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Abstract
In this work, we systematically expose and mea-
sure the inconsistency and knowledge gaps of
Large Language Models (LLMs). Specifically,
we propose an automated testing framework
(called KONTEST) which leverages a knowl-
edge graph to construct test cases. KONTEST
probes and measures the inconsistencies in the
LLM’s knowledge of the world via a combina-
tion of semantically-equivalent queries and test
oracles (metamorphic or ontological oracle).
KONTEST further mitigates knowledge gaps
via a weighted LLM model ensemble. Using
four state-of-the-art LLMs (Falcon, Gemini,
GPT3.5, and Llama2), we show that KONTEST
generates 19.2% error inducing inputs (1917
errors from 9979 test inputs). It also reveals a
16.5% knowledge gap across all tested LLMs.
A mitigation method informed by KONTEST’s
test suite reduces LLM knowledge gap by
32.48%. Our ablation study further shows that
GPT3.5 is not suitable for knowledge-based
consistency testing because it is only 60%-68%
effective in knowledge construction.

1 Introduction

Large language models (LLMs) are being increas-
ingly utilized in real-world applications. LLMs are
powerful in solving many tasks, but their reliability
remains a concern (Qiu et al., 2023). This is alarm-
ing because inconsistent behaviors adversely affect
critical downstream tasks and influence adoption.

In this paper, we study the problem of assessing
inconsistency in LLM behaviors. Previous works
have demonstrated the prevalence and severity of
inconsistent responses in LLMs (Min et al., 2023;
Berglund et al., 2023; Sallou et al., 2023). To ad-
dress this challenge, we conceptualize and design
KONTEST1 – a novel test generation methodol-
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ogy to systematically discover consistency errors
in LLMs and highlight their knowledge gaps.

Figure 1 shows examples of consistency er-
rors and knowledge gap discovered by KON-
TEST in GPT3.5. These are errors in GPT3.5
about the place (spatial) domain. These errors
may have adverse effects in critical areas (e.g.,
automobiles, aeronautics) where spatial LLMs
are deployed, e.g., navigation systems – Map-
Box’s MapGPT (Mapbox), LLM-Geo (Li and
Ning, 2023) and MapGPT (Chen et al., 2024),
L3MVN (Yu et al., 2023)). KONTEST allows to
automatically discover and expose such errors to
end-users/developers. This is the first step to enable
their mitigation and repair for LLM improvement.

KONTEST leverages a knowledge graph for con-
sistency testing (see Figure 2). It first automatically
extracts a set of entities and entity relationships
from the knowledge graph. This is then used to
systematically generate (semantically-equivalent)
yes/no queries and create test cases for the sub-
ject LLM under test (SUT) across various settings
(e.g., atomic query vs. sequential query). The
test case generation involves minimal, one-time
effort for each type of entity relation considered
(e.g., only two templates for 6730 test cases) and
such templates can be reused for testing arbitrary
LLMs. KONTEST’s test suite can additionally be
used to mitigate knowledge gaps by leveraging
the likelihood of LLM inconsistencies to construct
a weighted model ensemble. To the best of our
knowledge, KONTEST is the first systematic ap-
proach for automatically generating consistency
tests for assessing LLMs.

Knowledge-based test generation provides a
unique and systematic method for exploring the
SUT’s knowledge and compute a test adequacy
metric for the SUT in terms of the covered enti-
ties and relations. More importantly, the responses
from the SUT allow KONTEST to construct the
SUT’s knowledge base as a subset of the extracted
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Figure 1: Examples of queries generated and errors discovered by KONTEST in GPT3.5: Error reflected (a) in two
different conversations asking semantically equivalent questions (Atomic error in Table 1) and (b) in conversation
asking semantically equivalent questions in a sequence (Sequential error in Table 1). (c) Example of (Ontological)
error in Table 1, (d) the knowledge graph extracted for the considered entities i.e., Ulster, Kinawley and Ireland, (e)
SUT’s knowledge showing that the LLM lacks the knowledge about Kinawley is in Ireland.

knowledge graph and to concretely highlight the
knowledge gap of the SUT. This is valuable infor-
mation for developers, it enables refining the model
and improving its knowledge.

KONTEST differs from existing works both in
its objective and in its unique approach for testing
LLMs. Prior works have focused on other non-
functional properties such as reasoning ability, ro-
bustness and security (Honarvar et al., 2023; Wu
et al., 2023; Yang et al., 2023b). Few works have
demonstrated the importance of LLM consistency,
e.g., via self-consistency (Min et al., 2023) and re-
versal curse (Berglund et al., 2023). In contrast,
KONTEST employs automated test generation to
discover a larger scope of consistency errors.

This paper provides an overview of KONTEST

(section 2), and makes the following contributions:

1. We present KONTEST, a novel approach to
leverage knowledge graph for checking the
consistency of LLM responses and measure
their knowledge gaps (section 3).

2. We present the metamorphic and ontological
oracles that allow to check consistency errors
in LLM results (section 3).

3. We implement KONTEST and evaluate it
with Falcon (Nomic AI, 2023), Gemini (Anil
et al., 2023), GPT3.5 (OpenAI, 2023), and
Llama2 (Touvron et al., 2023). KONTEST re-
vealed 19.2% erroneous inputs and exposed an
average knowledge gap of 16.5% (section 5).

4. We propose a technique that mitigates knowl-
edge gaps via a weighted model ensemble

via the likelihood of LLM inconsistencies ob-
tained from KONTEST’s test suite. The miti-
gation technique reduces knowledge gaps by
32.48% (section 5).

5. We perform an ablation study by replacing
each component of KONTEST with GPT3.5
using few-shot prompting. We found that
GPT3.5 constructs at most 68% of the ground
truth knowledge base. It exhibits up to 63.7%
false positives in error detection (section 5).

After the related works (section 6), we conclude in
section 7 and discuss limitations (section 8).

2 Overview

In this section, we outline the motivation behind
our approach and present an illustrative example to
demonstrate the overall process of our approach.

Figure 2: Overall workflow of our approach (KONTEST)

Key Insight: The key insight behind KONTEST is
to leverage a knowledge graph for systematic con-
sistency testing of LLMs. The knowledge graph
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Table 1: Test cases generated and error types detected by KONTEST using metamorphic and ontological oracles.

Generated Sentences Error Type Oracle

atomic LLM(Q1)=LLM(Q2)

sequential-intra
LLM(Q5a)=LLM(Q5b),
LLM(Q6a)=LLM(Q6b)

sequential-inter
LLM(Q1)=LLM(Q5b),
LLM(Q2)=LLM(Q6b)

Ontological
(LLM(Q3)=LLM(Q4)=Yes) →

(LLM(Q2)=Yes)

Figure 3: Example queries and templates for the
"Places" domain in KONTEST

serves multiple purposes in KONTEST: Firstly, en-
tities and entity relations extracted from the knowl-
edge graph allows KONTEST to systematically gen-
erate queries and construct test cases for validating
the consistency of the subject LLM (SUT). The
LLM’s responses to these test cases allow KON-
TEST to build the knowledge (sub)-graph where
the LLM behaves correctly. Secondly, knowledge-
based test generation allows KONTEST to report a
test adequacy metric for the SUT in terms of the
entities and relations covered within the knowledge
graph. Finally, this approach enables KONTEST to
highlight sub-graph of the knowledge graph where
the outputs from the SUT are logically inconsistent.
This enables practitioners to selectively focus on
the knowledge gaps highlighted by KONTEST for
improving the LLM (e.g., by fine-tuning).
Running Example: Figure 2 outlines our ap-
proach. KONTEST broadly comprises of three
key components: 1⃝ knowledge graph construction
(“Knowledge Graph” in Figure 2), 2⃝ test genera-
tion (“Test Generation” in Figure 2), and 3⃝ test or-
acles (“Test Oracles” in Figure 2). Given a set of en-
tities (e.g., countries) and a maximum graph depth,
KONTEST locates the given entities in the knowl-
edge graph (e.g., Wikidata knowledge graph (Vran-
dečić and Krötzsch, 2014)), and constructs the as-
sociated knowledge graph before extracting the
relevant entities and relationships. Given the re-
lationships present in Figure 1(d), KONTEST con-
structs two semantically equivalent queries for each

relation with the aid of a template (see Figure 3)
relating the two involved entities. The resultant
queries are then fed to the SUT generating re-
sponses to both atomic and sequential queries. Fig-
ure 1(a) shows two such semantically equivalent
queries, each of which was part of a new con-
versation with GPT3.5 (aka “atomic”), while Fig-
ure 1(b) illustrates one such consistency error with
inconsistent responses for semantically-equivalent
queries that were within the same conversation (aka
“sequential-inter”). Finally, Figure 1(c) illus-
trates a series of queries, whose responses from
GPT3.5 collectively show inconsistent behavior
(aka “ontological”). Specifically, the positive
responses to the first two queries imply that Ire-
land does have a Kinawley. However, due to the
negative response to the third query, our ontolog-
ical oracle reveals a consistency error. We fur-
ther note that such errors cannot be uncovered by
counter-questioning LLMs. The relevant sub-graph
of the knowledge graph for GPT3.5 is shown in Fig-
ure 1(e). This clearly illustrates the knowledge gap
(i.e., Kinawley↛Ireland) for GPT3.5.

3 Methodology

3.1 Knowledge Graph based Test Generation

Knowledge Graph Construction: KONTEST al-
lows the developer to specify the list of entities
that are of interest. With these initial set of enti-
ties, KONTEST then queries an external source of
knowledge to compute, up to a certain depth, all
other related entities for the considered relation.
Developers can also control this depth, allowing
them to determine the degree to which the vicinity
of the initial set of entities is explored. Once the
initial knowledge base is constructed, KONTEST
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Algorithm 1 KG-Based Query Generation
1: procedure GEN_TEST(KG)
2: Querylist,MutQuerylist ← ∅
3: for KGnode1 in KG do
4: for KGnode2 in KG do
5: if KGnode1 ̸= KGnode2 then
6: ▷ Finds relationship between KGnode1 and KGnode2

7: KGrel ← Find_Relation(KGnode1,KGnode2)
8: ▷ Builds query using the relation (KGnode1, KGnode2)
9: Query ← Gen_Query(KGnode1,KGnode2,KGrel)
10: Querylist ← Querylist ∪ {Query}
11: ▷ Generates semantically equivalent query
12: QueryM ← Mut_Gen(Query)
13: MutQuerylist ←MutQuerylist ∪ {QueryM}
14: return Querylist,MutQuerylist

extracts the full path, KG, associated with a leaf
node of the knowledge base. This path is then used
to guide the test generation process. For example,
given the leaf entity Kinawley, as shown in Fig-
ure 1, KONTEST extracts the KG for Kinawley as
Kinawley → Ulster → Ireland .

Test Generation: Given a knowledge path KG,
KONTEST leverages Algorithm 1 to exhaustively
generate queries relating to all possible pairs of
entities present in the path. To this end, KONTEST

first finds the relation, KGrel, between a pair of
nodes. KONTEST then generates a query, Query,
using KGrel with the aid of the template shown
in Figure 3 (line 9 in Algorithm 1). KONTEST

also generates the mutated query, QueryM , with
another template (line 12 in Algorithm 1). These
templates are dependent on the relation between
the two nodes in question. For instance, Figure 3
shows the set of queries and mutated queries (i.e.,
Querylist and MutQuerylist) generated from one
particular path and along with the respective tem-
plates used to generate them.

We note that developers can implement addi-
tional templates easily if they are interested in
querying different relations. Moreover, creation of
these templates is a one-time process and the cost
incurred is minimal (<10 LoC) since the number
of different types of relationships is small in com-
parison to the number of entities. We further note
that our templates are directly applicable to other
domains with similar relations. For instance, our
templates for the "Places" domain can be reused
for the "Food" domain since both domains have a
"contains" type relation.

3.2 Test Oracles

KONTEST detects consistency errors in LLM via a
metamorphic oracle and an ontological oracle.

Metamorphic Oracle: This oracle leverages
both the original (Querylist) and mutated

Algorithm 2 Graph Checker
1: procedure GRAPH_CHECKER(GraphGen)
2: Errcount, Coveragecount ← ϕ
3: for Node1 in GraphGen do
4: for Node2 in GraphGen do
5: if Node1 ̸= Node2 then
6: ▷ Checks whether direct path exists between nodes.
7: PathDir ← Dir_Path(Node1, Node2)
8: if PathDir ̸= TRUE then
9: ▷ Checks whether indirect path exists between nodes.
10: PathInDir ← InDir_Path(Node1, Node2)
11: if PathInDir == TRUE then
12: Errcount ← Errcount + 1

13: else
14: Coveragecount ← Coveragecount + 1

15: return Errcount, Coveragecount

(MutQuerylist) query sets to create four unique
conversations. These conversations are then fed
into the target LLM (SUT). Concretely, KONTEST

creates two conversations containing the answer
to both (initial and mutated) atomic queries in-
dividually (see the first column of “Generated
Sentences" in Table 1) and two conversations
where the queries are fed in a sequential man-
ner (see the second column of “Generated Sen-
tences" in Table 1). Responses from these conver-
sations are then evaluated using the consistency
checker embodied in KONTEST to identify the
erroneous test cases and the number of each er-
ror types (i.e., atomic, sequential-intra and
sequential-inter in Table 1).

Ontological Oracle: Firstly, this oracle builds the
SUT’s knowledge graph. To this end, the generated
queries from KONTEST are fed into the SUT and
the target responses are recorded. Subsequently,
given a list of such responses, KONTEST identifies
the nodes involved in each response. These nodes
are then added to the SUT’s knowledge graph.
Next, if the query response is positive (i.e., correct),
KONTEST introduces a directed edge between the
nodes in the SUT’s knowledge graph indicating that
the respective relation exists between the two nodes
being considered. It is important to note that the
relations in question are not symmetric in nature,
justifying the directed flavor of the edge. After con-
structing the SUT’s knowledge graph, GraphGen,
KONTEST checks for ontological consistency er-
rors with the aid of Algorithm 2.

To check the consistency in SUT’s knowl-
edge graph, Algorithm 2 first inspects whether
a direct path exists between any pair of nodes
(Node1, Node2) in GraphGen (line 7 in Algo-
rithm 2). In the absence of such a direct path, when
an indirect path exists between the same pair of
nodes (line 11 in Algorithm 2), KONTEST detects
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an ontological consistency error and updates the
error count, Errcount. Intuitively, a direct path be-
tween two nodes indicates that the SUT responded
positively to a question relating the two nodes. Sim-
ilarly, the presence of an indirect path indicates
that SUT knows that a positive relationship exists
between the nodes albeit through more than one
queries. As such, the SUT can be considered to
be exhibiting an ontological inconsistency. As an
example, consider the ontological oracle illustrated
in Table 1. In this case, if an indirect path exists
between nodes for Kinawley and Ireland via node
Ulster (i.e., the responses to both Q3 and Q4 are
positives from the SUT), then KONTEST concludes
that a direct path should also exist between Kinaw-
ley and Ireland. Hence, the absence of a positive
response for the respective query (Q2) is indicated
as an ontological error. As a byproduct of our onto-
logical oracle, KONTEST computes the knowledge
coverage Coveragecount for the SUT.

3.3 Knowledge Gap Mitigation
We propose a weighted ensemble method that lever-
ages the test suite generated by KONTEST to miti-
gate the discovered knowledge gaps. The ensemble
method uses the number of metamorphic errors
found for each SUT on a per relation basis to in-
form its scoring system. A relation that induces x
errors is given a score of 5− x since each relation
can maximally induce five errors. The cumulative
SUT specific score, Scorei, is then found by sum-
ming the scores for each relation. Next, the relative
weight, Wi, for each SUT in the set of SUTs (SUT),
is computed via the following equation:

Wi =
Scorei∑
Scorei

∀i ∈ SUT (1)

We then compute the final ensemble score by
first multiplying the relative weights with the re-
sults for each response and summing them. In par-
ticular, we consider positive and negative responses
to be one and zero respectively. If the ensemble
score is above the midpoint (0.5), the ensemble re-
sponse for the relation is considered to be positive.
To determine the effectiveness of our weighting,
we compare it to simple majority voting – an en-
semble that does not account for the likelihood of
inconsistencies for each SUT (see RQ3).

4 Evaluation Setup

To evaluate our approach (KONTEST), we pose the
following research questions (RQs):

• RQ1 Effectiveness: How effective is KONTEST

in exposing consistency errors in LLMs? Are
KONTEST results stable?

• RQ2 Knowledge Coverage: What is the SUT’s
knowledge graph coverage? How much is the
SUT knowledge gap revealed by KONTEST?

• RQ3 Knowledge Gap Mitigation: How effec-
tive is the proposed weighted ensemble technique
in improving knowledge coverage? How does
it compare to a simple majority voting? Does it
generalize to a new template?

• RQ4 Ablation Study with GPT3.5: Can the
state-of-the-art LLM (GPT3.5) perform the three
main sub-tasks of KONTEST, i.e., knowledge
construction, test generation and error detection?

Knowledge Graph: We rely on Wikidata’s knowl-
edge graph (Vrandečić and Krötzsch, 2014) and
Wikidata’s SPARQL query service to extract infor-
mation pertinent to the two tested domains: places
and music. We choose these domains as incon-
sistent knowledge about places may have adver-
sarial consequences in navigation use cases of
LLMs (Mapbox). Concurrently, inconsistencies
in the music domain may inaccurately capture the
ownership of copyrighted materials (e.g., music
albums). For the places domain, we take the list
of countries ranked by (nominal) GDP per capita
and select the top ten countries as our initial entity
list (IMF). We then iteratively build our knowledge
graph by finding “administrative divisions" that are
“located in the administrative territorial entity" of
the parent entity. For the music domain, we take the
top 200 musical acts since 2000 as our initial entity
list (Chart2000). We then find the set of “albums"
that have the parent entity as a “performer". We
also find the set of songs and singles that are “part
of" the album being considered. Once the graph is
fully constructed, we randomly select 50 leaf nodes
for each domain and extract the full path associated
with the selected leaf nodes.
Subject Programs and Query Construction: Ta-
ble 2 outlines features of the LLMs (SUTs) tested
by KONTEST. We ensure that temperature for each
query is set to zero where possible. In addition,
we provide the LLMs with an additional system
command, “Be concise as possible. Answer with
a yes or no response,", before the start of any con-
versation. In the event that the LLM does not sup-
port a system command, we prepend the statement
to the queries before feeding it to the LLM. For
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Table 2: Model Details

LLM Lineage Model Size Release Date

GPT3.5 GPT (OpenAI) gpt-3.5-turbo 175B Mar 2023

Falcon
Falcon (TII)

Finetuned by Nomic
gpt4all-falcon 7B Jun 2023

Llama2 Llama (Meta) Llama-2-7B 7B Jul 2023
Gemini Gemini (Google) gemini-pro Unknown Dec 2023

the queries themselves, we construct two sets of
queries with the aid of a template relating the parent
and child entities, as illustrated in Figure 3.
Test Generation and Evaluation: We provide
each LLM with each of the queries present in the
two sets (i.e., original and mutated) in an atomic
manner. We then feed the queries in a sequential
manner with queries from both sets being presented
in turn. This is then repeated with the order re-
versed. To invoke the oracles, we only consider
responses that begin with a yes or no. Other re-
sponses are classified as “Invalid". This allows us
to determine the accuracy of the responses without
penalizing LLMs that fail to respond appropriately.
Knowledge Gap Mitigation: We evaluate the ef-
fectiveness of an ensemble method informed by
KONTEST’s test suite by determining the relative
weights assigned to each SUT. We restrict the set
of relations considered for this process such that a
relation that yields an invalid answer in the query
generation phase for any of the SUTs is not used
in subsequent computations. We then perform five-
fold cross validation on the remaining set of rela-
tions. Concretely, we hold out 20% of the relations
for evaluation and use the consistency errors associ-
ated with the rest of the relations in the computation
of the weights. We introduce a third template to
evaluate whether our mitigation scheme general-
izes to unseen templates.
Ablation Study: We assess whether an LLM could
conceivably be used to replicate each of the sub-
tasks in our approach by testing its applicability
on the places domain. In particular, we chose to
use GPT3.5 for this due to its popularity and rela-
tively high percentage (99.9%) of non-exempted re-
sponses in our experiments. In each case described
below, we provide GPT3.5 with sample questions
and answers (few shot prompts) to ensure that the
outputs adhere to the format of KONTEST.

To test the knowledge construction capability
of GPT3.5, we ask GPT3.5 where each of the 50
leaf nodes (used to evaluate KONTEST) is located.
We then check the accuracy of the response and
we exempted responses that were not in the re-

quested format. To evaluate GPT3.5’s test gener-
ation capability, we provide the relation we are
concerned with and ask it to generate two semanti-
cally equivalent queries involving the two entities.
For ontological oracle, we provide GPT3.5 with the
full set of relations for each (knowledge) path and
ask it to generate queries that expose inconsisten-
cies in an LLM. For both oracles, if entity names
and relations (as provided in the prompt) are not
present in a generated query, then the test is con-
sidered invalid. For instance, “Is there a County of
Capellen in County of Capellen?" is invalid since
it does not correspond to the given knowledge re-
lations. For error detection, we provide each set
of queries along with their associated responses
from each subject to GPT3.5 and ask it to classify
each set as being Consistent or Inconsistent. We
also allow it to respond with Invalid when the SUT
responses were exempted. For the ontological or-
acle, we provide GPT3.5 with all the queries and
responses relating to the entirety of a path and ask
it to identify inconsistencies. We note that KON-
TEST performs its check in Algorithm 2 using the
same set of inputs provided to GPT3.5.

Implementation Details and Platforms: KON-
TEST utilizes PyTorch 2.0, CUDA 11.3 and the
llm package. All experiments were conducted on a
GCP VM with an N1 series machine, eight vCPUs,
30 GB of memory and one Nvidia T4 GPU.

5 Evaluation Results

RQ1 Effectiveness: We found that KONTEST is
effective in exposing consistency errors in LLMs:
19.2% of valid test executions result in consistency
errors. Table 3 also shows that metamorphic errors
(21.0% = 1784/8482) are more prevalent than on-
tological errors (8.9% = 133/1497). We attribute
the lower error rate of ontological errors/inputs to
the high complexity of our ontological oracle (see
Table 1). Table 3 demonstrates that metamorphic
errors are common across all LLMs. In particu-
lar, the tested LLMs are highly inconsistent when
asked the same question in a different manner (see
Table 1). In addition, we observe that a large model
size does not necessarily lead to a smaller error rate
than a smaller model, e.g., GPT3.5 exhibits a meta-
morphic error rate of 27.2% for the places entities
as compared to a metamorphic error rate of 17.1%
for Falcon.

In addition, we validate the stability of our re-
sults by repeating our experiments four additional
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Table 3: Effectiveness of KONTEST using a knowledge graph.

LLM
(Subject)

Valid Test Executions (%) Errors (%)

Metamorphic Ontological All Metamorphic Ontological All

atomic sequential
-intra

sequential
-inter All Types atomic sequential

-intra
sequential

-inter All Types

Pl
ac

es

Falcon 254 (86.4) 530 (90.1) 538 (91.5) 1322 (89.9) 267 (91.4) 1589 (90.2) 50 (19.7) 24 (4.5) 152 (28.3) 226 (17.1) 25 (9.4) 251 (15.8)
Gemini 294 (100) 588 (100) 588 (100) 1470 (100) 292 (100) 1762 (100) 51 (17.3) 6 (1.0) 104 (17.7) 161 (11.0) 40 (13.7) 201 (11.4)
GPT3.5 293 (99.7) 588 (100) 587 (99.8) 1468 (99.9) 292 (100) 1760 (99.9) 61 (20.8) 201 (34.2) 138 (23.5) 400 (27.2) 17 (5.8) 417 (23.7)
Llama2 266 (90.5) 543 (92.3) 542 (92.2) 1351 (91.9) 268 (91.8) 1619 (91.9) 94 (35.3) 52 (9.6) 209 (38.6) 355 (26.3) 27 (10.1) 382 (23.6)

Total 1107 (94.1) 2249 (95.6) 2255 (95.9) 5611 (95.4) 1119 (95.8) 6730 (95.5) 256 (23.1) 283 (12.6) 603 (26.7) 1142 (20.4) 109 (9.7) 1251 (18.6)

M
us

ic

Falcon 141 (96.6) 287 (98.3) 287 (98.3) 715 (97.9) 94 (97.9) 809 (97.9) 24 (17.0) 38 (13.2) 69 (24.0) 131 (18.3) 3 (3.2) 134 (16.6)
Gemini 146 (100) 292 (100) 292 (100) 730 (100) 96 (100) 826 (100) 39 (26.7) 8 (2.7) 77 (26.4) 124 (17.0) 7 (7.3) 131 (15.9)
GPT3.5 146 (100) 292 (100) 292 (100) 730 (100) 96 (100) 826 (100) 40 (27.4) 85 (29.1) 56 (19.2) 181 (24.8) 5 (5.2) 186 (22.5)
Llama2 137 (93.4) 283 (96.9) 276 (94.5) 696 (95.3) 92 (95.8) 788 (95.4) 46 (33.6) 63 (22.3) 97 (35.1) 206 (29.6) 9 (9.8) 215 (27.3)

Total 570 (97.6) 1154 (98.8) 1147 (98.2) 2871 (98.3) 378 (98.4) 3249 (98.3) 149 (26.1) 194 (16.8) 299 (26.1) 642 (22.4) 24 (6.3) 666 (20.5)

Total 1677 (95.3) 3403 (96.7) 3402 (96.6) 8482 (96.4) 1497 (96.5) 9979 (96.4) 405 (24.2) 477 (14.0) 902 (26.5) 1784 (21.0) 133 (8.9) 1917 (19.2)

times. We find that the open-source models with
frozen weights (Falcon and Llama2) yielded iden-
tical results when compared to the initial experi-
ments. However, the closed-source models exhib-
ited (up to 6%) lower error rates on the subsequent
iterations with Gemini exhibiting a less than one
percent change in error rate. We attribute this to
changes in the underlying models (OpenAI) as the
additional experiments were performed approxi-
mately eight (8) months after the initial experi-
ments. Furthermore, we find that the error rates
for all four subsequent iterations are fairly similar
indicating that the results are consistent when re-
peated within a short duration of time (within a few
days). In particular, we find that Gemini results do
not vary at all. Lastly, we also examine the stability
of our results by executing both atomic and sequen-
tial queries separately. For instance, consider Q1
and Q6a (Table 1) and the following additional or-
acle: LLM(Q1)=LLM(Q6a). We found that only
GPT3.5 exhibited inconsistent results for this ora-
cle and further noted that the absolute number of
errors found was negligible (<1%). These experi-
ments demonstrate the stability of our results.

KONTEST effectively exposes consistency errors
in LLMS: 19.2% of valid test executions exposed

a metamorphic or ontological error in LLMs.

RQ2 Knowledge Coverage: Table 4 shows that
the tested LLMs cover about four-fifth (83.5%) of
the tested knowledge graph across both templates.
We found that LLMs are particularly sensitive to
the query templates. For instance, Llama2 exhibits
a 47.3% gap in knowledge for the places entities for
one template, but only exhibits a 12.9% knowledge
gap for the other. This suggests that LLMs may
respond differently to two different, but semanti-
cally equivalent, input queries. We also observed

Table 4: Knowledge Coverage and Gap in tested LLMs
(Highest coverage or gap are marked in bold text)

LLM
(Subject)

Knowledge Gap (%) Overall
Coverage (%)Relations Template 1 Template 2 Intersection

Pl
ac

es
Falcon 294 12 (4.1) 93 (31.6) 9 (3.1) 285 (96.9)
Gemini 294 60 (20.4) 71 (24.1) 40 (13.6) 254 (86.4)
GPT3.5 294 129 (43.9) 107 (36.4) 87 (29.6) 207 (70.4)
Llama2 294 38 (12.9) 139 (47.3) 37 (12.6) 257 (87.4)

M
us

ic

Falcon 146 20 (13.7) 15 (10.3) 3 (2.1) 143 (97.9)
Gemini 146 60 (41.1) 45 (30.8) 33 (22.6) 113 (77.4)
GPT3.5 146 63 (43.2) 27 (18.5) 25 (17.1) 121 (82.9)
Llama2 146 76 (52.1) 84 (57.5) 56 (38.4) 90 (61.6)

Total 1760 458 (26.0) 581 (33.0) 290 (16.5) 1470 (83.5)

that the smallest model (Falcon) has the lowest
knowledge gap for the places entities (3.1%), while
one of the biggest models (GPT3.5) has the highest
knowledge gap (29.6%). This implies that model
size/complexity is not a good proxy for knowledge
coverage/gap. We do, however, attribute the per-
formance of Falcon to its tendency to answer with
a positive response regardless of the query. In ad-
dition, we also note that all queries posed to the
subject LLMs are queries relating to an existing
relation. These results show that KONTEST effec-
tively reveals the knowledge gap in LLMs. We
posit that knowledge coverage is a good criteria for
estimating the underlying knowledge of an LLM.

KONTEST effectively reveals knowledge gaps in
LLMs: It exposes an average knowledge gap of

16.5% in the tested LLMs.

RQ3 Knowledge Gap Mitigation: Results show
that our proposed mitigation technique reduces the
SUT’s knowledge gap by up to 39.30%. Table 5
shows that our technique reduces the knowledge
gap for all templates by 32.48%. We found that
the simple majority voting ensemble worsens the
SUTs’ knowledge gap by up to 23.74%. We also
observed that the mitigation performance of our
technique generalizes to an unseen template (tem-
plate three (3)). While the performance of our
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Table 5: Knowledge Gap Mitigation results for KONTEST’s weighted ensemble (“KONTEST”), versus simple
majority voting ensemble (“Majority”) and the initial average knowledge gap found in the SUTs (“SUTs”). Best
reduction in knowledge gaps are in bold text. “%Impr. ” means percentage improvement over the SUT.

Domain Relations
Knowledge Gap (%)

Template 1 Template 2 Template 3 All (%Impr.)

KONTEST Majority SUTs KONTEST Majority SUTs KONTEST Majority SUTs KONTEST Majority SUTs

Places 224 28 (12.5) 38 (17.0) 38.25 (17.1) 49 (21.9) 77 (34.4) 65.75 (29.4) 30 (13.4) 49 (21.9) 41.5 (18.5) 107 (26.46) 164 (-12.71) 145.5
Music 132 39 (29.5) 60 (45.5) 48.5 (36.7) 15 (11.4) 44 (33.3) 35.75 (27.1) 24 (18.2) 55 (41.7) 44.25 (33.5) 78 (39.30) 159 (-23.74) 128.5

Total 356 67 (18.8) 98 (27.5) 86.75 (24.4) 64 (18.0) 121 (34.0) 101.5 (28.5) 54 (15.2) 104 (29.2) 85.75 (24.1) 185 (32.48) 323 (-17.88) 274

Figure 4: Venn Diagram of the consistency errors for
each SUT.

mitigation technique is slightly better on the new
template than the original templates the simple ma-
jority performs worse on an unseen template. On
the whole, we find that our weighted ensemble is
42.72% ((323-185)/323) more effective than sim-
ple majority voting at reducing the knowledge gap.
These results demonstrate the generalizability of
our proposed mitigation technique and the efficacy
of our weighted ensemble. We attribute the per-
formance of our technique to the likelihood and
distribution of inconsistencies discovered by KON-
TEST (Figure 4). Figure 4 shows that only 1.1%
(15 out of 1330) of errors are found in all four SUTs
while 65.7% (874 out of 1330) of errors are unique
to a single SUT. This suggests that an ensembling
scheme, informed by the relative performance of
the SUTs, reduces knowledge gap.

The proposed ensemble method effectively
reduces the SUT’s knowledge gap by 32.48%.

RQ4 Ablation study with GPT3.5: We conduct an
ablation study to investigate whether a state-of-the-
art LLM (GPT3.5) is as effective as KONTEST in
performing its three main sub-tasks – knowledge
construction, test generation and error detection.
Knowledge Construction: Table 6 demonstrates
that GPT3.5 is not a reliable knowledge construc-

Table 6: GPT3.5 efficacy in knowledge construction

Number of LLM Responses (%)
Total No Response Exempted Unexempted Correct Incorrect

Nodes 50 0 (0) 5 (10.0) 45 (90.0) 30 (60.0) 15 (30.0)
Edges 294 39 (13.3) 30 (10.2) 225 (76.5) 200 (68.0) 25 (8.5)

Table 7: Test generation effectiveness of GPT3.5 and
KONTEST on the places entities. (Meta.: Metamorphic,
Onto.: Ontological)

LLM
(Subject)

Valid Test
Executions (%) Errors (%)

Meta. Onto. All Meta. Onto. All

G
PT

3.
5 Falcon 1322 (89.9) 263 (93.9) 1585 (90.6) 232 (17.5) 25 (9.5) 257 (16.2)

Gemini 1470 (100) 280 (100) 1750 (100) 172 (11.7) 41 (14.6) 213 (12.2)
Llama2 1351 (91.9)) 264 (94.3) 1615 (92.3) 370 (27.4) 27 (10.2) 397 (24.6)

Total 4143 (93.9) 807 (96.1) 4950 (94.3) 774 (18.7) 93 (11.5) 867 (17.5)

KONTEST
w/o GPT3.5

4143 (93.9) 827 (94.4) 4970 (94.0) 742 (17.9) 92 (11.1) 834 (16.8)

tor. GPT3.5 is only able to identify 68% of the
relations present in the original knowledge graph.
We believe this is because LLMs are generally in-
tended to be a conversational engine, rather than a
knowledge database (Pan et al., 2023). These re-
sults show the importance of knowledge graphs in
KONTEST and suggest that LLMs are not a reliable
replacement for knowledge graphs.

GPT3.5 is an ineffective surrogate for a
knowledge graph: It constructs only 68% of the

ground-truth entity relations (edges).

Test Generation: Given a few (three) query ex-
amples and the relations in a knowledge graph,
GPT3.5 is slightly more effective (17.5% vs 16.8%)
than KONTEST in test generation (see Table 7). We
also observe that this effectiveness persists for both
the metamorphic (18.7% vs 17.9%) and the onto-
logical oracle (11.5% vs 11.1%). We attribute the
performance of GPT3.5 to the effectiveness of few-
shot prompting using the knowledge graph. This
guides GPT3.5 to create tests similar to KONTEST.

GPT3.5 is slightly (4.2%) more effective than
KONTEST in generating tests, when provided

entity relations with few-shot prompting.

Error Detection: Table 8 highlights that while
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Table 8: Error Detection Effectiveness (TP/FP:
True/False positive, UNK: Unknown)

Subject
Metamorphic Errors (%) Ontological Errors (%)

Kon-
Test

GPT3.5 Kon-
Test

GPT3.5

TP FP UNK Paths TP FP

Falcon 226 208 (27.7) 453 (60.4) 89 (11.9) 100 23 23 (33.3) 46 (66.7)
Gemini 161 161 (97.6) 4 (2.4) 0 (0) 100 30 30 (54.5) 25 (45.5)
Llama2 355 352 (77.0) 93 (20.4) 12 (2.6) 100 22 20 (26.0) 57 (74.0)

Total 742 721 (52.6) 550 (40.1) 101 (7.4) 300 75 73 (36.3) 128 (63.7)

52.6% of the metamorphic errors detected by
GPT3.5 were detected correctly, approximately
40.1% of the errors were false positives 2. For
ontological error detection, we provided GPT3.5
all possible queries and corresponding responses
for each knowledge path. GPT3.5 was then asked
to detect any inconsistency in these responses. Un-
like KONTEST, GPT3.5 is unable to detect multiple
inconsistencies in a knowledge path. Hence, for
a fair comparison, we count ontological errors for
KONTEST at the granularity of a knowledge path
(i.e., at most one error per knowledge path). Since
validating GPT3.5 responses is not straightforward
in this case, we manually validated the responses.
We observed that the number of real ontological
errors detected by GPT3.5 is comparable to the on-
tological errors detected by KONTEST, but it also
had a high false positive rate with nearly 63.7% of
errors being misclassified.

GPT3.5 detects both metamorphic and
ontological errors, but exhibits a false positive

rate of up to 63.7%.

6 Related Work

LLMs and Knowledge: Pan et al. (Pan et al.,
2023) presents techniques to combine LLMs and
knowledge graphs to address their individual lim-
itations. As an example, Huang et al. (Huang
et al., 2023c) have demonstrated the feasibility of
knowledge transfer to improve LLM’s generaliza-
tion ability in software engineering tasks. Analo-
gously, WEAVER (Yang et al., 2023a) uses LLMs
to generate knowledge bases, using which, require-
ments are extracted for testing models in real-world
settings. GPT4GEO (Roberts et al., 2023) experi-
mentally evaluates the capabilities and limitations
of GPT-4 in geospatial domain (e.g., places entity),
highlighting potential usage of GPT-4 in navigation.
Unlike these proposed techniques, KONTEST em-

2Note that some errors detected by GPT3.5 cannot be au-
tomatically validated by our oracles (UNK in Table 8), as it
excludes responses that do not begin with yes/no.

ploys knowledge graphs to expose inconsistencies
and measure knowledge gaps in LLMs.
Testing and Analysis of LLMs: Several re-
searchers have surveyed the challenges and op-
portunities for testing and analysing LLMs (Zhao
et al., 2023; Hou et al., 2023; Zheng et al., 2023;
Aleti, 2023). Researchers have also studied or
proposed methods for testing and analyzing sev-
eral quality properties of LLMs, including their
reasoning ability (Wu et al., 2023; Qiu et al.,
2023), non-determinism (Ouyang et al., 2023),
interpretability (Palacio et al., 2023; Rodriguez-
Cardenas et al., 2023), robustness (Zhu et al.,
2023), fairness (Huang et al., 2023a), security con-
cerns (e.g., privacy, memorization and backdoor
attack) (Yang et al., 2023b; Staab et al., 2023;
Huang et al., 2023b). In contrast to the aforemen-
tioned works, KONTEST studies the consistency
and knowledge coverage of LLMs.

7 Conclusion

In this paper, we propose KONTEST where the
key intuition is to distill (a subset of) facts from
a knowledge graph, which are subsequently used
to generate queries and formulate test cases for
detecting a variety of consistency errors. Our eval-
uation reveals realistic consistency errors across
state-of-the-art LLMs. Moreover, KONTEST opens
opportunities to investigate LLMs through the lens
of their knowledge gaps, which, in turn, is indicated
as part of our framework. This helps designers and
end users to understand and mitigate the effect of
such knowledge gaps e.g., via prompt engineer-
ing or fine tuning. In future, we aim to investigate
automated mitigation of consistency errors by lever-
aging the KONTEST framework. We provide our
code and experimental data in the following:

https://github.com/sparkssss/KonTest

8 Limitations and Threats to Validity

Construct Validity: This relates to the metrics and
measures employed in our experimental analysis.
To mitigate this threat, we have employed standard
testing metrics such as the number/rate of generated
inputs, error-inducing inputs, (knowledge) cover-
age and testing time. For automatic analysis of hun-
dreds of responses, our analysis does not handle
expressive, non-binary LLM responses. However,
we mitigate this by employing system prompts to
ensure the model provides binary responses and we
discard non-binary responses (as invalid).
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Internal Validity: This refers to the threat that our
implementation of KONTEST performs its intended
knowledge graph-based test generation. We con-
duct several manual and automated tests, as well
as inspection of sampled outcomes of KONTEST

to ensure the correctness of our approach. Our ab-
lation study (RQ4) further allows us to probe the
correctness of the sub-step of KONTEST versus
using GPT3.5. We experimentally verify that over
90% of the entities we evaluate against existed in
Wikidata prior to 2020. We also find that under
15% of the errors found by KONTEST are linked
to these entities. In addition, we also note that the
SUT ought to answer the question in a consistent
manner regardless of whether the entity existed
prior to the corresponding knowledge cutoff date.
External Validity: The main threat to external
validity of this work is the generalizability of KON-
TEST and findings to LLMs, knowledge graphs,
templates and entities beyond the ones used in this
work. We mitigate the LLM generalizability threat
by employing state-of-the-art off-the-shelf, mature,
open model weights LLMs (LLaMA2 and FALCON),
as well as commercial LLMs (such as GPT3.5 and
Gemini). Similarly, our entity selection and tem-
plate construction may be limited to our experimen-
tal setting. However, we demonstrate the applica-
bility of KONTEST by using two different domains
with multiple relations and entity types. However,
we note that KONTEST might not be easily adapted
to information that cannot be encapsulated within a
knowledge graph. In addition, we employ few-shot
prompting to conduct our ablation study, and our
findings might not generalize to other prompting
techniques. Finally, KONTEST employs Wikidata,
a well-maintained knowledge graph that is popu-
larly used in both academia and industry (Peters
et al., 2019).
LLM Stability and Correctness: Researchers
have identified several stability concerns about
LLMs (Ouyang et al., 2023; Fan et al., 2023),
such as non-determinism, randomness, sensitiv-
ity to prompting methods, and API/model updates.
To mitigate these threats we performed several ac-
tions: First, we set the temperature of all models
to zero (0), when possible (Cloud, 2023; Ouyang
et al., 2023). Secondly, we reduce the risk of model
updates by limiting our testing time (to about a
day each per model) and checking for news of
model updates before and after testing. Thirdly,
we also use models with frozen weights (Falcon
and Llama2) to reduce the non-determinism. To

automatically validate model outcomes, we employ
few-shot prompting, which has been shown to be
effective for querying LLMs (Deng et al., 2023).
We examined whether LLMs are comparable to
KONTEST (RQ4) using GPT3.5 since it produces
the most valid responses (99.9%) (see Table 3).
Knowledge Graph Completeness and Sound-
ness: We note that the knowledge graph is an in-
complete snapshot of the real-world. In our evalua-
tion, KONTEST only tests for facts (positive tests)
derived from the knowledge graph. While it is
also possible to use KONTEST to test for incor-
rect relation (negative test), the validation of such
test results is challenging due to the incomplete-
ness of the knowledge graph. Moreover, we only
test 50 paths from this graph. However, these con-
cerns do not affect our findings, as we are certain
about the errors found within the tested subset of
the knowledge graph. Finally, knowledge of the
world naturally evolves over time and the knowl-
edge graphs do not evolve at the same pace (Pan
et al., 2023). To mitigate this, we use a widely used
knowledge graph (Vrandečić and Krötzsch, 2014).

9 Ethics Statement

We elucidate our ethics statement in this section:
(1) Dataset: We utilize data from Wikidata, a
publicly available open knowledge base related to
Wikipedia. Wikidata is licensed under the Creative
Commons CC0 License. (2) Human Evaluations:
Our experiments do not involve human participants.
(3) Approach: We test KONTEST with the aid of
LLMs (both proprietary and free). We acknowl-
edge that these models may give biased results
due to their training data and methods. However,
we restrict our queries to existing relations in the
knowledge graph making it unlikely to raise ethical
concerns. We limit ourselves to running inference
on pre-trained models due to the numerous envi-
ronmental concerns (energy and water expenditure)
associated with training these LLMs.
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