entities and literals within a question as E. For each
entity or literal in E, we then retrieve all one-hop
relations, referred to as R1. Next, we perform a
two-stage sorting of all the relations in R1.
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Figure 2: The overview of our methods.

First-hop Stage In this stage, we extract k first-
hop relations for all relations or literals in E. Specif-
ically, we use the relation-encoder Renc, which is a
pre-trained encoder, to encode all relations r, such
that r = Renc(r). At the same time, we also use
Renc to encode the question, such that q = Renc(q).
Then, we use Equation 1 to calculate the similarity
between the question and the relation, using cosine
similarity as follows.

similarity =
q · r

∥q∥∥r∥ (1)

Based on the similarity between the relation and
the question, we select the top 2k relations, referred
to as R(1)

1 . Then, for each relation r within R
(1)
1 ,

we concatenate it with the question as s as follows.

Question: question q
Relation: relation r

We then use a sentence encoder Senc to encode the
sentence s (i.e., h = Senc(s)) and add a linear pro-
jection layer to map it to a score. These scores are
then sorted to identify the top-k relations, referred
to as R(2)

1 .

Second-hop Stage In this stage, we extract k
next-hop relation from the relations in R

(2)
1 . Using

R
(2)
1 as the first-hop relations, we expand (How this

expansion is achieved is explained in detail in the

appendix A.2) each relation to obtain the two-hop
relations, R2. To better ensure semantic integrity,
we concatenate the previous-hop relations of the
current relation as follows and encode them as r2
using Renc.

One -hop Relation: previous relation
Relation: current relation

Similarly to the one-hop stage, we select top 2k

two-hop relations as R(1)
2 by the similarity between

the r2 and q. Then, for each relation r in R
(1)
2 , we

concatenate it with its previous relation and the
question as follows.

Question: question q
One -hop Relation: previous relation
Relation: current relation

Then, we use the same manner as the first-hop stage
to score and r in R

(1)
2 . And the top k relations are

selected as R(2)
2 . Thus, we obtain all the two-hop

paths starting from the entities or literals in the
question.

Then, these paths within two-hops are trans-
formed into logical forms. After obtaining all the
logical forms, we concatenate the question with
each logical form as follows.

Question: question q
Logical form: logical form

Then, we use the same sentence encoder Senc as
before to score them, selecting the top k as logical
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form references.

4.2 Target Logical Form Generation

In this module, we employ few-shot in-context
learning to generate the logical form for a given
question. For each question, we use two settings to
get example questions from the training set: (1) use
fixed randomly selected questions, which is ARG-
KBQA. (2) use BM25 to select N most similar
questions, which is ARG-KBQA(R). Following
the principles of few-shot in-context learning, we
provide the logical form for each example ques-
tion. For example, for the question “How many
game expansions has John Elliott released?”, the
corresponding logical form should be as follows.

COUNT (AND cvg.computer_game_expansion
JOIN (R cvg.cvg_publisher.games_published)
m.0774 ytb)

In this expression, m.0774ytb is the mid for the en-
tity named “John Elliott”" Since LLMs cannot di-
rectly access the knowledge base (KB), they do not
recognize or generate specific mids as m.0774ytb.
However, they can understand and generate the sur-
face names associated with these entities. There-
fore, we replace the mid with its corresponding
surface name in the logical form of each example
question. As a result, the above expression should
be modified to the following format.

COUNT (AND cvg.computer_game_expansion
JOIN (R cvg.cvg_publisher.games_published)
John Elliott)

Similarly, the mids in the logical form refer-
ences are replaced with their corresponding surface
names.

In general, the input format for the LLM consists
of N example questions, each substituted with the
mid logical form. Additionally, for each test ques-
tion, we incorporate k previously generated logical
form references. Subsequently, we utilize the LLM
to generate the logical form for the given question.

4.3 Alignment And Answer Extraction

In this module, we reason on the KB using the
LLM’s output to obtain the final answers. During
execution, we align the entities and relations in the
logical form with the KB, as the generated logical
form is not directly executable.

Initially, we extract all entity names from the
logical form and then search for entities with the
surface names within the KB. If we locate en-
tities with the same surface names, we choose
the top Ne entities based on the popularity score

FACC1 (Gabrilovich et al., 2013). If there is no ex-
act match, we use BM25 to retrieve similar entities
from the knowledge base and subsequently select
the top Ne most similar ones. Similarly, for rela-
tions, if an exact match is found, we use it directly.
Otherwise, we first use BM25 to identify the top
Nr most similar relations. These relations are then
scored in conjunction with the question, and the
most relevant relation is ultimately selected.

Following that, we generate all possible combi-
nations and permutations of the enumerated rela-
tions and entities. Execution halts upon finding an
answer that satisfies the specified conditions, which
becomes the final answer. The logical form that
produces this answer is also regarded as the final
logical form.

5 Experiments

In this section, we demonstrate the experimental
validation of ARG-KBQA, including dataset de-
scriptions, implementation details, results, and a
detailed analysis.

5.1 Datasets

We use two mainstream KBQA datasets for our
experiments, as shown below:

GrailQA (Gu et al., 2021) is a challenging
KBQA dataset based on Freebase, containing
64,331 question-logical form pairs, 32,585 enti-
ties, and 3,239 literals. It focuses on evaluating
the generalization capabilities by introducing three
levels of questions: I.I.D., compositional, and zero-
shot. Consistent with the KB-Coder (Nie et al.,
2024), we evaluate our method on the dev portion
of the GrailQA dataset.

WebQSP (Yih et al., 2016) is another popular
KBQA dataset based on Freebase, containing 4,737
natural language questions. The primary goal of
this dataset is to evaluate the generalization capa-
bility within an i.i.d. setting, given that the training
and testing data include the same entities and rela-
tions.

5.2 Baselines

For a comprehensive comparison, we select base-
lines that primarily include two categories: fully
supervised learning and in-context learning. The
fully supervised methods include Rng-KBQA (Ye
et al., 2021), DecAf (Yu et al., 2022), and
TIARA (Shu et al., 2022). The methods of in-
context learning include KB-BINDER (Li et al.,
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Methods I.I.D. Compositional Zero-shot Overall

EM F1 EM F1 EM F1 EM F1

Full Supervised on the Entire Training set

RnG-KBQA (Ye et al., 2021) 86.7 89.0 61.7 68.9 68.8 74.7 69.5 76.9
DecAF (Yu et al., 2022) 88.7 92.4 71.5 79.8 65.9 74.7 72.5 81.4
TIARA (Shu et al., 2022) 88.4 91.2 66.4 74.8 73.3 77.3 75.3 81.9

In-Context Learning (Training-Free)

KB-BINDER (1)† 40.0 43.3 33.9 36.6 40.1 44.0 38.7 42.2
KB-Coder (1)† 40.6 45.5 34.5 38.6 42.2 47.3 40.1 44.9
ARG-KBQA(1) 46.6 51.5 36.4 41.8 46.6 52.1 43.8 48.5

KB-BINDER (6) † 43.6 48.3 44.5 48.8 37.5 41.8 45.7 50.8
KB-Coder (6) † 43.6 49.3 44.0 49.6 37.7 43.2 45.9 51.7
ARG-KBQA(6) 48.5 52.4 43.5 46.8 48.4 52.4 47.5 51.5

KB-BINDER (1)-R † 74.7 79.7 44.6 48.5 37.1 40.8 47.6 51.7
KB-Coder (1)-R † 76.2 80.2 50.4 54.8 45.8 50.6 54.0 58.5
ARG-KBQA(1)-R 76.4 78.5 47.0 52.7 53.9 58.0 57.7 61.7

w/ gpt-3.5-0125 79.2 81.8 48.9 55.2 54.4 59.3 58.9 63.7
w/ GPT4 79.2 81.6 53.0 59.0 52.2 57.7 58.8 63.7

KB-BINDER (6)-R † 75.8 80.9 48.3 53.6 45.4 50.7 53.2 58.5
KB-Coder (6)-R † 76.9 81.0 52.7 57.8 48.9 54.1 56.3 61.3
ARG-KBQA(6)-R 79.0 81.5 48.4 55.8 55.9 61.4 59.6 64.9

w/ gpt-3.5-0125 76.6 79.1 48.3 55.1 55.6 61.4 58.9 64.1
w/ GPT4 79.9 82.4 55.7 62.3 55.7 61.5 61.4 64.1

Table 1: 40-shot results of ARG-KBQA and baselines on the local dev set of GrailQA. Bold numbers indicate the
best performance, and underlined numbers indicate the second-best performance. (1) and (6) denote using the top
1 and top 6 logical forms generated by the LLM, respectively. -R denotes the example questions are retrieved by
BM25. † denotes the results come from Nie et al. (2024).

2023) and KB-Coder (Nie et al., 2024). In partic-
ular, the results of KB-Coder and KB-BINDER
are both taken from the KB-Coder paper with us-
ing the gpt-3.5-turbo-0613 model. To main-
tain a fair comparison, we use the same model
gpt-3.5-turbo-0613 in this paper.

5.3 Evaluation Metric

Consistent with previous work (Ye et al., 2021; Li
et al., 2023; Nie et al., 2024), we use F1 Score as
evaluation metrics for WebQSP, while Exact Match
(EM) and F1 Score for GrailQA.

5.4 Implementation Details

In the Multi-hop Path Enumeration module, the
two-stage ranker employs deberta-v3-large (He
et al., 2020) as the Renc and instructor-large (Su
et al., 2023) as the Senc, respectively. In the two-
stage ranker, the number of relations selected,
denoted as k, is set to 20. In the Target Log-
ical Form Generation module, we conduct 40-
shot experiments on GrailQA and 100-shot ex-
periments on WebQSP, consistent with previous
work (Li et al., 2023; Nie et al., 2024). We
leverage the gpt-3.5-turbo-0613 model from the

OPENAI API1 to generate K logical forms for
each question (where K is set to 1 and 6), and
we conduct experiments using ARG-KBQA and
ARG-KBQA(R), respectively. Additionally, we
test gpt-3.5-turbo-0125 and gpt-4-turbo on
GrailQA, and gpt-3.5-turbo-0125 on WebQSP.
In the Alignment and Answer Extraction module,
the top 15 entities (Ne = 15) and the top 10 rela-
tions (Nr = 10) in the logical form are selected as
candidates.

5.5 Main Result

we report the performance of ARG-KBQA , ARG-
KBQA(R), and other baselines on GrailQA and
WebQSP in Table tables 1 and 2, respectively. We
report the results of ARG-KBQA(1) and ARG-
KBQA(6), representing using the top 1 and top
6 logical forms generated by the LLM, respectively.

Results on GrailQA From the results in the
In-Context Learning section, it is obvious that
the ARG-KBQA(1) and ARG-KBQA(6) outper-
forms other methods in the same setting. These

1https://openai.com/api
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Methods F1

Full Supervised on the Entire Training set

RnG-KBQA (Ye et al., 2021) 75.6
DecAF (Yu et al., 2022) 76.7
TIARA (Shu et al., 2022) 78.7

In-Context Learning (Training-Free)

KB-BINDER (1)† 52.6
KB-Coder (1)† 55.7
ARG-KBQA(1) 58.8

KB-BINDER (6)† 56.6
KB-Coder (6)† 60.5
ARG-KBQA(6) 62.7

KB-BINDER (1)-R† 68.9
KB-Coder (1)-R† 72.2
ARG-KBQA(1)-R 72.5

w/ gpt-3.5-0125 71.6

KB-BINDER (6)-R† 71.1
KB-Coder (6)-R† 75.2
ARG-KBQA(6)-R 75.6

w/ gpt-3.5-0125 73.9

Table 2: 100-shot results of ARG-KBQA and baselines
on the test set of WebQSP. Bold numbers indicate the
best performance, and underlined numbers indicate the
second-best performance.

improvements, particularly in the zero-shot level
of GrailQA, indicate that the provided logical form
references play a crucial role when the examples
are not related to the test question. When using
more effective BM25, ARG-KBQA(1)-R shows
significant overall performance improvement, espe-
cially in the zero-shot scenario, outperforming the
SOTA (KB-Coder(1)-R) by 8.1% in EM and 7.4%
in F1. However, in the compositional scenario, its
performance is better than that of KB-BINDER but
slightly lower than that of KB-Coder. This could
be because, for compositional scenarios, the cor-
rect logical form is often a combination of logical
forms from multiple training data, thus making
demo examples more effective. Consequently, our
generated logical form references may have caused
some misleading results in certain situations.

When using the latest LLMs, such as
gpt-3.5-turbo-0125 and gpt-4-turbo, the re-
sults show that ARG-KBQA performs similarly on
these two models, both of which outperform its
performance on gpt-3.5-turbo-0613. This indi-
cates that as the performance of LLMs improves,
the executability and accuracy of the generated log-
ical forms increase. However, in the zero-shot level
of GrailQA, the performance of gpt-4-turbo is
actually weaker than that of gpt-3.5-turbo-0613

and gpt-3.5-turbo-0125. We conduct a detailed
analysis of the experimental results and find that
one possible reason is that as the LLM’s perfor-
mance improves, it may be more inclined to rely
on its internal knowledge and ignore the prompt’s
provided information when the examples are not
useful. We present an example in the appendix A.3.

As for using majority vote, the results indicate
that in both I.I.D and zero-shot scenarios, our
method significantly outperforms the KB-Coder.
This demonstrates the effectiveness of our ap-
proach. Interestingly, similar to the results of ARG-
KBQA(1)-R on the zero-shot scenario, as the per-
formance of the LLM improves, the experimental
results do not improve but rather slightly decline,
likely due to the aforementioned reason.

Results on WebQSP As shown in Table 2, we
achieve SOTA performance in all settings on We-
bQSP. Specifically, when using majority vote set-
ting, the performance of ARG-KBQA is compa-
rable to that of fully supervised methods. Simi-
larly, we test the performance of ARG-KBQA on
gpt-3.5-turbo-0125, and the results indicate that
the improved capabilities of the LLM do not lead
to performance gains on WebQSP.

Overall, according to the presented experiment
results, augmenting LLMs with the graph structure
of knowledge bases could significantly enhance the
performance of few-shot approaches for KBQA.

5.6 Ablation Study
To evaluate the effectiveness of various compo-
nents of ARG-KBQA, we randomly select 500
samples from the GrailQA (Gu et al., 2021) dev
set, maintaining the original dataset’s proportions:
i.i.d.:compositional:zero-shot at a ratio of 1:1:2.
Specifically, we consider three settings in the ab-
lation study: (1) removing logical form references
generated by section 4.1. (-w/o lfrs) (2) remov-
ing demo examples (-w/o examples) (3) adding
randomly selected logical form references (-w ran-
dom_lfr) (4) using flan-t5-xl as the generation
model (-w flan-t5-xl)

From the results shown in Table 3, we can ob-
serve the following:

• Compared to the complete model, the model
without logical form references (w/o lfrs) per-
forms significantly worse overall, with the
Exact Match (EM) score being 14% lower
and the F1 score 12.3% lower in the zero-
shot level. This highlights the effectiveness
of the logical form references we introduced,
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Method I.I.D. Compositional Zero-shot Overall
EM F1 EM F1 EM F1 EM F1

complete model 80.8 83.3 49.6 55.4 57.2 61.5 61.2 65.4
w/o lfrs 84.0 87.0 42.4 48.8 43.2 49.2 53.4 58.5
w/o examples 32.8 36.1 28.8 34.1 40.4 43.3 39.2 32.8
w random_lfr 82.3 84.0 40.0 46.5 37.6 43.4 54.5 82.4
w flan-t5-xl 31.2 35.6 18.4 26.4 21.6 25.9 23.3 28.5

Table 3: Ablation study results on GrailQA.
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Figure 3: Parameters experiments results of two parameters: shot number and the number of logical form references.

specifically when the example questions are
not useful.

• The -w/o examples setting shows an even
more substantial performance decline, high-
lighting the importance of examples in in-
context learning for LLMs to learn and solve
new tasks.

• In the -w random_lfr setting, where logical
form references are randomly selected from
all possible logical forms with two hops, the
performance is worse than -w/o lfrs. This
underscores the importance of our two-stage
ranker, which selects the most relevant logical
forms for the questions.

• In the -w flan-t5-xl setting, we use the exact
same input as the complete model, only re-
placing the generative model with flan-t5-xl.
It can be observed that the performance sig-
nificantly declines. This indicates that using
LLMs is necessary in our experiments, and
smaller models like flan-t5-xl do not possess
sufficient contextual learning and generation
capabilities.

5.7 Parameters Experiments

In this section, we analyze the effects of two pa-
rameters, including shot number and the number
of logical form references. We use the same set-
ting as the ablation study, randomly selecting 500
samples from the GrailQA dev set, with the propor-

tions of the three levels of data maintained at 1:1:2.
To accurately demonstrate the impact of different
parameters on different levels of data, we present
the results for each of the three levels as shown in
Figure 3.

Results on the logical form references We test
the impact of the number of logical form refer-
ences, as shown in Figure 3a. The results indicate
that as the number of logical form references in-
creases, both EM and F1 improve across all levels,
with the effect being particularly pronounced in the
zero-shot scenario. This is because more examples
provide the LLM with more knowledge. However,
it is important to note that too many references
can lead to a performance decline, possibly due to
the lower-ranked logical form references mislead-
ing the LLM. Additionally, the number of logical
form references has little impact on the results in
the I.I.D. scenario, as the LLM might rely more
on the information provided by the examples for
independently and identically distributed data.

Results on the ICL examples Additionally, we
test the impact of varying the number of in-context
learning examples from 1 to 100 on the experimen-
tal results, as shown in Figure 3b. Notably, EM and
F1 scores increase across all levels with the number
of examples. The effect of the number of examples
is relatively consistent across all levels. However,
the performance gap between using 1 example and
10 examples is the smallest in the zero-shot level.
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This indicates that with a very small number of
examples, the provided logical form references can
effectively guide the LLM.

6 Conclusion

In conclusion, our proposed framework, ARG-
KBQA, significantly enhances the reasoning ca-
pabilities of Large Language Models (LLMs) for
Knowledge Base Question Answering (KBQA).
By leveraging graph structures within Knowledge
Bases (KBs) through an innovative unsupervised
two-stage ranker, ARG-KBQA effectively retrieves
relevant information for accurate logical form gen-
eration. Experimental results on GrailQA and We-
bQSP datasets highlight the framework’s effective-
ness, setting new state-of-the-art benchmarks in the
few-shot setting and excelling in zero-shot gener-
alization scenarios. These findings underscore the
importance of integrating graph structures to aug-
ment LLM reasoning capabilities, especially for
unseen query statements in training data.

Limitations

Despite its significant advancements, ARG-KBQA
has some limitations. On the one hand, the prereq-
uisite for the two-stage ranker to obtain results is
to find nodes in the knowledge base (KB). If the
corresponding nodes are not found or the wrong
nodes are identified, it will greatly affect the accu-
racy of the subsequent steps. On the other hand,
the framework requires an alignment process to
map the logical form output by the LLM to the KB.
This process is time-consuming and prone to errors.
Therefore, it is crucial to improve the precision
of the logical form generated by the LLM or to
achieve more efficient and accurate reasoning. We
will consider these limitations and address them in
future work.
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A Appendix

A.1 Analysis of Datasets in Terms of the
Number of Hop

We conduct a hop count analysis on the questions
from the WebQSP and GrailQA datasets, and the
results are presented in the table 4.

Dataset 1 hop 2 hop ≥ 3hop
WebQSP 65.49% 34.51% 0.00%
GrailQA 65.49% 34.51% 5.25%

Table 4: Analysis of Datasets in Terms of the Number
of Hop

A.2 How Is the Expansion From 1-Hop
Relation to 2-Hop Relation Done

The expansion refers to leveraging the top-k 1-hop
paths obtained previously to directly use relevant
SPARQL queries to reach all possible 2-hop rela-
tions from the KB. That means after obtaining the
1-hop relation, we use the following two SPARQL
queries to obtain the forward and reverse 2-hop
relations respectively.
PREFIX rdf: <http :// www.w3.org /1999/02/22 -rdf -syntax

-ns#>
PREFIX rdfs: <http ://www.w3.org /2000/01/rdf -schema#>
PREFIX : <http :// rdf.freebase.com/ns/>
SELECT distinct ?y as ?r1 WHERE {
"""
’?x1 :’ +relation+ ’ :’ + entity + ’. ’
"""
?x2 ?y ?x1 .
FILTER regex(?y, "http ://rdf.freebase.com/ns/")
}

PREFIX rdf: <http :// www.w3.org /1999/02/22 -rdf -syntax
-ns#>

PREFIX rdfs: <http ://www.w3.org /2000/01/rdf -schema#>
PREFIX : <http :// rdf.freebase.com/ns/>
SELECT distinct ?y as ?r1 WHERE {
"""
’?x1 :’ +relation+ ’ :’ + entity + ’. ’
"""
?x1 ?y ?x2 .
FILTER regex(?y, "http :// rdf.freebase.com/ns/")
}

A.3 Examples of GPT-4 Performing Worse
Than GPT-3.5

Take the following question as an example: “Which
unit of electric current does not exceed 3.479e+25
current in amperes?". The correct logical form is
as follows.
(AND measurement_unit.current_unit

(le measurement_unit.current_unit.
current_in_amperes

3.479e+25^^ http ://www.w3.org /2001/ XMLSchema#
float))

Our provided logical form reference is as follows.

(AND measurement_unit.current_unit (le
measurement_unit.current_unit.
current_in_amperes 3.479e+25^^ http :// www.w3.org
/2001/ XMLSchema#float))

...
(AND meteorology.beaufort_wind_force (JOIN

meteorology.beaufort_wind_force.
minimum_wind_speed_km_h 3.479e+25^^ http :// www.
w3.org /2001/ XMLSchema#float)

but the logical form generated by GPT-4 is as fol-
lows.
(AND electrical.current_unit

(lt electrical.current_unit.amperes
3.479e+25^^ http :// www.w3.org /2001/ XMLSchema#

float))

And the logical form generated by gpt-3.5-turbo-
0613 is as follows.
(AND measurement_unit.current_unit

(NOT (lt physics.electric_current_unit.
current_in_amperes 3.479e+25^^ http ://www.w3
.org /2001/ XMLSchema#float)))

It can be observed that **GPT-4 did not use the
correct relation from the logical form reference**.
The logic form generated by GPT-3.5-turbo-0613,
although not entirely correct, includes the correct
relation.

11977


