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Abstract

Large Vision-Language Models (VLMs) have
already been applied to the understanding of
Graphical User Interfaces (GUIs) and have
achieved notable results. However, existing
VLMs often overly rely on internal text-based
knowledge while neglecting visual inputs. This
imbalance may lead models to produce answers
that do not align with the visual content in
GUI comprehension tasks. Such inaccuracies
are termed as ‘hallucinations’ where models
generate incorrect or illogical responses upon
visual verification against GUI elements. These
errors result in misinterpretations and diminish
the model’s practical utility in applied settings.
To address these issues, we introduce VGA, a
fine-tuned model designed for comprehensive
GUI understanding. Our model aims to balance
attention image and text to enhance interpreta-
tion and reduce hallucinations. We construct a
Vision Question Answering (VQA) dataset of
63.8k high-quality examples with our propose
Referent Method, focusing on response with
visual content of images. We then design a
two-stage fine-tuning method to enhance both
the model’s accuracy to extract information
from image content and alignment with human
intent. Experiments show that our approach
enhances the model’s ability to extract informa-
tion from images and achieves state-of-the-art
results in GUI understanding tasks. Our
dataset and fine-tuning script are available
at  https://github.com/Linziyang1999/VGA-
visual-GUI-assistant

1 Introduction

Large Vision-Language Models (VLMs) have re-
cently emerged as a powerful approach for various
multimodal tasks. These models acquire textual
knowledge through pre-training and develop image
understanding abilities during instruction-tuning
(Cao et al., 2023; Liu et al., 2023). VLMs can
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effectively process both visual and linguistic infor-
mation by using a visual-language projector, which
maps different types of data into a shared latent
space. For instance, LLaVA (Liu et al., 2024a) and
InstructBLIP (Dai et al., 2023) have demonstrated
strong zero-shot capabilities in tasks like image
captioning, visual reasoning, and complex conver-
sations. UniChart (Masry et al., 2023), on the other
hand, has demonstrated the powerful capabilities
of VLMs in the understanding of formatted charts.

With the proliferation of mobile applications, the
importance of Graphical User Interfaces (GUIs),
which serve as a critical bridge between end
users and applications, has increasingly garnered
scholarly attention. GUISs, characterized by their
structured layouts, rich graphical and textual con-
tent, and the inclusion of human operational logic
(Banerjee et al., 2013), present a complex chal-
lenge: Can the success of VLMs be applied to the
GUI domain?

Traditional GUI comprehension method focus
on conveying the actual user interface interactions
and mirror the user’s direct experience with the
GUI. For instance, LabelDroid (Chen et al., 2020)
utilizes deep learning to predict labels for image-
based buttons from a variety of commercial apps
available on Google Play. Similarly, TANGO
(Cooper et al., 2021) employs custom computer
vision (CV) and text retrieval techniques to analyze
visual and textual information on mobile screens.

However, traditional visual GUI comprehension
methods focus mainly on identifying GUI compo-
nents but fail to fully comprehend the graphical
and textual information, layout, and the interaction
context within the interface. In contrast, modern ap-
proaches such as those employed by ferret-UI and
CogAgent, which utilize LVLMs, demonstrate sig-
nificant advantages in this domain. These methods
are designed to process both detailed textual and
graphical content, leveraging their pre-trained ca-
pabilities. Nevertheless, both ferret-UI (You et al.,
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Hallucination
in GUI com-
prehension

User

LLaVA-v1.6-34B

How can I give a like to this video?

Open the video you want to like. Look for
a thumbs-up or heart icon, which is usually

How can I login?

Open the website or app of the social media
platform you want to log in to. Look for the
"Login" or "Sign In" button, which is usually

GPT-4V ...there should be a heart icon or similar but-  Open the App or website...
ton typically Find login section...
. Tapping on this icon... Enter your credentials...
VGA You can click the heart-shaped icon located  This page seems to be focused on displaying

on the

, just

content and interacting with it, but it doesn’t
appear to have a login function.

Table 1: Example of hallucination in GUI comprehension, red means element in image relate to answer and orange
means location of the element which indicate if model really extract information from image.

2024) and CogAgent (Hong et al., 2023) frequently
encounter limitations by over-relying on their pre-
trained knowledge, which leads to a neglect of
critical visual content. This often results in the
generation of inaccurate or irrelevant responses, in-
dicating a gap in their ability to achieve a balanced
and holistic understanding of GUIs (Shahgir et al.,
2024; Zhang et al., 2023).

To address these issues, we propose VGA, a
model fine-tuned on a self-construct 63.8K dataset,
using a novel training method we design. Dur-
ing the dataset construction, we employ knowl-
edge distillation from large language models to
construct 63.8k dataset based on Rico (Deka et al.,
2017), and we adopt the Referent Method to en-
hance the model’s focus on image content by us-
ing visual and position information in constructing
dataset, thereby increasing the relevance and ac-
curacy of the responses. In the training process,
we apply a Foundation and Advanced Compre-
hension (FAC) approach: the Foundation Stage
enhances the model’s understanding of GUI im-
age, while the Advanced Comprehension stage im-
proves the model’s ability to respond to complex

questions based on its understanding of the GUI.
Additionally, we employ a task progression and
reinforcement approach to create logical chains be-
tween tasks and within responses to strengthens
the model’s ability to reason and infer relation-
ships within the provided context. Through these
integrated strategies, VGA achieves state-of-the-
art performance in GUI comprehension tasks. Our
primary contributions are as follows:

* Large-scale GUI corpus for LVLM Fine-
tuning. To fine-tune our model, we intro-
duce a large-scale GUI corpus that includes a
diverse array of apps accompanied by corre-
sponding text descriptions and dialogues.

* A Fine-tuned LVLM for GUI task. We pro-
pose VGA, a LVLM for GUI comprehension,
fine-tuned to fulfill both granular low-level
and strategic high-level goals specialized for
graphical user interfaces.

* A Fine-tune Method to efficient improve
LVLMs performance We propose a two
stage fine-tune method based on our dataset
to achieve better understand of images.
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* Performance enhancements on real-world
GUI tasks. As shown in experiment 4, we ap-
ply our VGA to a GUI comprehension bench,
yielding promising results.

2 Related Works
2.1 GUI Comprehension

GUI comprehension is essential in mobile agent
design to ensure app quality and user experience.
It focuses on assessing interface components such
as buttons, text boxes, and menus to verify their
operational performance, visual design, and usabil-
ity, enabling mobile agents to interact effectively
with the app interface (Yu et al., 2023b). The soft-
ware engineering community has been long-term
focused on the improvement of mobile app GUI
comprehension effectiveness in all aspects since
last century (Memon et al., 1999). The main pur-
pose of these efforts is to understand GUI elements
to advance GUI automation, including testing and
other applications (Arnatovich and Wang, 2018;
Viésquez et al., 2018; Said et al., 2020).

Existing methods for GUI comprehension can
be divided into code-based approaches, which rely
on functional specifications or code analysis (Paiva
et al., 2005; El Ariss et al., 2010), and visual-based
approaches, which improve performance by consid-
ering the GUI’s visual representation through tech-
niques like template matching and OCR (Cheng
et al., 2019). However, these methods still lack
the ability to interact with GUIs in a human-like
manner. Recently, Large Vision-Language Models
(LVLMs) have emerged as a promising approach by
combining visual and textual understanding. These
models leverage vast prior knowledge gained from
pre-train to comprehend human intentions and in-
teract more naturally with GUI elements (Wang
et al., 2024; Cui et al., 2024).

In our work, we leverage the strengths of LVLMs
and enhance their performance in GUI comprehen-
sion using our constructed dataset and our designed
training methods.

2.2 Large Vision-Language Models

The introduction of the transformer architecture
has revolutionized natural language processing, en-
abling models to efficiently capture long-range de-
pendencies and contextual information. This ad-
vance laid the groundwork for pre-trained Large
Language Models (LLMs). The pre-train, fine-
tune, and predict paradigm (Liu et al., 2021), ex-
emplified by models such as GPT (Radford et al.,

2018) and BERT (Devlin et al., 2018), led to signif-
icant improvements in language understanding and
generation (Cheng et al., 2023; Yao et al., 2023;
Arefeen et al., 2024; Schick and Schiitze, 2020;
Yu et al., 2023a). Subsequent models like GPT-4
(Achiam et al., 2023), Llama (Touvron et al., 2023),
and Qwen (Bai et al., 2023) have further expanded
these capabilities. Explorations into the Mixture
of Experts (MoE) architecture (Shen et al., 2023;
Jiang et al., 2024) continue to enhance the scalabil-
ity of Transformer-based models.

Large Vision-Language Models (LVLMs) har-
ness the strengths of both LLMs and visual fea-
ture encoders, utilizing various methods to project
visual data into an LLM-comprehensible space
(Popescu et al., 2009; Liu et al., 2023, 2024b;
Alayrac et al., 2022; Wang et al., 2023). Models
like Flamingo (Alayrac et al., 2022) and CogVLM
(Wang et al., 2023) exemplify the architectures that
achieve this integration. Additionally, UniChart
(Masry et al., 2023) excels in chart comprehension
by leveraging LVLMs to accurately interpret for-
matted charts and complex informational structures.
Similarly, LLaVA (Liu et al., 2023) integrates pre-
trained visual and language models to enhance the
understanding of multimodal inputs, achieving su-
perior performance in visual and textual compre-
hension tasks.

In the field of graphical user interface (GUI)
analysis, traditional methods like Ferret-UI (You
et al., 2024) and CogAgent (Hong et al., 2023)
predominantly focus on text, largely because their
Large Language Model (LLM) components have
been thoroughly trained to emphasize textual in-
formation. This emphasis can lead to the visual
components of the input being overlooked or mis-
interpreted in the responses, often resulting in the
generation of irrelevant answers—a phenomenon
known as "hallucination".

Inspired by these work, we investigate the perfor-
mance of LVLMs in the context of complex GUI in-
terfaces. Our study focuses on evaluating how well
these models understand and interact with GUIs
that feature structured layouts and rich interactions,
aiming to further enhance their applicability and
accuracy in real-world scenarios.

3 Problem in GUI Comprehension

The primary cause of hallucinations in Vision-
Language Models (VLMs) can be attributed to their
reliance on response patterns learned from tradi-
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v
Android View Hierarchy @

Base on the page provided, construct a

conversation between assistant and
users.

Conversation should include ask how
to use this page.

Conversation should include simple
and complex question.

Use <x1,y1,x2,y2> in anwsers only
when user ask bounds or location.
Use <x,y>in anwser only when user

Base on the page provided, construct a
conversation between assistant and users.
Conversation should include high-level
question.

Conversation must start from human.
Question and response of assistant should
include shape or color and any visual
information of components.

Question and anwser should include the
coordinate or location of the components.

GPT-4 ask where to click. GPT-40

Human: Where should I click if | want to connect with Facebook?
Assistant: Click at <0.5,0.82> to connect using Facebook.

Human: How can | access my account details

Assistant: Tap on the '"ACCOUNT' option. It's the dark blue bar located in the middle.

Figure 1: Data generation Method

tional Large Language Models (LLMs). In this
section, we investigate the occurrence of hallucina-
tions in contemporary GUI models and propose a
method to reduce these inaccuracies.

3.1 Hallucination in GUI Comprehension

LLMs are typically trained on massive corpora
of pure text data, where they learn to generate
responses based on textual context and patterns.
When a visual module is introduced, these learned
textual response patterns can adversely influence
the model’s behavior during multimodal tasks.

Indeed, while Ferrent-UI and CogAgent are
adept at understanding specific elements in graph-
ical interfaces, they primarily emphasize textual
and positional information when constructing their
training datasets. This approach results in limited
recognition capabilities for icons and other crucial
visual details. Such a bias can lead to misinterpreta-
tions or incomplete understanding of GUISs that are
visually complex in real-world applications, as re-
liance on text and layout alone may not adequately
capture the full semantics and functionalities of the
graphical interfaces. This models can face several
types of illusions as follow:

Over-reliance on textual content: LVLM:s like
Ferrent-UI and CogAgent, heavily trained on text-
intensive datasets and focused on text interpretation
tasks, tend to overly prioritize textual data when
analyzing GUIs. As a result, they might overlook
integral visual cues like layout and visual styles,
leading to impractical or irrelevant action sugges-
tions within the GUI environment, as shown in

Table 1. This text bias affects their capability to
deliver effective and holistic interpretations, which
is crucial for accurate and user-friendly interface
interactions.

Word-to-image coincidences: This issue arises
when models draw superficial connections between
query words and text appearing on GUI elements,
but these elements do not align with the intended
functional requirements. As shown in Table 8, if a
query includes "start painting," and there are two
buttons on the GUI with "start now" and "drawing"
in their labels, a model might incorrectly choose
a "start now" button when the appropriate action
was to "drawing". This misalignment leads to the
selection of incorrect actions based on text matches
rather than the functional relevance of the elements
within the GUI context.

3.2 Referent Method

To address the previously mentioned issue, we pro-
pose the referent method. GUI design often uses
layout, shape, and color to distinguish elements,
providing critical visual details to guide user inter-
actions. By explicitly incorporating coordinates,
shapes, colors, and relative positions between el-
ements in the construction of our dataset, we aim
to enhance the model’s focus on the image content
when generating answers. Thereby reducing the
chances of hallucination. During the design of our
dataset, we ensured that most responses involving
GUI elements include at least one of the following
referents, aligning the element information with
the image content:
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Shape: The shape of the element, like a rectangu-
lar button with rounded corners.

Color: The color of the element, for example, a
blue button with white text.

Position: The exact coordinates or bounds of the
element, format as <x,y> and <x1,y1,x2,y2>.
Relative Position: The position of the element in
relation to other elements, such as being below the
text input field.

4 GUI Comprehension Dataset

To address the imbalance between image and text
in GUI analysis, we propose a high-quality compre-
hension dataset tailored for LVLM training. This
dataset includes detailed annotations of both tex-
tual and visual elements, ensuring a balanced and
comprehensive training environment.

4.1 Ecxisting General Dataset

Ferret-UI (You et al., 2024) and CogAgent (Hong
etal., 2023), while capable of understanding certain
elements in graphical interfaces, primarily focus
on extracting and utilizing textual and positional in-
formation during the construction of their training
datasets. This bias can lead to misunderstandings
or inadequate interpretations when dealing with
GUIs rich in visual information in actual applica-
tions, as relying solely on text and layout might not
fully comprehend the semantics and functionalities
of the graphical interfaces.

Additionally, since the datasets relied upon by
these models are not open to the public, it poses
additional challenges for external researchers or
developers, as they might struggle to obtain data of
similar quality and scale for effective model fine-
tuning or further research.

4.2 Data collection

Given that both Ferrent-UI and CogAgent are not
open source, the availability of the Rico dataset
(Deka et al., 2017) represents a valuable resource
for the research community involved in mobile app
design and development.

The Rico (Deka et al., 2017) dataset is a huge
GUI dataset created to support research in mo-
bile app design and development, including areas
such as GUI design, interaction. It consist of 66k
unique GUI screens and 3M elements from 27 cate-
gories, over 9.3k applications. Each GUI comprise
a screenshot and an augmented Android view hier-
archy that capture all of the elements comprising

a GUI, their properties, and relationships between
them. However, the rich data provided by Rico
cannot be directly utilized to train LVLMs as the
text data in Rico do not align with human percep-
tion in the same manner as VQA datasets. This
necessitates the transformation of this data into a
format compatible with VQA dataset.

4.3 Task Design

The dataset includes the following sub-tasks, each
complemented by human annotations to elevate the
quality and applicability of the training data. Addi-
tionally, we have structured the dataset into two dis-
tinct categories based on these tasks: the instruction
dataset and the conversation dataset. These cater
to scenarios of directive compliance and multi-turn
dialogue, respectively.

* Description: This task involves providing a
basic description of the GUI’s layout, identify-
ing the function and placement of components.
This foundational task facilitates deeper ana-
Iytical tasks, as all GUI-related tasks rely on a
clear understanding of the overall layout.

* Bounds & Location: This task adds complex-
ity by requiring the model to incorporate pre-
cise descriptions of element bounds and coor-
dination. By introducing this, our approach
ensures that the model focuses on the accurate
positional information within the images.

* Function: This task requires the model to un-
derstand the individual functions of each GUI
element, considering not only the overall func-
tion but also the relative positions of elements
to each other. Identical buttons might serve
different purposes depending on their specific
context within a GUI. while relative position-
ing is significant because two elements placed
in a specific arrangement might together con-
vey a particular function or information. This
enables the model to predict the design intent
and functionality of the entire interface, result-
ing in more contextually aware and precise
responses.

4.4 Generation Method

However, the rich data provided by Rico cannot be
directly utilized to train LVLMs as the text data
in Rico do not align with human perception in
the same manner as VQA datasets. This neces-
sitates the transformation of this data into a for-
mat compatible with VQA dataset. The Android
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Inst dataset Model Number Conv dataset Model Number
description_inst GPT-4 3k Conv_simple GPT-4 5.4k
bound_inst GPT-4 43K Conv_complex GPT-4 11K
function_inst GPT-4 2K Conv_40_long GPT-40 10K
testing_inst GPT-4 5K Conv_4o_short GPT-40 10K
function_inst_4o0 GPT-40 8K conv_40_miss GPT-40 5k
Total 63.8K

Table 2: Dataset composition

view hierarchy in the Rico dataset provides detailed
descriptions of GUI elements, allowing us to ob-
tain precise positional data and interaction details.
Therefore, we use GPT-4 (text-only) to extract this
textual information from the Android view hierar-
chy and GPT-40 to extract visual information from
images as shown in Figure 1. Our approaches are
as follows:

Data Pre-processing: We remove elements in the
Android View Hierarchy that have the ‘visible-to-
user’ attribute set to ‘false’, and normalize the
‘bounds’ values to a range of 0 to 1. Addition-
ally, for all elements with the ‘clickable’ attribute
set to ‘true’, we add a ‘click_coordinate’ attribute,
calculated as the midpoint of the range indicated
by the ‘bounds’.

GPT-4 (Text-Only) Generated Tasks: Inspired by
the method of LLaVA (Liu et al., 2024b), this cate-
gory consists of dataset generated by GPT-4 (text-
only), based on pre-processed Android View Hi-
erarchy data. Leveraging the detailed information
available in the Android View Hierarchy, this ap-
proach generates a variety of QA pairs that accu-
rately reflect the textual and positional data and
interactions.

GPT-40 (Image-Based) Generated Tasks: Inspired
by ShareGPT4 (Chen et al., 2023), this category
comprises dataset generated by GPT-4o0 (image-
based). Given that vision models often struggle
with capturing precise positional information of
elements, this method focus on relative positions,
shapes, and colors of the visual elements.

Our GUI comprehension dataset consists of
63.8k images, covering a diverse range of apps
and tasks. It includes 22.3k instruction-following
data pairs and 41.4k conversation data pairs. Of
the instruction data, 35.8% is generated by GPT-4o,
and 60.2% of the conversation data is produced by
GPT-40. Table 2 illustrates the composition of our
dataset.

S Tuning Script

Existing fine-tuning methods in LVLM treat ques-
tion tokens and image tokens equally, which ne-
glects the need for LVLM to prioritize image in-
formation. As a result, models may understand
tasks well but generate responses based solely on
questions. This results in hallucinations in GUI
comprehension (see Table 1). To address this, we
propose a two-stage training method. The first
stage aligns responses with image content. The sec-
ond stage aligns responses with human intent. We
also adopt the chain-of-thought method to enhance
the model’s reasoning capability. Our approaches
are as follows:

Foundation Stage:

The Foundation Task dataset is an instruction-
following dataset that fix the command and re-
sponse formats. This stage incorporates direct vi-
sual information and employs a fixed format for
questions and responses to train the model to cor-
relate with image content. The fixed format is in-
tended to "freeze" the variations in questioning and
responding styles, focusing the model’s learning
process on understanding and interpreting visual
attributes effectively. This controlled environment
ensures that the model develops a robust capability
to recognize and interpret visual data independently
from textual content.

Advanced Comprehensive Stage:

In this stage, we introduce multi-turn dialogues
and complex questions from the advanced compre-
hension dataset. We utilize the Referent Method
(detailed in sec 3.2) to directly incorporate intuitive
visual information into responses. This method is
designed not only to enhance the referencing of
visual details within responses but also to align the
model’s attention distribution more towards image
tokens.It ensures that the model does not merely
rely on learned text patterns but actively engages
with and interprets the visual context, enabling a
deeper understanding and more accurate generation
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—— Stagel+2 Polynomial Fit
Stagel+2 Original Loss

—— Only-stage2 Polynomial Fit
Only-stage2 Original Loss

Steps

Figure 2: Loss convergence of model trained with foun-
dation task and without during advanced task training.

—— Polynomial Fit
Original Data

Steps

Figure 3: Loss convergence of model trained with mixed
foundation task and advanced task data.

based on the actual GUI layout and visual cues.

Task Progression and Reinforcement:

We organize tasks in a sequence from simple
to complex, ensuring that the model progressively
builds the necessary foundational skills before train-
ing on more advanced tasks. In complex tasks, we
start with some related simple tasks to reinforce
foundational knowledge, followed by the real re-
sponse which demands deeper analysis and synthe-
sis of the information gathered from these founda-
tional tasks.

Model First Second Third Average
VGA-no- 50.68 48.18 46.14 48.33
referent

VGA-mix- 62.05 62.96 62.27 62.42
stage

VGA-only-  67.27 65.00 67.50 66.59
stage2

VGA-7b-vl  90.68 90.68 91.17 90.83

Table 3: We conducted ablation experiments on our
fine-tuning methods, and the results prove that our fine-
tuning methods are effective.

5.1 Experiments Setup

We use our training method and dataset to fine-tune
llava-v1.6-mistral-7b (Liu et al., 2024a). Table 6

Model First Second Third Average
GPT-40 80.68 80.45 81.14 80.75
GPT-4V 81.82 81.14 82.50 81.82
MiniCPM 63.86 64.09 64.32 64.09
CogAgent 69.77 69.77 69.09 69.55
Ilava-next 53.41 53.18 53.86 53.48
idefics2-8b 39.77 43.86 41.81 41.82
VGA-7b-vl*  59.00 59.75 57.75 58.5
VGA-7b-v1 90.68 90.68 91.17 90.83

Table 4: Scores on GUI Bench.

shows the hyperparameters we use during training.
In Appendix A.2, we show the loss convergence be-
havior under various learning rates and batch sizes
during training. All our experiments are carried out
using one A100(80GB) machine.

6 Experiment

6.1 Baselines & Evaluation Metric

GUI comprehension Bench: To evaluate our
model, we follow previous works (Masry et al.,
2023; Liu et al., 2023). Due to the lack of GUI
comprehension bench, we sample 22 images from
the Rico dataset (excluding training data). And
based on these images, we collect 44 user questions
which require truly understanding of GUI to re-
sponse correctly. Inspired by the evaluation method
of LLaVA-bench (in-the-wild) (Liu et al., 2024b),
we use ChatGPT to evaluate our model. We com-
pare our model with five recent best performance
LVLMs: the top non-open-source LVLMs GPT-4V
and GPT-4o0, the two best LVLMs based on Mistral-
7b-instruction-v2 (llava-v1.6-mistral-7b(Liu et al.,
2024a) and idefics2-8b(Laurencon et al., 2024)),
and MiniCPM-1lama3-V-2.5(Hu et al., 2024), the
leading open-source model on the LVLM leader-
board.

Fine-tuning Method Evaluation: To evaluate
our two-stage fine-tuning approach (Foundation
and Advanced Comprehension method), we track
loss convergence over the training period. We com-
pare loss convergence during the advanced task
training between models pre-trained with the foun-
dation task and which without it. We also com-
pare previous models’ loss convergence with which
trained on mixed foundation task and advanced task
data. Their learning rates during training are all set
to 2e-5, batch sizes are 16.
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Case in bench

User
VGA-7b-v1

VGA-Tb-v1*

How can I score?

You can score the ‘dicatado’ button, which is
located in the middle left of the page.

You should click the ‘dictado’ button located
in the top left of the four options.

How can I draw a picture?

You can click the blue ‘Start’ button in the
center of the page to begin drawing a picture.

You can start drawing by clicking the blue
’Start’ button

llava-mistral-v1.6-7b

The click to score is the one that says "horri-
ble"

To draw a picture, you can use a drawing app
on your phone or tablet.

Idefics2-8B To get the score, you should click on the To draw a picture, simply tap on the colors
"Score" button. you want to use and then touch the screen

where you would like to place the color...
MiniCPM-V-2_5 To score, you click on the word . horrible’ To draw a picture, you can use the drawing

tools provided in the app interface.

Table 5: Case in the GUI-bench, note that VGA show the best comprehension of the image

6.2 Main Result

GUI Comprehension: As shown in Table 4, VGA-
7b-v1 has shown promising results, achieving the
best performance across three separate GPT evalu-
ations. Our model attains a score of 90.83, which
is relatively 41% better than the base model llava-
v1.6-mistral-7b, 54% better than idefics2-8b and
29% better than MiniCPM-1lama3-V-2.5. Further-
more, VGA-7b-v1 also outperforms GPT-40 and
GPT-4V. Overall, these results establish VGA as
the SOTA model for GUI comprehension.

Resource Efficiency: We also evaluate our
model’s performance with low-resolution input. As
shown in Table 4, VGA-7b-v1* (336x336) still
outperforms llava-v1.6-mistral-7b and idefics-8b,
even though the number of image tokens for VGA-
7b-v1* is only one-fourth of those in llava-v1.6-
mistral-7b and idefics-8b. This significantly im-
proves the inference speed, computational cost and
memory usage. Our research indicates that reduc-
ing pixel count primarily affects detail recogni-
tion accuracy, thereby impacting response accu-
racy. Nevertheless, the model retains a strong un-
derstanding of GUI images, as demonstrated in
Table 5.

Hallucination Analysis: Compared with exist-
ing models, our model demonstrates a precise un-

derstanding of GUI. As shown in Table 1 and Ta-
ble 8, our model responds to questions based on the
input image content and accurately describe GUI
components using details such as relative position,
color, and shape. By focusing more on image con-
tent, our model certainly reduces the likelihood of
generating hallucinated responses.

FAC method analysis: As shown in Figure 2,
the orange and purple curves represent the original
loss values for models with and without the foun-
dation task stage, respectively. The red and blue
curves, fitted with a degree-3 polynomial, illustrate
the loss trends. Models trained with the foundation
task exhibit more stable convergence and lower loss
values. Figure 3 shows that mixing datasets during
training leads to unstable convergence. In Table 3,
we present the results of ablation experiments on
the GUI comprehension bench using the FAC fine-
tuning method and those not using the FAC method.
The experiment proves that the models using the
FAC method have stronger GUI understanding ca-
pabilities, consistent with the comparison of the
loss curves. In Appendix A.3, we discuses the
influence of the foundation stage on model conver-
gence. In Appendix A.4, we conducted ablation
studies to evaluate the individual contributions of
the two stages to overall model performance. In Ap-
pendix A.5, we analyzed the contribution of image
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tokens when generating answers to demonstrate
how FAC enhances the model’s attention to image
content.

7 Conclusion

We introduce VGA, a fine-tuned model for GUI
comprehension, leveraging a custom dataset and
novel fine-tuning method. The dataset, constructed
using a Reference Method, focuses on image-
centric responses. The training can be divided into
two stage: foundational skill alignment and human
intent alignment. The foundation stage emphasizes
learning the relationship between images and re-
sponses, while the advanced stage focuses on intent
following. Ablation studies confirm the efficacy of
our training method. We believe that our training
data and method will serve as valuable resources
for future research.

Limitations

Despite the promising results, our work has some
limitations that need to be addressed in future re-
search. Firstly, our dataset contains some noisy
data, which may affect the overall performance of
the models. We plan to clean this data in future
iterations to improve the quality and accuracy of
the dataset. Secondly, the accuracy of responses
is somewhat limited by the capability of the base
model we used. Although our constructed dataset
and proposed methodologies have demonstrated
their effectiveness, there are still instances where
the answers may be inaccurate. Future work will
involve experimenting with more advanced base
models to further validate and enhance the effec-
tiveness of our approach. Due to the commercial li-
censing restrictions of the LLaMA model, we were
unable to fine-tune based on the LLaMA model.
At the time of our work, mistral-7b-instruction-
v3 had not yet been released. Therefore, we uti-
lized llava-v1.6-mistral-7b. In our research, it is
one of the most advanced open-source and com-
mercially viable models available. Thirdly, our
dataset is constructed based on the open-source
RICO dataset, which contains GUI images with
older design styles. In future dataset construction,
we aim to integrate GUI interfaces from current
popular apps to ensure our models are up-to-date
with modern design trends and practices. By ad-
dressing these limitations, we aim to refine our
approach and further improve the effectiveness and
reliability of our models in comprehending and

interacting with complex GUI interfaces.
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A Appendices
A.1 Existing Method For Data Generation

To effectively train an LVLM, an extensive amount
of data with high-quality is required (Zhu et al.,
2023). Due to the huge labor consumption to create
a large high-quality dataset, many research initia-
tives have explored methods for automatic genera-
tion of datasets (Gilardi et al., 2023)(Chiang et al.,
2023)(Peng et al., 2023).

Current mainstream method focus on distilling
knowledge from advanced large language models
and large visual-language models, which are pre-
trained on vast amounts of data, often exceeding ter-
abyte (TB) scales, to capture a wide variety of pat-
terns in language and visuals (Xu et al., 2023)(Chi-
ang et al., 2023)(Maeng et al., 2017)(Chen et al.,
2024). Therefore, they are often used as auxiliary
tools to generate high-quality data. For instance,
ShareGPT4v (Chen et al., 2023) distill the knowl-
edge from GPT-4V to generate data for training, en-
suring the image and text pairs are of high-quality
and diversity. LLaVA (Liu et al., 2023) turns pic-
tures into text descriptions and then uses GPT-4
(OpenAl, 2024) to generate questions and answers
based on text descriptions. Both of them get a
state-of-the-art performance.

A.2 Hyperparameter Analysis

Our fine-tuning process is based on the llava-v1.6-
mistral-7b model. In this section, we examine the
influence of different learning rates and batch sizes
on model convergence across two stages.

Figures 8 and Figure 9 display the loss conver-
gence during foundation task training at various
learning rates, both of the batch sizes are 16. It is
evident that a learning rate of 2e-6 achieves lower
loss values and more stable learning, with signifi-
cantly fewer fluctuations.

Figures 10 and Figure 13 show the loss con-
vergence during advanced task training of models
pre-trained with different learning rates on foun-
dation task. The results indicate that model pre-
trained with a learning rate of 2e-6 on foundation

task results in markedly lower loss and reduced
fluctuations during advanced task training.

Comparing Figure 12 and Figure 10, which both
pre-trained with learning rate of 2e-6 on founda-
tion task, and with the different batch size (32 and
16). This comparison shows that increasing the
batch size significantly improves convergence sta-
bility and reduces fluctuations during advanced
task, avoids over-fit in intent following.

In our experiments, the model trained under the
conditions depicted in Figure 12 surpasses oth-
ers. This model achieves higher accuracy in GUI
element recognition compared to the which pre-
trained on foundation task with a learning rate of
2e-5. and show more accuracy in human intent fol-
lowing compared with model trained with smaller
batch size during advanced task training. This fur-
ther underscores the importance of foundation task
training and highlights the distinct focuses of the
two stages. Using a larger batch size in advanced
helps the model capture the nuances of user intent,
thereby preventing over-fitting. Using a small learn-
ing rate in foundation task training helps the model
more accurately map images to their corresponding
responses.

A.3 Influence of Foundation Task

As shown in Figure 14, the performance during
the foundation training phase significantly impacts
the results of advanced task training. As shown
in Figure 10 and Figure 13, if the model achieves
stable convergence during the foundation task, it
will also exhibit stable convergence during the ad-
vanced task. Furthermore, the final convergence
value in the advanced task is influenced by the con-
vergence value achieved during the foundation task.
Using models with lower convergence values from
the foundation task leads to smaller convergence
values during the advanced task task training.

A.4 Ablation Study

We conduct ablation studies compare among base
model (llava-v1.6-mistral-7b) and models fine-
tuned by FAC method (VGA-7b-v1)and solely on
advanced task. VGA-7b-vl1 is fine-tuned based on
model which pre-trained on foundation task, VGA-
7b-stage? is fine-tuned based on llava-v1.6-mistral-
7b. As shown in Figure 7, we compare their loss
convergence during advanced task and result shows
that the two models exhibit highly consistent loss
trends, but VGA-7b-v1 demonstrates lower loss val-
ues. This indicates that our foundation task training
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approach, which involves freezing the question and
response formats, does not degrade the model’s
intent-following performance. On the contrary, this
training method allows the model to focus more on
image information, leading to lower loss values dur-
ing the advanced task training while maintaining
similar trends.

We present some case in Table 10, we evaluate
this three models on real-world tasks. Compared
to the baseline model llava-v1.6-mistral-7b, the re-
sponses of VGA-7b-stage2 incorporate the answer
style of the reference method. Compared to VGA-
7b-v1, the models that not trained on foundation
task shows limitations in GUI recognition accuracy,
particularly in positional accuracy. This highlights
the functionality and effectiveness of the two-phase
training approach.

A.5 Attention Analysis

To verify that our method increases the model’s
focus on extracting information from images when
generating responses, we analyzed the attention
values between image tokens and answer tokens.
Specifically, we calculated the average attention
contribution of each image token for every answer
token during the generation process.. Additionally,
we computed the total attention value of image
tokens for each answer token during its generation.
As shown in Figure 23, we compared our model
VGA-7b-v1l with the baseline model llava-v1.6-
mistral-7b using the same images and questions
as input, and we recorded the differences in atten-
tion value. The results show that our model has
significantly higher attention values to image to-
kens when generating responses compared to the
llava model. This indicates that our model is more
capable of capturing the content of the images.
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Figure 4: VGA-7b-stage2 Figure 5: VGA-7b-v1 (with FAC method)
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Figure 6: Loss convergence comparing between VGA-7b-v1 and VGA-7b-stage2
Figure 7
Experiment Data Size Training Learning Rate Batch Size GPUs Time
Model
Foundation Task Training
Foundation 22.3k Connector& 2e-6 16 1xA100 80G  16h
Task LLM
Advanced Comprehension Task Training
Advanced Task 41.4k Connector& 2e-6 32 1xA100 80G  16h
LLM

Table 6: Hyperparameter in Training
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Case in bench

User

VGA-7b-v1

‘What the day and date of the weekend before
I selected in the middle of the page?

Itis SAT, Apr 9, 2016

30 W00

Parish not lsted? Send Request

NOTE: Some features are imited
without parish particpation.

How can I find my Parish?

You can push "SEARCH" button in the mid-
dle of the page with a blue text.

llava-mistral-v1.6-7b

The image shows a calendar for April 2017,
and you have selected the date April 10,
which is a Monday. The weekend before
April 10 is Saturday, April 8, and Sunday,
April 9.

You can find your Parish by customizing
this app with relevant message, events, Mass
times and more.

Idefics2-8B

The day and date of the weekend before I
selected are April 15th and 16th. Year 2016
Missed.

To find your parish, you can use the search
bar provided on the app. This will allow you
to input the name of your parish or search for
it using other relevant information.

MiniCPM-V-2_5

The day and date of the weekend before April
10, which is a Monday, would be Sunday,
April 9. Year 2016 Missed.

To find your Parish using the app, you can
customize it with relevant messages, events,
and Mass times by selecting a parish from the
list provided.

Table 7: Case in the GUI-benchmark

Case in bench

User
VGA-7b-v1

How can I start Drawing?

You can click the orange "Draw" button in
the bottom left corner of the page.

Select a Location
Q Use Current Location
Bismarck, ND.

Mandan, ND
Minot, ND.
Dickinson, ND.

Wiliston, ND.

Add Location

q o o

Am I use current location right now?

Yes, you are using you current location. The
location icon is in the first line named "Use
Current Location".

llava-mistral-v1.6-7b

To start drawing, you can use the Draw app
on your device, which is available in the app
store.

Yes, you are using your current location right
now.

Idefics2-8B

To start drawing, you can either tap on the
"Draw" button or select one of the three op-
tions provided (Coloring, My Work, or Start
Now).

Yes, I am using your current location to pro-
vide information about nearby places of inter-
est.

MiniCPM-V-2_5

You can click the "Draw" button.

No, you are not currently using your current
location.

Table 8: Case in the GUI-benchmark
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Case in bench

Add Vehicle

Edit Vehicle

Delete Vehicle

Help

© settings

User How can I remove the vehicle? Where can I find the work I drew?

VGA-7b-v1 You can remove the vehicle by clicking on  You can find the work you’ve drawn by click-
the ’Delete Vehicle’ option ing on the

GPT-40 To remove the vehicle, tap on "Delete Vehi-  You can find the paintings you drew by click-
cle" from ing on the "My Work" button.

GPT-4V You can remove the vehicle by selecting the ~ You can find the paintings you drew in the

"Delete Vehicle" option

"My Work" section of the app shown in the
image.

MiniCPM-V-2_5

To remove a vehicle from the application, you
would typically select the ’Delete Vehicle’
option

The "My Work" icon suggests a section where
users can view their past drawings.

Table 9: Case in the GUI-benchmark

Ablation
Study
W oxee B
T
;!’nm = m;:’
A wex T
User Who will play against each other on Sun, Aug
14?7
VGA-7b-v1l The Cowboys and the Rams will play against

each other on sun, aug 14.

tRozaene 30000

an Francisco Solano v

MY NEXT CONFESSION

where is the diocese?

The Diocese icon is in the bottom row, second
from the left. It is a white icon with a video
camera symbol.

VGA-T7b-stage2

The Cowboys will play against the Dolphins
on Sun, Aug 14..

The Diocese is in the second row, second
column.

llava-v1.6-mistral-7b

Cowboys and dolphins.

The diocese icon is located in the bottom left
corner of the app.

Table 10: Ablation study of the model trained with foundation task and without. llava-v1.6-mistral-7b is the base

model, VGA-7B-stage? is the model trained solely on advanced task.
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Real world

User
VGA-7b-v1

User
VGA-Tb-vl

User

VGA-Tb-v1

User
VGA-T7b-v1
User
VGA-7b-v1

User
VGA-7b-v1

Please open the weather app, click?
<0.12,0.28>

Has anyone called me?

Yes, there is a call icon with a red notification
badge on it.

Could you help me to play some song?

To play a song, tap on the icon that looks like
a music note. It’s located in the bottom row,
second from the left.

What is date of the week today?
Today’s date of the week is Thursday.
Open the camera.

To open the camera, tap on the screen at
<0.34, 0.7>.

What is the setting bounds?

The setting bounds are <0.762, 0.566, 0.922,
0.692>.

L

25° | Cloudy

‘What is the weather on Sat?

The weather in Sat is sunny with a tempera-
ture of 22°C.

What is the highest temperature today?

The highest temperature today is 30°C. You
can find it in the bottom section of the page,
under the ‘10-DAY FORECAST’ section.

what is the temperature in 19:00?

The temperature in 19:00 is 25°C.

‘What is the weather like now?
The current weather is 25°C and cloudy.
How will the weather change next?

The weather will continue for the rest of the
day. Wind gusts are up to 7 m/s.

How about the air quality?

The air quality is currently labeled as "Excel-
lent’ with a value of 43.

Table 11: Case in the real world
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