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Abstract
Fine-tuning pre-trained Vision-Language Mod-
els (VLMs) has shown remarkable capabilities
in medical image and textual depiction synergy.
Nevertheless, many pre-training datasets are re-
stricted by patient privacy concerns, potentially
containing noise that can adversely affect down-
stream performance. Moreover, the growing re-
liance on multi-modal generation exacerbates
this issue because of its susceptibility to adver-
sarial attacks. To investigate how VLMs trained
on adversarial noisy data perform on down-
stream medical tasks, we first craft noisy up-
stream datasets using multi-modal adversarial
attacks. Through our comprehensive analysis,
we unveil that moderate noise enhances model
robustness and transferability, but increasing
noise levels negatively impact downstream task
performance. To mitigate this issue, we pro-
pose rectify adversarial noise (RAN) frame-
work, a recipe designed to effectively defend
adversarial attacks and rectify the influence of
upstream noise during fine-tuning.

1 Introduction

With the success of multi-modal learning (Ngiam
et al., 2011; Tan and Bansal, 2019; Ramesh et al.,
2021; OpenAI et al., 2024), the availability of
large medical Vision-Language Models (VLMs)
has surged. Despite their potential, these models
introduce considerable safety concerns. The pre-
training datasets used on these VLMs are often
inaccessible; maintaining data integrity becomes
significantly challenging when scaling up. This
issue is particularly pronounced in the healthcare
domain, where data sensitivity and patient confi-
dentiality limit its access. Consequently, they may
contain imperceptible noise, which can adversely
affect the model’s generalization and transferabil-
ity in downstream applications (Havrilla and Iyer,
2024), posing serious risks in medical contexts.

Additionally, as VLMs achieve remarkable suc-
cess in generation tasks, there is a growing reliance
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Figure 1: The proposed multi-modal adversarial attack
strategy.

on synthetic data (Lu et al., 2024). Examples in-
clude synthetic health reports (Lee et al., 2023),
medical instructions (Belkadi et al., 2023), and
medical images (Dorjsembe and Xiao, 2023). This
dependence on multi-modal generation exacerbates
safety concerns, since models trained on such data
are more susceptible to adversarial attacks (Singh
et al., 2024). Adversaries can potentially compro-
mise the entire system by subtly manipulating the
most vulnerable modality.

To remedy this issue, recent work has pivoted to
understanding and mitigating noise introduced dur-
ing pre-training (Chen et al., 2024). Nonetheless,
the robustness of VLMs pre-trained on perturbed
adversarial samples remains unclear. This is partic-
ularly crucial in the healthcare context, where tasks
like medical visual question answering (VQA) di-
rectly influence professionals’ decisions regarding
patient care. In this paper, we focus on the follow-
ing research:

Can we design a light-weight fine-tuning tech-
nique to alleviate the adverse effects introduced by
adversarial noise in pre-trained Medical VLMs?

Our main contributions can be summarized as
follows:
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1. Towards modeling adversarial noise in pre-
trained VLMs, we propose a novel multi-
modal adversarial attacking strategy to perturb
medical image-caption pairs (Figure 1), that
effectively misleading victim VLMs (§3.1).

2. We introduce Rectify Adversarial Noise
(RAN), a light-weight fine-tuning recipe to
attenuate the effects of adversarial noise from
pre-training (§3.2).

3. With empirical experiments, we pre-train
noisy medical VLMs using crafted adver-
sarial data and evaluate the performance of
such noisy models when fine-tuned on vari-
ous downstream tasks including chest X-ray
classification and medical VQA (§5).

2 Related Work

2.1 Medical Vision-Language Models
Some recent efforts have broadened the scope of
VLMs to the medical field for a variety of appli-
cations (i.e. medical report generation, medical
VQA). For instance, MedViLL (Moon et al., 2022)
generates medical reports from images, aiding in
clinical interpretation. PubMedCLIP (Eslami et al.,
2023), pre-trained on the ROCO dataset (Pelka
et al., 2018b), is fine-tuned for medical VQA to
answer clinically relevant questions from visual in-
puts. BiomedCLIP (Zhang et al., 2024) adapts
CLIP for biomedical applications, focusing on
textual descriptions of medical images. LLaVa-
Med (Li et al., 2023) demonstrates advanced multi-
modal conversational capabilities, making it highly
popular in assisting with inquiries about biomedi-
cal images. Such pre-trained models are typically
trained on large-scale medical datasets, yet the qual-
ity of these datasets remains unexplored, and the
robustness of the models has not been thoroughly
evaluated.

2.2 Adversarial Robustness
Multi-modal VLMs are particularly vulnerable to
adversarial attacks since perturbations can affect
both visual and textual modalities. A number of
general multi-modal adversarial attack strategies
have been developed, targeting multiple tasks si-
multaneously (Zhou et al., 2024; Yin et al., 2024;
Zhao et al., 2023; Cui et al., 2023). Recently, ad-
versarial robustness has also garnered increasing
attention in the medical sector. For example, Thota
et al. (2024) demonstrated how adversarial attacks
on pathology images can mislead the Pathology

Language-Image Pretraining (PLIP) model. Simi-
lar strategies have been employed in radiology to
exploit the adversarial vulnerabilities of models
used for medical imaging (Bortsova et al., 2021;
Finlayson et al., 2019).

To improve robustness, adversarial training has
been shown to be one of the most effective ap-
proaches (Shafahi et al., 2019; Zhang et al., 2019;
Paul et al., 2020; Xu et al., 2021; Bai et al.,
2021). Training with adversarially perturbed sam-
ples enhances resistance to attacks but is time- and
compute-intensive, especially for VLMs. Recent
studies have investigated parameter-efficient tun-
ing techniques (Mao et al., 2023; Ji et al., 2024) to
reduce the computational burden. An alternative ap-
proach is adversarial purification (Nie et al., 2022;
Wang et al., 2022), which uses diffusion models to
transform adversarial examples back into clean rep-
resentations. These methods all attempt to enhance
robustness during pre-training, we submerge the
adversarial noise during fine-tuning in a privacy-
protected (Liu et al., 2022) and light-weight black-
box paradigm, assuming that pre-trained models
are not always available.

2.3 Noise Learning and Robustness
To address the challenges posed by noisy data dur-
ing training, recent progress generally falls along
two lines: robust model training and adapting clean
pre-trained models on noisy (downstream) datasets.

Under the first taxonomy, techniques such as
noise estimation (Hendrycks et al., 2019; Jiang
et al., 2019; Xia et al., 2019; Yao et al., 2021; Gold-
berger and Ben-Reuven, 2017), robust loss func-
tions (Ghosh et al., 2017; Ma et al., 2020) have
been developed to mitigate the impact of noisy la-
bels. Specifically, Xue et al. (2022) proposes a
robust co-training schema for medical image clas-
sification that iteratively filters out noisy samples.
On the other hand, leveraging clean pre-trained
models to adapt to noisy downstream datasets has
proven to be both practical and efficient. Under
this paradigm, effective fine-tuning strategies have
been explored to enhance model robustness against
noisy data (Wu et al., 2022; Zhang et al., 2022).

Until recently, Chen et al. (2024) introduces
noisy model learning, which focuses on the effect
of pre-training label noise on downstream. To our
knowledge, no previous research has qualitatively
assessed the effects of adversarial noise during pre-
training on downstream tasks, particularly focusing
on multi-modal noise in the medical domain.
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Figure 2: Pipeline of our radiology image attacking strategy. We select a target image-caption pair (xtarget, ctarget)
from MEDICAT and a clean pair (xclean, cclean) from ROCOV2. xtarget. Images are transformed to embeddings by
pre-trained visual encoder fϕ. Adversarial example xadv is generated by PGD (Eq 3.1) iteratively and we denote the
adversarial noise as ∆. As formulated in Eq 3.1, we optimize the ∆ to maximize the similarity between xtarget and
xadv; the perturbation ∆ is also limited by ∥∆∥ ≤ ϵ.

3 Methods

In this section, we first introduce our novel multi-
modal adversarial attack strategies designed to cre-
ate noisy medical image-caption datasets, which
will be used to train CLIP models. Then, we intro-
duce RAN fine-tuning to alleviate the effect of such
pre-trained noisy medical models on downstream
classification tasks.

3.1 Adversarial Noisy Dataset Generation

Notation Consider a clean dataset Dclean =
{(xi, ci)}Ni=1 for upstream training, where N is
the total number of samples in the dataset. Each
tuple includes a training image xi, its correspond-
ing textual caption ci. Our goal is to generate a
noisy dataset Dnoisy to train a noisy CLIP model
Mnoisy. We use noise ratio γ to denote the percent-
age of noisy samples in D̂noisy. Each noisy sample
(xiadv, c

i) or (xi, ciadv) is created through one of the
following adversarial methods: image attack or
caption attack.

Adversarial Image Attack. To craft adversarial
images xadv from clean images xclean that can de-
ceive victim models, we use an image encoder fϕ
from a publicly accessible model, i.e., ViT-L/14 of
pre-trained CLIP models, as the surrogate model.
Considering VLMs may be unreliable for optimiz-

ing cross-modality similarity (Zhao et al., 2023),
we select a target image xtarget instead of a target
caption ctarget to guide the generation of xadv, en-
suring xtarget and xclean comes from different data
distribution. The adversary aims xadv to resemble
xtarget through human imperceptible perturbations:

argmax
∥xclean−xadv∥p≤ϵ

fϕ(xadv)
⊤fϕ(xtarget)

We utilize projected gradient descent
(PGD) (Madry et al., 2019) to address the
constrained optimization problem presented. PGD
iteratively applies gradient ascent on xadv to
maximize the cross-entropy loss L. Each iteration
is characterized as

x(t+1) = Π
(
x(t) + α · sign

(
∇xL(θ, x(t), c)

))

Here, x0 = xclean,Π is a projection to guarantee
adversarial perturbation remains within the accept-
able limits. The process to generate adversarial
image samples is illustrated in Figure 2.

Adversarial Caption Attack. Prompt-based ad-
versarial attacks are capable of independently and
effectively discovering the weaknesses of a victim
LLM (Xu et al., 2023). Given (xi, ci) in the pre-
train dataset Dclean, ci represents a caption describ-
ing a radiology image xi in our case. We alter the
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Figure 3: Our proposed prompt to generate an adversarial caption of a corresponding radiology image.
Highlighted are "body part" designed to change by prompt; Words are changed to opposite by prompt.

captions ci with LLAMA3-8B1 using a prompt that
incorporates three attack objectives, as depicted
in Figure 3. These objectives generate adversarial
captions cadv that fail to accurately describe the cor-
responding radiology image, with few key words
(i.e. body parts, symptom) adjustment.

3.2 RAN: Rectify Adversarial Noise

Our fine-tuning objective consists of three compo-
nents: a covariance loss to attenuate noise impact, a
consistency loss, and an adversarial loss to defend
adversarial attack in classification tasks.

Covariance Loss. Chen et al. (2024) observed
that introducing noise diminishes the top dominant
singular values of the pre-trained features, leading
to reduced transferability. Building on this insight,
we transform pre-trained features F into a new fea-
ture space Z using multi-layer perceptron (MLP)
with covariance regularization term (Bardes et al.,
2022) to rectify effects of the introduced noise :

LCOV =
1

D

∑

i ̸=j

[C(Z)]2i,j ,

where C(Z) is defined as the covariance matrix of
transformed features Z:

C(Z) =
1

n− 1

n∑

i=1

(zi−z̄)(zi−z̄)T , z̄ =
1

n

n∑

i=1

zi

By minimizing the off-diagonal coefficients of
C(Z) to approach zero, we encourage the features
to encode discriminative information.

Consistency Loss. To maintain the pre-trained
knowledge unchanged, we use a mean-square-error

1https://ai.meta.com/blog/meta-llama-3/

(MSE) loss between the normalized features F and
Z:

LMSE =
∥∥∥F̂ − Ẑ

∥∥∥
2

2
.

Here, F̂ = F
∥F∥2 and Ẑ = Z

∥Z∥2 . This objective
aids in transferring the pre-trained knowledge to
the transformed features Z.

Adversarial Loss. Cross-entropy loss often
struggles to distinguish adversarial samples in the
feature space because it does not explicitly enforce
a robust margin between learned classes (Xia et al.,
2022).

Given (xi, yi) in a classification task, fi denotes
the features of xi from pre-trained noisy model
Mnoisy. To address this issue and enhance the ro-
bustness of the trained classifier against adversarial
attacks, we introduce a constraint to maximize: 1)
the distance between the features fi of a given class
yi and the learned centroids of other classes, and
2) the separation between the learned centroids of
different classes:

LADV = − 1

D

D∑

i=1

dist(fi) + arccos(cyi · cj),

dist(fi) =
1

k − 1

k−1∑

j ̸=yi

∥fi − cyi∥

The cyi denotes the yith class center of features.
dist(fi) encourages the fi to be away from wrong
classes’ centroids. LADV enables the decision mar-
gins between the centroids of the classes to be sep-
arated sufficiently to prevent the overlapping of
features from different classes.

The overall loss function for downstream classi-
fication tasks becomes :

L = LCE + α · (LMSE + LCOV) + β · LADV

10787

https://ai.meta.com/blog/meta-llama-3/


Visual Encoder

Adversarial 
images

Clean 
images

ChestXray14
Visual 

Encoder

LCE + α(LMSE + LCOV) + βLADV

Text Encoder

“Normal lateral 
neck radiograph of 
the patient done in 

2007. …” MLP

(a) Stage 1 — Noisy Medical CLIP Model Training

(b) Stage 2 - Fine-tuning for Chest X-ray Classification

SLAKE
Visual 

Encoder

“Question: What 
modality is used 

to take this 
image?”

Text 
Encoder

(c) Stage 2 - Fine-tuning for VQA

Answer

ROCO-v2MediCaT ROCO-v2

“Normal lateral 
shoulder radiograph 
of the patient done 

in 2007. …”

Clean captions

Adv. 

Atelectasis

Cardiomegaly

Effusion

,,,

Mass

Labels

LCE + α(LMSE + LCOV) + βLADV

Linear

LCE

Noisy CLIP

MLP

Linear

LCE

C
o-

at
te

nt
io

n

Figure 4: Illustration of (a) training a noisy model with a combination of adversarial and clean data. The trained
noisy model is then fine-tuned on (b) chest x-ray classification task and (c) medical VQA task. In (c), we employ a
co-attention module to fuse textual and visual features before feeding into a classifier. The classifier can be either a
linear classification head or an MLP.

where LCE is the cross-entropy loss for classifica-
tion. We empirically set α = 0.01, β = 0.015 and
use a 2-layer MLP consistently for fair comparison.

4 Experiments

4.1 Training Data
In our experiments, we explore using a well-known
radiology dataset, ROCOV2 (Rückert et al., 2024)
to pre-train CLIP models. To introduce adversar-
ial noise in the dataset, we select radiology im-
ages from MEDICAT (Subramanian et al., 2020)
as target to conduct adversarial image attacking,
perturbing clean images from ROCOV2.

For downstream tasks, we fine-tune pre-trained
noisy models on CHESTXRAY14 (Wang et al.,
2017) for classification, and SLAKE (Liu et al.,
2021) for VQA, respectively. Detailed dataset re-
sources, statistics and examples are provided in
Appendix B.1.

4.2 Noisy Model Pre-training
As shown in Figure 4 (a), we first pre-trian CLIP
model (ViT-L/14) on adversarial noisy dataset. The
noise ratio γ is set to {0%, 5%, 10%, 20%, 30%},
where 0% representing the clean dataset. We ran-
domly select γ percentage of image-caption pairs
from ROCOV2 to attack. To generate image-
noisy datasets, we apply adversarial image attack
to the selected images. To generate caption-noisy

datasets, we perform adversarial caption attack us-
ing LLAMA3-8B, as outlined in §3.1. These noisy
models are designed to align radiology images with
their corresponding captions, allowing us to ana-
lyze the impacts of noise on pre-trained feature
extractors, and assess performance differences in
downstream tasks. Implementation details on train-
ing can be found in Appendix B.4

4.3 Fine-tuning
We conduct fine-tuning under three settings: i). lin-
ear probing (Radford et al., 2021), wherein only
training a simple linear classifier on top of the
frozen features extracted from the noisy models
to analyze how upstream noise affects downstream
tasks; ii). MLP-tuning, where training an MLP
classifier without loss regularization; iii). RAN-
finetuning, using MLP with proposed loss func-
tions.

Chest X-ray Classification Given a chest x-ray
scan, our fine-tuning objective is to predict possible
disease labels from 14 categories2.

Medical VQA To thoroughly evaluate the effec-
tiveness of our method, we then formulate Med-
VQA as a classification task, where the possible
label set consists of all possible answers. Motivated
by Dou et al. (2022), we adopt a transformer-based

2Details about classification labels are in Appendix B.1
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Figure 5: An example of generating caption cadv of crafted adversarial image xadv by black-box VLM, Llava-Med.
The default prompt is “what is the content of this radiology image?”. ✗ denotes the generated caption doesn’t
accurately describe the content of the clean image. ✓ means otherwise.

co-attention multi-modal fusion module3 that pro-
duces cross-modal representations over the image
and text encodings, which are then fed to a classi-
fier for predicting the final answer as described in
Figure 4.

4.4 Evaluation
Domain Differences To investigate the generaliz-
ability of adversarial noisy model comprehensively,
we then conduct fine-tuning under two experimen-
tal settings: i). a standard in-domain (ID) setup, in
which both the training and testing data are sourced
from the same dataset; ii). a more challenging out-
of-domain (OOD) setup, wherein test data origi-
nated from a different dataset.

For ID evaluation, we evaluate the pre-trained
noisy models on CHESTXRAY14 for chest-xray
classification and SLAKE for medical VQA. Un-
der the OOD setting, we use CHEXPERT (Irvin
et al., 2019) and VQA-RAD (Lau et al., 2018) re-
spectively. We report performance on both ID and
OOD with {0%, 5%, 10%, 20%, 30%} percentage
of downstream datasets.

Metrics All models are evaluated using the
macro average of the area under the receiver-
operator curve (AUC) (Bradley, 1997) and accu-
racy (ACC) averaged over all labels.

5 Results and Analysis

5.1 Effectiveness of Adversarial Attack
In Table 1, we evaluate the efficacy of our adver-
sarial attack strategy against white-box models in-
cluding pre-trained general CLIP (Radford et al.,
2021) and medical CLIP models. We use 5K clean

3Detailed descriptions of medical VQA setting is in Ap-
pendix B.3

Model Clean Image Adv. Image

CLIP - ViT-L/14 0.253 0.384
CLIP - Resnet50 0.211 0.329

PubMedCLIP (Eslami et al., 2023) 0.182 0.347
BioMedCLIP (Zhang et al., 2024) 0.174 0.312

Table 1: White-box image attacks. We report the
CLIP similarity score between the clean xclean or crafted
adversarial images xadv and the corresponding targeted
captions ctarget from MEDICAT.

Model Clean Caption Adv. Caption

UniDiffuser (Bao et al., 2023) 0.431 0.274
LLaVA-Med (Li et al., 2023) 0.565 0.392
Mini-GPT4 (Zhu et al., 2023) 0.493 0.287

Table 2: Black-box caption attacks. We use VLMs
to generate a radiology image based on either a clean
caption cclean or cadv, and report CLIP score between the
generated image (i.e., x̂clean and x̂adv) and xclean.

images xclean from the ROCOV2 validation set and
randomly select a targeted images-caption pairs
(xtarget, ctarget) from MEDICAT for each clean im-
age to craft adversarial images xadv following the
method described in Figure 2. We discover that the
similarity between xadv and ctarget, measured by the
CLIP score, increases compared to xclean, which
validates the effectiveness of our image attack. In
addition, Medical CLIP models are more adept at
accurately identifying the content of radiology im-
ages (as evidenced by a lower score between xclean
and ctarget). However, they remain susceptible to
our adversarial attack method, which lays the foun-
dation for black-box transferability (See Appendix
A for details). Figure 5 shows LLAVA-MED can
be misled to generate inaccurate captions for our
adversarially crafted images.

In Table 2, we transfer the crafted adversarial
captions to image through advanced VLMs. The
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Figure 6: Linear Probing ID and OOD evaluation
results of CLIP model pre-trained on multi-modal adver-
sarial noise on downstream tasks including chest x-ray
classification ((a) and (b)) and medical VQA ((c) and
(d)) with various percentages of noise.

similarity between the generated image x̂adv are
less similar to the clean image xclean than gener-
ated x̂clean, indicating the effectiveness of caption
attack.

5.2 Adversarial Noise Evaluation
To explore the effects of adversarial multi-modal
noise from upstream training on downstream tasks,
we show the accuracy of evaluating pre-trained
noisy models on both ID and OOD tasks across all
noise ratios, under linear probing setting, in Fig-
ure 6. We empirically reveal the following insights:

Introducing a moderate level of noise, such
as 5% or 10%, during pre-training can actually
improve a model’s robustness and performance
on ID downstream tasks. We hypothesize this
slight noise acts as a form of regularization, help-
ing the model generalize better to similar data seen
during fine-tuning. However, increasing the noise
beyond this threshold starts to degrade the model’s
performance, leading to poorer results. This find-
ing aligns with Song et al. (2022), suggesting a
balance in noise levels is critical for optimal model
training, as excessive noise can introduce too much
variability.

The performance on OOD downstream tasks
consistently diminishes as the noise level in pre-
training increases. High levels of noise make it
harder for the model to adapt to new and unseen
data, reducing its ability to generalize effectively
beyond the training domain.

γ Setting CHEST-XRAY14

0 Base 80.3

5
Ours (LP) 81.3

Random (LP) 80.6
Random + RAN 81.5

10
Ours (LP) 80.4

Random (LP) 79.8
Random + RAN 80.8

20
Ours (LP) 79.6

Random (LP) 79.1
Random + RAN 80.2

30
Ours (LP) 78.9

Random (LP) 78.2
Random + RAN 79.4

Table 3: Performance Comparison with Random Noise

Noise Type γ CHESTXRAY14 CHEXPERT

AUC ACC AUC ACC

Image

0 65.2 72.4 68.6 76.1
5 65.5 ↑ 72.9 ↑ 69.5 ↑ 76.8 ↑
10 64.7 71.2 69.3 ↑ 76.3 ↑
20 64.1 70.6 67.8 75.4
30 63.5 69.9 67.1 74.9

Caption

5 65.8 ↑ 72.8 ↑ 69.0 ↑ 76.4 ↑
10 65.4 ↑ 72.2 68.4 76.0
20 64.7 71.9 68.3 75.8
30 64.1 71.2 67.6 75.2

Table 4: Zero-shot Evaluations on Chest X-ray classifi-
cation tasks across different pre-trained noise ratios (γ).
(↑) indicates improvements from the clean baseline.

Image attacks tend to be more potent than
caption attacks in affecting model performance.
Specifically, across all four tasks, models subjected
to image noise exhibit more significant changes
than those exposed to text noise. This suggests
that image perturbations can disrupt the model’s
internal representations more effectively, leading to
greater performance improvement or degradation.

Comparing with Random Noise
To disentangle the two factors (how downstream

performance differs between our crafted adversar-
ial caption noise, and just random noise?), we
also test additional baselines that introduce small
amount of random gaussian noise to caption input
(Table 3). As expected, when noise is 5%, random
noise has a slightly lesser improvement on down-
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Figure 7: Evaluation of RAN fine-tuning on ID and OOD downstream tasks, compared to MLP tuning. We
use CLIP models pre-trained on noisy ROCOV2 dataset with, [first row]: adversarial images; and [second row]:
adversarial captions. The improvements of RAN are presented by stacked bars with light colors.

stream performance compared to our crafted noise;
as noise increases, random noise deteriorates per-
formance more rapidly. Nevertheless, our study
confirms that our noise mitigation strategy, RAN,
is effective not only against our crafted adversarial
noise but also against random noise.

5.3 Zero-shot Evaluation

To comprehensively study the robustness of pre-
trained noisy models without fine-tuning, we per-
form a zero-shot chest x-ray classification on two
datasets: CHESTXRAY14 and CHEXPERT. To
match text with the encoded image embeddings,
we use prompts of {label} and No {label} (e.g., "At-
electasis" vs. "No atelectasis") following You et al.
(2023). The results are illustrated in Table 4.

Following the findings from §5.2, introducing
slight noise enhances pre-trained model robust-
ness and performs better on zero-shot classifica-
tion tasks, while excessive noise in turn hurts the
performance.

5.4 Effectiveness of RAN Fine-tuning

Figure 7 shows the effect of our proposed RAN fine-
tuning on mitigating upstream adversarial noise. To
disentangle two possible reasons–RAN regulariza-
tion or extra parameters from MLP–improve mod-
els’ robustness, we compare it against baselines
using MLP-tuning.

From experimental results, incorporating RAN
enhances overall performance across all ID and

Model Setting SLAKE VQA-Rad

BIOMEDCLIP
Baseline 88.9 79.8

with RAN 90.2 80.9

PUBMEDCLIP
Baseline 82.5 80.0

with RAN 83.1 80.5

LLAVA-MED
Baseline 84.2 85.3

with RAN 85.1 85.2

PMC-CLIP
Baseline 88.0 84.0

with RAN 89.7 84.8

Table 5: Comparison with other baseline VLMs.

OOD tasks against both image and caption attacks.
The performance improvement observed with a 5%
noise ratio in the ID CHESTXRAY task and a 10%
noise ratio in the SLAKE task under linear probing
setting is less pronounced with RAN fine-tuning,
indicating its effectiveness in rectifying the influ-
ences of noise. Particularly for OOD tasks, the im-
provement is slightly more significant. Moreover,
we notice that the improvement on caption-noisy
models is less significant than image-noisy models
when noise starting to degrade model performance,
potentially because the impact of image noise on
feature extractors is greater, and RAN rectify such
effects during fine-tuning (See Appendix 10 for full
results).

Given that SOTA medical VLMs are generally
pre-trained on large amounts of data (e.g., BioMed-
CLIP pretrained on 15M private medical image-
text pairs), we do not believe it’s fair to directly
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γ Setting CHEST-XRAY CHEXPERT

5
LP 81.5 81.3

RAN 82.9 83.2
NMTune 82.6 82.7

10
LP 80.1 80.4

RAN 82.2 82.5
NMTune 81.5 81.6

20
LP 79.3 78.5

RAN 81.8 80.5
NMTune 80.7 79.6

30
LP 78.2 77.8

RAN 80.5 79.8
NMTune 79.6 78.7

Table 6: Comprison with NMTune.

compare the finetuned results. However, how our
noise mitigation strategy RAN would fare on other
SOTA VLMs is indeed an interesting question.
Fine-tuning such VLMs with RAN can test if RAN
is resilient against various types of noise, as such
VLMs might pre-trained with unknown noise, we
present the following results with finetuning SOTA
VLMS on medical VQA tasks, with our proposed
RAN as noise mitigation: As shown in Table 5, we
can see that with RAN, almost all SOTA VLMs
exhibit better performance across the board, which
validates the effectiveness of our proposed noise
mitigation fine-tuning strategy. With only PubMed-
CLIP has less improvement. We hypothesize this is
because PubMedCLIP was pre-trained on a small-
scale, high-quality dataset, whereas the others were
pre-trained on larger-scale datasets, which may con-
tain more noise.

In Table 6, we present the experimental results
on chest classification task between applying RAN
and another noise model mitigation approach NM-
Tune (Chen et al., 2024). Our method performs
better on rectifying adversarial noise than NMTune
in the above case. We hypothesize it’s because
NMTune tries to mitigate label noise, and focuses
on rectifying the features shaped by such noise,
whereas our adversarial loss regularization mainly
focuses on against adversarial noises.

Ablations We perform extensive ablations to
show that every component of RAN benefits the
overall system (Table 7). The results indicate that
our proposed LCOV and LADV effectively mitigate
the impact of adversarial image noise. While the
improvement from using only LMSE is relatively

LMSE LCOV LADV γ CHESTXRAY14 SLAKE

✗ ✗ ✗ 0 81.2 82.8
✓ ✗ ✗ 0 81.2 83.0
✗ ✓ ✗ 0 81.7 83.3
✗ ✗ ✓ 0 81.4 83.2
✓ ✓ ✗ 0 81.9 83.4
✓ ✓ ✓ 0 82.5 83.8
✗ ✗ ✗ 20 80.2 81.8
✓ ✗ ✗ 20 80.5 82.1
✗ ✓ ✗ 20 80.8 82.3
✗ ✗ ✓ 20 80.9 82.1
✓ ✓ ✗ 20 81.3 82.7
✓ ✓ ✓ 20 81.8 83.0

Table 7: Ablation Study on loss terms of ID tasks
with image attack. γ denotes noise ratio in pre-trained
dataset. Highlighted denotes improvement ≥ 0.5.

modest, LADV and LCOV shows limited enhance-
ment in performance for models with clean up-
stream data (γ = 0) compared to noisy mod-
els (γ = 20). We hypothesize that this is be-
cause LADV and LCOV are primarily designed to
address feature changes induced by upstream noise,
which may not provide significant benefits in clean
datasets. Combining all loss terms proposed in
RAN effectively improves performance against
MLP-tuning.

6 Conclusion

Despite the success development of medical VLMs,
most such models are vulnerable to adversarial at-
tack and still lag behind in transferring to down-
stream tasks robustly. In this work, we discuss how
upstream adversarial noise affects various medi-
cal downstream tasks by crafting adversarial multi-
modal medical samples. Through extensive ex-
periments, we found that even minor adversarial
noise in pre-training datasets can enhance ID per-
formance while degrading OOD generalization. To
this end, we introduce a light-weight fine-tuning
recipe, RAN, effectively mitigating noise effects
by refining the feature space and enforcing robust
margins to defend adversarial noise.

7 Limitations

Several limitations restrict the scope of our work.
To begin, our choice of downstream tasks–chest X-
ray classification and medical VQA tasks–is nonex-
haustive, and it is possible that our findings would
not generalize well for the broad spectrum of med-
ical applications. Given that medical datasets can
be quite limited compared to other general datasets
due to its private nature, pretrain a VLMs are also
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limited. Another restriction is that we only attacked
radiology images and their captions, offering a
glimpse into possible vulnerabilities but not a com-
plete picture. This means our findings may not
apply to other kinds of medical images or related
text data. Expanding to various medical imaging
and datasets in future work will be crucial for more
comprehensive insights and real-world applicabil-
ity.

Other potential avenues for exploration entail
different noise type and evaluate the nature of how
noise shapes pre-trained features can be useful. Fu-
ture work should explore optimizing noise levels
and further enhancing the robustness of VLMs to
various adversarial scenarios to maintain high per-
formance across diverse medical domains
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Appendix

A Multi-modal Adversarial Attack

Table 1 validates the effectiveness of white-box at-
tack against CLIP models. In Table 8, we transfer
the crafted adversarial examples in order to evade
large VLMs and mislead them into generating tar-
geted responses. The similarity between the gener-
ated response cadv are more similar to the targeted
text ctarget than cclean, indicating the effectiveness
of our method towards advanced large VLMs.

Model Clean image Adv. image

UniDiffuser (Bao et al., 2023) 0.287 0.594
LLaVA-Med (Li et al., 2023) 0.246 0.483

Table 8: Black-box image attacks. We report CLIP
score between the generated caption of input images
(i.e., xclean or crafted xadv) and targeted caption ctarget,

B Training

B.1 Datasets

ROCOv2 (Rückert et al., 2024) provides 79,789
radiological images with associated captions and
medical concepts. The image–text pairs are cap-
tured from PubMed () articles. It is an updated
version of the ROCO (Pelka et al., 2018a) dataset
published in 2018, and adds 35,705 new images
added to PMC since 2018.
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MediCaT (Subramanian et al., 2020) includes
medical images, captions, subfigure-subcaption an-
notations, and inline textual references from. It con-
sists of 217,060 figures from 131,410 open access
papers, 7,507 subcaption and subfigure annotations
for 2,069 compound figures.

ChestXray14 (Wang et al., 2017) is a medical
imaging dataset that includes 112,120 frontal-view
X-ray images from 30,805 unique patients, col-
lected between 1992 and 2015. It features fourteen
common disease labels extracted from radiological
reports. The disease categories are: Atelectasis,
Cardiomegaly, Effusion, Infiltrate, Mass, Nodule,
Pneumonia, Pneumothorax, Consolidation, Edema,
Emphysema, Fibrosis, Pleural Thickening, Hernia,
No finding.

CheXpert (Irvin et al., 2019) is a large dataset
of chest X-rays of 65,240 patients, with 14 observa-
tion labels collected from Stanford Hospital. The
included 14 labels are: Enlarged Cardiom, Car-
diomegaly, Lung Lesion, Lung Opacity, Edema,
Consolidation, Pneumonia, Atelectasis, Pneumoth-
orax, Pleural Effusion, Pleural Other, Fracture,
Support Devices and No Finding.

Figure 8: An example of image-caption in CheXpert
dataset.

SLAKE (Liu et al., 2021) a bilingual Med-
VQA benchmark containing 6428 radiology im-
ages (X-rays, CT scans, MRIs) and 14,028
question-answer pairs. It includes both "closed-
ended" questions, and more challenging "open-
ended" questions. Fo simplicity, we only report per-
formance evaluated on "closed-ended" questions.
An example image-question pair is shown in Fig-
ure 9.

Figure 9: An example of image-question in SLAKE
dataset.

VQA-RAD (Lau et al., 2018) contains 3515
question–answer pairs generated by clinicians and
315 radiology images that are evenly distributed
over the head, chest, and abdomen. Each image
is associated with multiple questions. Half of the
answers are closed-ended (i.e., yes/no type), while
the rest are open-ended with either one-word or
short phrase answers.

DATASET SPLIT IMAGE #
CAPTION #

/ QUESTION #
ANSWER #

ROCOV2
TRAIN 59,958 59,958 /
VALID 9904 9904 /
TEST 9927 9927 /

MEDICAT
TRAIN 141,089 141,089 /
VALID 32,559 32,559 /
TEST 43,412 43,412 /

CHESTXRAY14
TRAIN 78,484 / /
VALID 11,212 / /
TEST 22,424 / /

CHEXPERT

TRAIN 224,316 / /
VALID 235 / /
TEST 669 / /

SLAKE
TRAIN 450 9,849 9,849
VALID 96 2,109 2,109
TEST 96 2,070 2,070

VQA-RAD
TRAIN

315
3,064 3,064

TEST 451 451

Table 9: Medical Dataset Statistics.

B.2 Pre-training with CLIP models

CLIP Contrastive Loss

ℓiu→v = − log
exp(sim(ui, vi)/τ)∑N
j=1 exp(sim(ui, vj)/τ)

(1)
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NOISE Type γ CLASSIFIER CHESTXRAY14 CHEXPERT SLAKE VQA-RAD

Image

0
LP 80.3 82.2 82.3 71.2

MLP 81.2 82.9 82.8 71.9

5
LP 81.5 81.3 83.1 70.9

MLP 82.5 82.2 83.9 71.3
RAN 82.9 83.2 84.6 72.3

10
LP 80.1 80.4 83.4 70.1

MLP 80.9 81.0 84.1 70.9
RAN 82.2 82.5 84.6 72.1

20
LP 79.3 78.5 80.9 69.1

MLP 80.2 79.0 81.8 69.9
RAN 81.8 80.5 83.0 71.1

30
LP 78.2 77.8 79.8 67.5

MLP 79.0 78.3 80.5 68.0
RAN 80.5 79.8 81.7 69.2

Caption

0
LP 80.3 82.2 82.3 71.2

MLP 81.1 83.0 83.1 71.7
RAN 81.9 83.6 84.2 72.7

5
LP 81.3 81.9 82.9 71.0

MLP 82.0 82.5 83.4 71.7
RAN 82.3 83.2 84.1 72.7

10
LP 80.4 81.4 83.1 70.5

MLP 81.1 82.0 83.6 71.0
RAN 82.0 83.0 84.1 72.2

20
LP 79.6 80.5 81.5 69.8

MLP 80.4 81.2 82.0 70.5
RAN 81.3 82.0 83.3 71.7

30
LP 78.9 79.8 80.4 68.9

MLP 79.6 80.5 81.2 69.4
RAN 80.7 81.6 82.4 70.6

Table 10: The full results of fine-tuning with linear probing , MLP and RAN across all noise ratios.

where u and v are the normalized vectors from
the image and text encoders, respectively. (ui, vi)
is a positive pair, sim is a function that calculates
the similarity between the vectors, and τ is the
learnable temperature parameter. N represents the
mini-batch size of image-text pairs. ℓiu→v denotes
the InfoNCE loss from image i to the texts, while
ℓiv→u represents the loss in the opposite direction.
The final loss in CLIP is defined as:

LCLIP =
1

2N

N∑

i=1

(ℓiu→v + ℓiv→u) (2)

B.3 Medical VQA

Given a MedVQA training dataset denoted as T =
{(vi, qi, ai)}Vi=1 of size V , where vi is a medical
image, qi is the corresponding natural language
question, and ai is the natural language answer,
our objective is to learn to generate the correct
answer ai for a given image-question pair (vi, qi).
The features obtained from the image and question

encoder are concatenated as fv(vi)⊕ft(qi) We then
formulate MedVQA as a multi-label classification
function F : Rn × Rm×l → {0, 1}|A|, where A is
the overall set of possible answers and F (fv, fq) =
ai for the one-hot encoded answer ai.

Multi-modal Fusion Module Figure 10 presents
the co-attention architecture we use to fuse visual
and text features.

Figure 10: Illustration of multi-modal fusion modules
through co-attention architecture.
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B.4 Implementation Details
Our implementation is based on OpenCLIP (Cherti
et al., 2022). We utilize the CLIP with ViT-L/14
architecture, with input images at a resolution of
240. The model comprises a total of 24 layers,
which are divided into 4 stages, each encompassing
6 layers. The CLIP model has been pre-trained on
the DATACOMP-1B dataset (Gadre et al., 2023)
to ensure robust image-text matching in general
domains, which facilitates effective fine-tuning on
the medical domain where data is more limited.
Following Zhang et al. (2024), we use the Adam
optimizer with β1 = 0.9 and β2 = 0.98, a cosine
decay learning rate scheduler with an initial value
of 5e-4 at batch size of 16, and the warm-up step
set to 2000, conducting 30 epochs for training on 4
A40 GPU.

C Full Results of Fine-tuning

Results are presented in Table 10.
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