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Abstract

Aligning large language models (LLMs) with
human preferences has been recognized as the
key to improving LLMs’ interaction quality.
However, in this pluralistic world, human pref-
erences can be diversified due to annotators’
different tastes, which hinders the effective-
ness of LLM alignment methods. This paper
presents the first quantitative analysis of the
experimental scaling law for reward models
with varying sizes, from 1.3 billion to 7 bil-
lion parameters, trained with human feedback
exhibiting diverse preferences. Our analysis
reveals that the impact of diversified human
preferences depends on both model size and
data size. Larger models with sufficient ca-
pacity mitigate the negative effects of diverse
preferences, while smaller models struggle to
accommodate them. To mitigate the impact of
diverse preferences, we introduce a new metric,
Expected Calibration Error (ECE), to evaluate
RMs and show their obvious positive correla-
tion with the alignment performance of LLMs.
Furthermore, we propose a Multi-Objective Re-
ward learning method (MORE) to enhance the
calibration performance of RMs on shared pref-
erences. Through experiments on four models
and five human preference datasets, we find the
calibration error can be adopted as a key met-
ric for evaluating RMs and MORE can obtain
superior alignment performance.

1 Introduction

Large language models (LLMs), such as Chat-
GPT (OpenAI, 2023) and LLaMa (Touvron et al.,
2023a,b), have significantly accelerated the de-
velopment process toward artificial general intel-
ligence (AGI). Among the key factors for such
great achievement, the alignment technique, which
finetunes LLMs with human feedback (Christiano
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et al., 2017), has played an essential role in
training LLMs’ responses to follow human val-
ues (e.g., helpfulness and harmlessness) (Askell
et al., 2021). Among the LLM alignment algo-
rithms, reinforcement learning from human feed-
back (RLHF) (Ouyang et al., 2022) has become
the mainstream solution, which first learns a re-
ward model (RM) representing human preferences
and then updates LLMs via the proximal policy
optimization (PPO) (Schulman et al., 2017) toward
generating responses with higher RM scores. Alter-
native alignment methods also have been sequen-
tially proposed for better computational complexity
and training instability, such as RAFT (Dong et al.,
2023b), DPO (Rafailov et al., 2023), RRHF (Yuan
et al., 2023), and APO (Cheng et al., 2023b).

The performance of these alignment methods
highly depends on the quality of human preference
data (x,yw,yl), where x is the input query to the
LLM, and response yw is preferred to response yl

under the human annotation (Ouyang et al., 2022).
Ideally, the preference datasets should uniformly
be helpful, harmless, benevolent, and unbiased to
guide the LLM alignment. However, in real-world
scenarios, individuals can have diversified prefer-
ences on the same topic based on their different
experiences, educational backgrounds, religions,
and cultures (Leonardelli et al., 2021). Even for the
same person, his or her expected model answer to a
particular question can vary depending on different
scenarios (Cheng et al., 2023a). The annotation dis-
agreement, which is caused by different annotators
or the same annotator in different scenarios (Bai
et al., 2022), will significantly hinder the effective-
ness of alignment methods (Davani et al., 2022;
Wan et al., 2023; He et al., 2024).

To identify the diversified preferences quantita-
tively, we select five commonly used human feed-
back datasets, train an RM on each, and then test
the performance on the other sets (details in Sec-
tion 3). We plot the observation results in Figure 1.
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Figure 1: Illustration of Diversified Preferences. Left: reward accuracy on each preference. Middle: the reward
distribution of each RM on harmless preference. Right: the reward statistics of each RM on harmless preference.
The solid box indicates the reward statistics on correct rewarded samples, and the hollow box indicates the wrong
rewarded samples.

We observe that training RM on a single prefer-
ence data source may cause inconsistent reward
distribution shifts (middle plot), result in diverse
reward values (right plot), and compromise the
performance of other sets (left plot). The result
indicates that different human preference datasets
have different preference distributions (Cheng et al.,
2023a). Hence, a more comprehensive understand-
ing of the impact of diversified human preference
datasets on the reward model becomes crucial, yet
it has not received adequate attention and remained
unexplored in the LLM alignment domain.

In our exploration, we found the over-rewarding
phenomenon, that is, the vanilla RMs tend to out-
put extreme rewards on samples, which damages
the RMs and LLM alignment. To enhance the ef-
ficiency of leveraging the diversified preference
datasets, inspired by multi-objective optimization
methods (Sener and Koltun, 2018; Zeng et al.,
2023c), we regard RMs as a shared reward addi-
tionally with a customized reward drift. The shared
reward represents the shared preferences across
datasets (or general human preferences) and the
reward drift contains individual or domain-specific
preference information (Cheng et al., 2023a). Then,
we introduce a Multi-Objective Reward train-
ing scheme (MORE) to capture the shared (gen-
eral) preference information, which adopts a novel
reweight techniques to minimize the mean gradient
of enlarging reward drifts. With MORE, RMs can
capture a broader range of preferences and mitigate
the impact of reward drifts. The main contributions
of this paper are:

• This is the first work to demonstrate the pos-
itive correlation between the calibration per-
formance of RMs and the alignment perfor-
mance of LLMs. Moreover, RM learning
on diversified preferences typically induces
high calibration errors, indicating unreliable

rewards. The unreliable rewards come from a
over-rewarding phenomenon, denoting vanilla
RMs output extreme rewards inducing harm-
ful reward drifts. Hence, it negatively impacts
the performance of LLM alignment.

• We induce a simple and effective Multi-
Objective Reward (MORE) training scheme
to alleviate the over-rewarding phenomenon.
MORE makes self-adaption to the RM
learning gradient to mitigate the reward
drifts. MORE effectively enhances the cal-
ibration performance of RMs, especially on
shared preferences across diversified prefer-
ence datasets.

• We verified our findings with Pythia-1.4B,
Pythia-2.8B (Biderman et al., 2023) and
LLaMa2-7B (Touvron et al., 2023b) on five
widely recognized and diverse preference
datasets. Through empirical analysis, we es-
tablished that MORE significantly minimizes
reward drift and achieves low Expected Cali-
bration Error (ECE) values. Additionally, by
applying reject sampling to Alpaca-7B (Taori
et al., 2023) with the RMs generated, we
aligned the models with Helpful&Harmless
preferences, thereby affirming the critical role
of ECE in the evaluation of Reward Models.

2 Background

Large language Model Alignment Parameter-
ized by θ, a reward model (RM) is a mapping
rθ : X × Y → R, which provides a real-valued
reward score rθ(x,y) evaluating a textual response
y = (y1,y2, . . . ,yM ) ∈ Y corresponding to an
input prompt x = (x1,x2, . . . ,xN ) ∈ X . Given a
sample (x,yw,yl) ∼ D from a preference dataset
D, rθ is expected to provide a preference score
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with rθ(x,yw) > rθ(x,yl), representing the re-
sponse yw is preferred. Following the Bradley-
Terry model (David, 1963), the RM learning objec-
tive on the preference dataset (x,yw,yl) ∼ D is
defined as:

Lrank(θ;D) = −ED [log(σ (∆rθ(yw,yl)))] (1)

where we use ∆rθ(yw,yl) to denote reward differ-
ence rθ(x,yw) − rθ(x,yl) for simplifying nota-
tion in this paper and σ(·) is the Sigmoid function.
With a well-learned reward rθ(x,y), LLM align-
ment optimizes the generation policy π(y|x) by
maximizing the expected reward value:

Ex∼D,y∼π(y|x)[rθ(x,y)]

− βDKL[π(y|x)∥πref(y|x)],
(2)

where DKL[π(y|x)∥πref(y|x)] is the KL diver-
gence regularizer between current policy π and
a reference πref, preventing the optimization from
instability and degeneration. The typical solution
to the preference optimization in equation 3 is rein-
forcement learning (RLHF) (Ouyang et al., 2022),
especially with the proximal policy optimization
(PPO) algorithms (Schulman et al., 2017). How-
ever, RLHF has been recognized as practically suf-
fering from implementation complexity and train-
ing instability. To avoid the RL schedule during
alignment, reject sampling methods (Liu et al.,
2023) directly conduct supervised fine-tuning on
ybest to further simplify the human preference align-
ment process. The rejection sampling optimization
(RJS) loss can be written as

LRJS(π) = −Ex∼D,y∼π(y|x)[log π(y
best|x)], (3)

where ybest = argmax1≤s≤S{r(x,ys)} is the sam-
pled response with the highest reward score.

Calibration Error Calibration error is an effec-
tive method to estimate the confidence of a model’s
outputs (Guo et al., 2017). We divide the confi-
dence interval [0, 1] with finite samples into M
bins with equal length (1/M ). Then, we place
model predictions into these bins according to their
prediction confidence. Let Bm be the set of indices
of samples that fall into the internal (m−1

M , m
M ]. We

calculate the corresponding accuracy and average
confidence of each bin as follows:

Acc (Bm) =
1

|Bm|
∑

i∈Bm

I (ŷi = yi) ,

Conf (Bm) =
1

|Bm|
∑

i∈Bm

p̂i,

where ŷi are the prediction results, and yi is the
ground-truth of the i-th sample. I is the indicator
function which produces 1 if ŷi = yi otherwise 0.
p̂i is the prediction confidence of the i-th sample.
In the context of reward modeling, the prediction
confidence p̂i = σ(·) in (1). For a set of N samples,
we can compute the Expected Calibration Error as
follows:

ECE =
M∑

m=1

|Bm|
N

|Acc (Bm)− Conf (Bm)| .

We set M = 10 for measuring calibration perfor-
mance in this paper.

Numerous studies have focused on improving
the calibration performance of statistical machine-
learning systems (DeGroot and Fienberg, 1983;
Palmer et al., 2008; Yang and Thompson, 2010).
Furthermore, the calibration error of neural net-
works provides additional information for users
to determine whether to trust the model’s predic-
tions, especially for modern neural networks that
are more challenging to interpret (Guo et al., 2017;
Zhu et al., 2023). In the field of natural language
processing, studies have revealed a positive rela-
tionship between calibration performance and the
reduction of hallucination (Xiao and Wang, 2021;
Tian et al., 2019), and the evaluation of pre-trained
language models (Kadavath et al., 2022; Tian et al.,
2023). The calibration error has demonstrated its
ability to evaluate the performance of language
models. In this paper, we first employ the calibra-
tion error to evaluate the RMs. Subsequently, we
investigate the implicit connection between RMs
and LLM alignment under diversified preferences.

3 Empirical Study of Diversified
Preferences

We start with an empirical analysis of diversi-
fied preferences in reward modeling on multiple
sources D = {D1, . . . ,DK}, where each data
source Dk contains the preference comparison
pairs from different tasks (Dong et al., 2023a), do-
mains (Cheng et al., 2023a), or individuals (Bai
et al., 2022). In this paper, we selected Summa-
rize (Stiennon et al., 2020), Webgpt (Nakano et al.,
2021a), Helpful&Harmless (Bai et al., 2022), and
OASST1 (Köpf et al., 2023) as the different prefer-
ence sources to empirical analysis the phenomena
of diversified preferences. We use Pythia-1.4B (Bi-
derman et al., 2023) as the RM base, and finetuned
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RMs with comparisons from each source. The ex-
periment setup aligns with Section 5.

The reward distributions across various RMs ex-
hibit diversity when applied to the same dataset.
We analyze and present the variation in rewards (de-
fined as the difference in reward values assigned by
an RM to the winning and losing samples) offered
by these RMs, as illustrated in Figure 1 (additional
results in Figure 8 and 9 in Appendix). Compared
with the results of raw model RMRaw, we observe
that training on different datasets results in diverse
reward values (right plot) and distribution shift
(middle plot). Specifically, the reward value dis-
tribution of RMHarmless shifts from the RMRaw in a
certain degree. While the reward value distributions
of RMHelpful, RMWebgpt, RMOasst1 and RMSumm.
shifts to the a different direction. Moreover, despite
the distribution of RMHelpful, RMWebgpt, RMOasst1
and RMSumm. are similar, the mean-variance of
their reward values are quite different.

Furthermore, when considering the accuracy
gains illustrated in Figure 1 (left plot), the ob-
served shift in reward distribution indicates that
the learned reward values from preference datasets
are diversified. To effectively capture the shared re-
ward values across these diversified preferences, it
becomes necessary to formulate a new problem ap-
proach for reward modeling on diverse preference
datasets.

4 Multi-Objective Reward Learning

In this section, we propose our reward modeling
on diversified preference datasets, highlighting the
implicit reward drift during the reward learning
process and its negative impacts. Then, we present
the MORE training schemes to mitigate the reward
drifts as a feasible solution. To maintain the in-
tegrity of our paper, we leave our quantitative anal-
yses of reward modeling on diversified preferences
in the next section.

4.1 Preference Diversity as Reward Drift
We denote r∗(·, ·) as the shared reward function,
which (ideally) provides reward values reflecting
the general values among people (or shared prefer-
ence information across datasets in practice). As
the collected human-feedback datasets are limited
and implicitly biased, training an RM rθ on a lim-
ited preference dataset can be viewed as drifting
from an optimal reward. We can form a reward
model rθ(·, ·) with reward drift in a data level:

rθ(x,y) = r∗θ(x,y) + r̃θ(x,y), (4)

where x,y ∈ X × Y , and r̃θ(x,y) is the reward
drift learned by RM rθ(·, ·). Then, we investigate
the vanilla ranking loss for reward modeling. Sub-
stituting reward function in (1) with the drifted
form (4), we have Lrank(θ;D) =

−ED[log(σ(∆r∗θ(yw,yl) + ∆r̃θ(yw,yl)))]. (5)

Hence, updating the RM to minimize the rank loss
will enlarge the reward differences (input of the
Sigmoid function). Simultaneously, the reward
drift is also enlarged, causing over-rewarding.

4.2 Reward Modeling on Diversified Data

Letting θ be the RM trained on mixed diverse
datasets D = {D1, . . . ,DK}, the rθ(x,y) can be
viewed as a multi-task learner with shared param-
eters (Sener and Koltun, 2018). Then, the reward
value provided by rθ(x,y) can be decomposed
into voting format weighted by an implicit λ:

rθ(x,y) = r∗θ(x,y) +
∑K

i=1 λir̃θi(x,y), (6)

where the shared reward r∗θ(·, ·) is the same with
arbitrary λ, and r̃θi(·, ·) is the reward drift. We
interpret that the r̃θi(·, ·) is provided by subset of
parameters θi, representing the preferences from
the i-th dataset Di. This reward value decompo-
sition naturally holds in the model output level,
despite the non-linear nature of neural networks.

Moreover, our formulation aligns with multi-task
learning (Crawshaw, 2020) and multi-objective
learning (Guardieiro, 2023) problems. For ex-
ample, the θ can be implemented as an ensem-
ble model, where {θi}, i ∈ [N ] is the base mod-
els. Therefore, it is natural to adjust the weight λ
in an ensemble manner (Coste et al., 2023; Jang
et al., 2023; Touvron et al., 2023a; Eisenstein
et al., 2023) to mitigate the reward drift such that
min

∑K
i=1 λir̃θi(x,y). Compared with average re-

wards from multiple RMs (Jang et al., 2023; Eisen-
stein et al., 2023), we focus on training a single
RM that learns the shared preference. We propose
to reduce the model update on reward drift during
RM training via linear scalarization (Barrett and
Narayanan, 2008). Moreover, we provide further
discussion on related manners in Section 7.

4.3 Training Scheme: MORE

MORE loss function Our analyses suggest find-
ing proper weights λ for mitigating reward drifts.
Then, we propose training RMs to capture the
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Figure 2: Multi-objective reward model training scheme (MORE), which consists of four steps: (1) collect a
diversified batch of data from the mixed dataset; (2) calculate the RM gradient for each preference source; (3)
minimize the reward drift to determine the scalar (λ1, λ2, . . . , λK) for MORE loss; (4) update the RM with the
re-weighted RM loss. Lower calibration error indicates the RM provides an accurate reward.

shared preference across multiple datasets with the
following objective:

LMORE(θ;D) =
∑K

i=1 λiLrank(θ,Di), (7)

where
∑K

i λi = 1, λi ≥ 0. Compared with vanilla
ranking loss in (1), the above loss additionally fo-
cuses on the combination relation across prefer-
ences. The linear combination of loss functions
is commonly adopted in deep learning methods to
balance the interaction of different modules (Zhang
et al., 2023; Kurin et al., 2022). Analogously, we
treat each preference as an individual module and
balance them wisely. Moreover, this formulation
also covers several typical training cases. For ex-
ample, directly mixing diverse preference datasets
D = {D1, . . . ,DK} and training a RM implic-
itly induces λi = |Di|/|D| (McMahan et al., 2017;
Ramé et al., 2024). Therefore, if the number of data
samples from a single preference is greatly larger
than other preferences, the RM is likely to drift to
the preference with more samples. Excluding data
quantity, the weight is also decided by the quality of
data samples in the training process (Katharopou-
los and Fleuret, 2018; Zhou and Wu, 2023). Neural
network training typically provides a larger gradi-
ent for harder samples (Katharopoulos and Fleuret,
2018), therefore, leaning the RMs preferences drift
to these hard samples. In practice, the quantity and
quality variance in diversified datasets may require
more hyper-parameter searching (Guo et al., 2024)
or data composition efforts (Dong et al., 2023a) in
the vanilla finetuning process.

What is MORE doing? We suggest training a
better RM via self-adaption training weights λ for

better data efficiency. The MORE loss minimizes
the ranking loss by solving a reward drift mitigation
task, applying a batch-wise reweighting method.
Let batch data B = {x(b),y

(b)
w ,y

(b)
l }Bb=1 ∼ D be

the sampled batch data from diverse datasets. Fur-
thermore, Bi ∼ Di ⊂ B, ∀i ∈ [K] is the subset
of batch data from the i-th preference dataset. We
have the gradient ∇θLMORE(θ;B)

=
B∑

b=1

[
−∇θ log(σ(∆r∗θ(y

(b)
w ,y

(b)
l )))

]
+K·

min
K∑

i=1

λi

|Bi|∑

j=1

[
−∇θ log(σ(∆r̃θ(y

(j)
w ,y

(j)
l ))

]

︸ ︷︷ ︸
Reward Drift Mitigation

,

(8)
where we adjust λ to minimize the partial gradient
of enlarging reward drifts. The mitigation task in
(8) can be efficiently solved by the Frank-Wolfe
solver (Jaggi, 2013; Sener and Koltun, 2018; Zhou
et al., 2022b; Zeng et al., 2023c). We provide the
details of our efficient implementation in the Ap-
pendix B. Furthermore, LMORE shares the same
magnitude of vanilla loss function Lrank in expecta-
tion over the whole training dataset, as justified in
Appendix B.

Outline The MORE only requires simple mod-
ification on batch data sampling and batch-wise
reweighting. We depict the pipeline in Figure 2.
MORE consists of THREE main steps as: 1) Sam-
ple a diverse batch data B = {Bi}Ki=1, Bi =

{x,yw,yl}|Bi|
b=1 and input the batch data forward

the RM and obtain the hidden states {zi}Ki=1, which
is the inputs of the reward head θrm. 2) Compute
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Figure 3: The reward accuracy of RMs with different training schemes on each dataset.
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Figure 4: The ECE of the corresponding RMs.

the gradient of reward head with data {zi,yw,yl}.
3) Compute the weights λ by Frank-Wolfe solver.
Finally, we substitute the loss weights in (7) as the
final loss for the optimizer to conduct backward
and model updating. This procedure prevents the
RM from enlarging implicit reward drifts.

5 Experiments on Reward Modeling

In this section, we present our experiments and
quantitative analyses on reward modeling. The
open-source code and data are available at https:
//github.com/dunzeng/MORE.

Datasets & models We use open-sourced hu-
man preference alignment datasets, including Help-
ful&Harmless (Bai et al., 2022), OASST1 (Köpf
et al., 2023), Webgpt (Nakano et al., 2021a), and
Summarize (Stiennon et al., 2020). We provide
the statistics of the datasets and data composi-
tion in Appendix 3. Despite these datasets be-
ing released to human preference alignment, our
study highlights the preference diversity across the
datasets and its impacts on training RMs. We train
Pythia-1.4B, Pythia-2.8B (Biderman et al., 2023)
and LLaMa2-7B (Touvron et al., 2023b) as the LM
base for RM training. We use the last token em-
bedding of the output hidden states as the pooled
hidden representation, then add one linear layer
(RM head) with the scale-value output on it to pre-
dict reward scores. We present the details of the
training setup in Appendix C.

Baselines We compare our method with conven-
tional fine-tuning strategies for training language
models, specifically mixing the preference data

samples. We refer to the training scheme as Mul-
tiTask training (Dong et al., 2023a). The Multi-
Task training scheme randomly samples data from
hybrid preference datasets. Additionally, we com-
pare with the Top performance of RMs trained
on each preference dataset. We highlight that the
Top performance indicates the ideal ensemble-RM,
i.e., each sample obtains its reward from the corre-
sponding best RM. Then, we naively Average the
reward values from Top RMs provide on the same
samples to denote a naive ensemble-RM. In all, we
mark the baseline rewards as RMMultiTask, RMTop
and RMAveraging respectively.

Evaluation metric We use the preference ac-
curacy on test datasets for each domain. If an
RM outputs r(x,yw) > r(x,yl) for a test sam-
ple (x,yw,yl), we denote it as a correct prediction.
The preference accuracy is then computed as the
proportion of correct predictions within all testing
response pairs. However, preference accuracy only
provides pairwise comparisons of responses and
does not reflect the degree of preference for each
response. Following Bai et al. (2022); Cheng et al.
(2023b), we examine the probability calibration
to test if the learned RMs accurately represent the
human preference distribution. This is measured
by the Expected Calibration Error (Naeini et al.,
2015; Zhu et al., 2023).

5.1 Reward Modeling on Diversified
Preference Datasets

We provide the reward modeling results on mixed
diversified datasets in Figure 3 and Figure 4. The
detailed information is in Table 2 of the Appendix.
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Figure 6: MORE enhance calibration per-
formance with diversified preferences. The
black dashes indicate the ECE of RMTop.

The reward accuracy does not drop significantly
on mixed diversified preferences. Increasing
the size of LLMs, reward model training on mixed
diversified preference datasets can maintain reward
accuracy. For instance, when Pythia-1.4B is used
as the RM base model, the reward accuracy is
lower than the Top accuracy achieved through sin-
gle preference training on all preferences. Then,
when LLaMa2-7B is used as the base model, the
reward accuracy on the Oasst1, Webgpt, and Sum-
marise test sets surpasses the top accuracy achieved
through single training. Additionally, the degrada-
tion of reward accuracy on the Helpful and Harm-
less datasets is mitigated. Therefore, the perfor-
mance of RMs typically is proportional to the size
of base models (Gao et al., 2023). Moreover, we
find the accuracy of RMAveraging is low, revealing
the preference conflicts across RMTop.

Reward modeling on mixed diversified prefer-
ences affects calibration performance Noting
the reward accuracy only provides comparisons
of responses (Zhu et al., 2023), we emphasize the
ECE performance reflects the degree of preference
for responses in Figure 4. Compared RMMultiTask
with RMTop, reward modeling on mixing the di-
versified preference datasets typically degenerates
calibration performance on all preferences. Es-
pecially, the reward accuracy of RMMultiTask and
RMTop are comparable but the calibration perfor-
mances are very different. The LLMs can main-
tain high accuracy on all preferences due to their
large capacity, however, the reward distribution is
affected by mixed diversified preferences. These
findings reveal that reward accuracy is insufficient
to verify the ability of RMs and suggest evaluation
of RMs via ECE. We will further justify the point
in the alignment experiments.

We provide additional reward modeling results
of LLaMa2-13B in the Appendix. Compared with

the results of LLaMa2-7B, the reward accuracy of
LLaMa2-13B is not significantly better. This is
because the capacity of these 7B and 13B models
is sufficient for fitting the datasets used. Notably,
the ECE of the 13B model is marginally improved
in the MultiTask setting, and the ECE gap between
RMMultiTask and RMMORE is narrowed. Thus, a
larger reward model can mitigate the negative im-
pacts of mixed diverse preferences.

MORE implements significant calibration per-
formance improvement The RMMORE preserves
a significantly lower ECE than RMMultiTask, indi-
cating that RMMORE provides more accurate re-
ward values. Moreover, RMMORE implements
significantly lower ECE than RMTop on Help-
ful&Harmless preferences. This is because
Helpful&Harmless preference is shared by these
datasets and MORE accurately captures shared
preferences across them. Therefore, MORE im-
plements lower calibration errors on shared Help-
ful&Harmless preference and slightly loses its cali-
bration performance on the other three preference
datasets. This calibration performance gap between
RMTop and RMMORE on the other three diversified
preferences further reflects the preference diversity.

5.2 Analyses on RMs of H&H Preferences
To clarify the improvement of MORE, we provide
analyses on Helpful&Harmless (H&H) datasets,
which is an important human preference alignment
objective for LLMs in recent works (Ouyang et al.,
2022; Touvron et al., 2023b). Concretely, we fo-
cus on the statistics of the reward difference (i.e.,
∆rθ(yw,yl)). We count the reward differences of
RMs on H&H test datasets in Figure 5.

MORE mitigates over-rewarding phenomenon
In Figure 5, we observe the RMTop outputs large
absolute reward differences on testing samples. On
the contrary, the RMMORE provides lower absolute
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Reward Model Perplexity (PPL) GPT4 Evaluation (%)

Base Model Scheme Acc(%) ECE ↓ Helpful ↓ Harmless ↓ Win Tie Lose

- - - - 15.48 12.71 - - -

Pythia-1.4B
MultiTask 64.79 0.0177 15.30 8.22

44 22 34
MORE 64.32 0.0109 12.68 8.42

Pythia-2.8B
MultiTask 66.61 0.0145 16.76 8.42

45 21 34
MORE 65.87 0.0078 13.14 10.29

LLaMa2-7B
MultiTask 72.40 0.0284 16.93 8.69

45 23 32
MORE 72.32 0.0143 11.97 9.96

Table 1: The RJS alignment performance with different RMs. The first line
is the performance of the Alpaca base model. The results show that ECE
further reflects the ability of RMs when the reward accuracy is close.
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Figure 7: The correlation between
ECE of RMs and RJS alignment
performance for the Alpaca model.

reward differences on testing samples, compared
with baseline training schemes. Moreover, RMs
tend to provide extreme rewards to some samples.
We count these extreme reward values as outliners
in Appendix, Table 6. This phenomenon aligns
with our methodology in (6), that is, MORE miti-
gated the reward drifting during training. Hence, it
outputs a lower absolute reward signal as more ac-
curate reward values. These findings reveal the phe-
nomenon of over-rewarding in RMs, where vanilla
RMs tend to assign large reward values to samples.
This phenomenon demonstrates problem modeling
(5). Importantly, the over-rewarding in RM may
not break the reward accuracy shown in Figure 3,
however, it induces unsatisfied calibration perfor-
mance. MORE maintains the reward accuracy of
RMs, alleviates the over-rewarding effects on re-
ward modeling, and trains better RMs.

MORE achieves better calibration using more
diversified preferences The MORE can bene-
fit from diversified preference information by (8),
which suggests increasing the number of diversified
preferences can better mitigate reward drifts. We
change the number of mixed preference datasets
from 2 to 5 to verify our insights, as shown in
Figure 6. In detail, we start from mixed Help-
ful&Harmless datasets (K=2) and then add Oasst1,
Webgpt, Summarise datasets. The calibration error
decreases with the number of preference datasets.
It proves that MORE can utilize the preferences
information to enhance the performance of the re-
ward model on shared preferences and surprisingly
outperforms RMTop.

6 Experiments on LLM Alignment

In this section, we use the previously obtained RMs
for LLM alignment experiments on Alpaca (Taori
et al., 2023), which is an instruction-tuned LLaMA-
7B model (Touvron et al., 2023a). We use Reject

Sampling (RJS) (Touvron et al., 2023b; Liu et al.,
2023) as the alignment algorithms, where we sam-
ple 4 responses from Alpaca with queries from
H&H trainsets. Our experiment mainly justifies the
correlation between the calibration performance
of RMs and LLM alignment performance.

RMMORE works better than RMMultiTask for RJS
aligning H&H with lower ECEs We finetune
Alpaca with the most preferred samples scored
by previously obtained RMs to align the human
preference of H&H, following RJS loss (3). We
show the alignment performance in Table 1, where
we use the same GPT4 evaluation prompts with
DPO (Zhou et al., 2023) shown in Appendix D.
RMMORE works better for RJS tasks. Noting that
RMMORE and RMMultiTask implements comparable
reward accuracy on H&H, while the calibration
performance are significantly different. Therefore,
the alignment performance is additionally related
to the calibration performance of the RMs.

ECE of RMs is positively correlated with align-
ment performance We finetune the Alpaca
model on the good response from H&H training
datasets, and the finetuned model is marked by
Alpaca-SFT. Then, we conduct the RJS alignment
experiments with LLaMa2-7B RMs from Figure 6.
In Figure 7, we compare each alignment result
of Alpaca-RJS models with the same Alpaca-STF
model via GPT evaluation (the tie rates are around
15%). The results show that the RMs with lower
ECE values work better for RJS alignments, em-
phasizing the importance of calibration evaluation.

7 Additional Discussions
Connections with data composition and
ensemble-RM studies Dong et al. (2023a) have
empirically shown that the LLM ability can be
improved by adjusting the mixed training data
ratio from different sources. However, the mixed
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proportion can be hard to search in practice.
Besides, other studies have shown that direct
ensemble RMs (Eisenstein et al., 2023) or merging
RMs’ parameters (Jang et al., 2023; Ramé et al.,
2024) during training could also improve the
ability of RMs. In practice, these approaches
induce a large system burden for storing/training
multiple RMs, especially since the RMs can be
extremely large. In comparison, this paper focuses
on training single RM on diversified datasets.

Connections with fine-grained reward and
multi-dimensional reward Existing research, in-
cluding fine-grained reward (Wu et al., 2024) and
multi-dimensional reward (Lou et al., 2024), has
increasingly focused on the importance of reward
diversity. These studies categorize the utilization
of diverse reward signals into two main strategies:
first, integrating multi-dimensional preferences into
a single dimension for aligning large language mod-
els (LLMs); and second, decoupling preferences
across dimensions (reward models) to align LLMs
on each dimension. This body of work underscores
the necessity of addressing diverse preferences. In
contrast, our primary contribution lies in the em-
pirical analysis of diversified preferences within
a single reward model, alongside our novel eval-
uation of expected calibration error (ECE) on re-
ward models. Additionally, since both fine-grained
and multi-dimensional reward methodologies yield
scalar rewards, our findings regarding ECE are rel-
evant for assessing these approaches.

Suggestions for reward model training This pa-
per reveals two main suggestions for future reward
model training works. First, Evaluate RMs with
reward accuracy and calibration error. Reward ac-
curacy is insufficient to evaluate the ability of RMs
due to model capacity and data quality. Our work
suggests that the community additionally focuses
on the calibration performance of RMs. Besides,
Increasing the diversity of preference data samples
can ensure the robustness of the reward modeling
process. Due to the preference information being
typically noisy, learning reward information from
mixed diversified datasets can be beneficial.

Applications The MORE can enhance prefer-
ence modeling pre-trained (PMP) paradigm (Askell
et al., 2021) as it captures the shared preference in-
formation. This facilitates its use in federated learn-
ing scenarios (McMahan et al., 2017; Zeng et al.,
2023b,a), where the data distributions are highly

heterogeneous across participants. Moreover, the
RMMORE can be easily finetuned to specific prefer-
ences (Cheng et al., 2023a). This flexibility allows
for the adaptation of our approach to various appli-
cations.

Extension to RM-free alignment methods RM-
free alignment methods (Rafailov et al., 2023; Azar
et al., 2023) are derived based on an implicit re-
ward model. They typically optimize the policy
by substituting it into the classification loss usually
used to train the reward model. The relation of
calibration performance of implicit reward and the
alignment performance in the RM-free methods is
unexplored. Besides, learning shared preferences
from mixed diverse preference datasets can be ex-
tended to RM-free paradigms. For example, we
can re-weight the partial reward loss of the RM-
free alignment methods, especially DPO (Rafailov
et al., 2023; Zhou et al., 2023). We will explore
this in future work.

8 Limitations

We only conducted experiments using the conven-
tional RJS algorithm in LLM alignment tasks. As a
reward modeling algorithm that captures shared
preference information, MORE depends on the
quality of the applied data. Therefore, the cor-
relation of ECE of RMs and LLM alignment per-
formance in other alignment algorithms requires
further exploration. Besides, the training datasets
we used contain violence, abuse, and biased con-
tent that can be upsetting or offensive to particular
groups of people.
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A Related Work

RLHF has become the mainstream approach to align language models towards helpfulness, and harmless-
ness (Leike et al., 2018; Nakano et al., 2021b; Ouyang et al., 2022; Bai et al., 2022). They all utilize an
RM to align machine learning systems with human performance, which directly decides the performance
of preference alignment. As the RM is the most important component in the RLHF framework, recent
RM studies have grown rapidly.

Reward Modeling in human preference alignment The original goal of RM is to provide a scalar
score to a model response and indicate the quality in (2), especially helpfulness and harmlessness. Due to
the trade-off in quality aspects (Touvron et al., 2023a; Bai et al., 2022), it can be challenging for a single
RM to perform well in all aspects. Our work related to previous works handling multiple rewards and
potential disagreement in preferences. For instance, LLaMa-2 (Touvron et al., 2023a) utilizes two separate
RMs, one optimized for helpfulness and another for harmlessness. They mitigate the magnitude bias
of the reward scalar with a margin loss, which provides a large margin for pairs with distinct responses,
and a smaller one for those with similar responses. Multiple RMs can be utilized as majority voting or
averaging (Jaques et al., 2020; Jang et al., 2023) in the PPO (Schulman et al., 2017). Wang et al. (2023)
introduces a Bayesian-based approach called d-PM to align language model with human preferences
with disagreement. Cheng et al. (2023a) proposes to train a customized RM from the general RM to
avoid disagreement from different preference domains. Furthermore, our theoretical intuition follows
recent work DPO (Rafailov et al., 2023) and SLiC-HF (Zhao et al., 2023) for preference alignment, which
explores more straightforward methods to align language models with human preferences. Beyond the
methodology, they have shown the RLHF framework is working as likelihood calibration tasks (Deng
et al., 2020; Wang et al., 2023; Azar et al., 2023), which proves that the reward values provided by the
RM are also important.

Domain Generalization Machine learning methods suffer from performance degeneration when the
source domain data and the target domain data follow different distributions, which has been recognized
as the domain shift problem (Pan and Yang, 2009; Csurka, 2017; Wang et al., 2021). To address this
problem, domain generalization is proposed to minimize the domain shift across domains. In this direction,
existing methods aim to learn the domain invariant representation to reduce the discrepancy between
representations of multiple source domains (Zhou et al., 2022a). We derive the concept of reward shift
from domain shift. Differently, our reward shift is built on sample-wise reward values to model the training
dynamics.

Multi-objective Optimization Multi-objective Optimization (MOO) (Gunantara, 2018) is a branch of
methods addressing learning problems involving multiple conflicting objectives. In real-world scenarios,
it commonly encounters situations where multiple objectives need to be considered simultaneously, often
with trade-offs between them. In the practice of machine learning, most MOO methods (Sener and Koltun,
2018; Zeng et al., 2023c) apply linear scalarization (Barrett and Narayanan, 2008) to merge multiple
objectives into one, and then automatically adjust the objective coefficients to balance the conflicts among
different tasks.

B Detailed Discussions about MORE

Batch-wise reweighting We use adaptive weighting methods to reduce the reward drift across prefer-
ences and adjust the reward modeling process in the data batch-wise. The mitigation task in (8) can be
efficiently solved by the Frank-Wolfe solver (Jaggi, 2013; Sener and Koltun, 2018; Zhou et al., 2022b; Zeng
et al., 2023c). However, the computing cost of solving it is proportional to the size of parameters θ. Since
the size of θ is in the billions, we only utilize gradients on the reward head θrm ∈ Rh from each preference
to avoid expensive computation cost. In detail, we obtain the hidden states zi = rθlm(x

(b)),x(b) ∈ Bi

before the reward head and compute the gradient of the reward head solely with data (zi,y
(b)
w ,y

(b)
l ).

Collecting the reward head gradient from K diversified preferences, the λ is computed by:

λ = argminλ

∥∥∥
∑K

i=1 λi∇θrmLrank(θ;Bi)
∥∥∥
2
. (9)
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In this paper, we only utilize the gradient information on the reward head (simple linear layer). This is
the most computationally efficient, in comparison with the billions size of LLMs. Moreover, there is a
trade-off between gradient information utility and computation efficiency depending on the size of the
utilized gradient (Sener and Koltun, 2018).

Decomposition of ranking loss Using the properties of the sigmoid function σ′(x) = σ(x)(1− σ(x))
and σ(−x) = 1− σ(x), we present the detailed decomposing of vanilla ranking loss gradients:

∇θLrank(θ;B) =
B∑

b=1

−σ
(
∆rθ(y

(b)
l ,y(b)

w )
)
·
[
∇θrθ(x

(b),y(b)
w )−∇θrθ(x

(b),y
(b)
l )

]

=

B∑

b=1

−σ
(
∆rθ(y

(b)
l ,y(b)

w )
)
·
[
∇θr

∗
θ(x

(b),y(b)
w )−∇θr

∗
θ(x

(b),y
(b)
l )

]

+
B∑

b=1

−σ
(
∆rθ(y

(b)
l ,y(b)

w )
)
·
[
∇θ r̃θ(x

(b),y(b)
w )−∇θ r̃θ(x

(b),y
(b)
l )

]
,

where we use the definition of reward drift in (4). Next, we decompose the second term of reward drifts:

∇θLrank(θ;B) =
B∑

b=1

−σ
(
∆rθ(y

(b)
l ,y(b)

w )
)
·
[
∇θr

∗
θ(x

(b),y(b)
w )−∇θr

∗
θ(x

(b),y
(b)
l )

]

+
B∑

b=1

−σ
(
∆rθ(y

(b)
l ,y(b)

w )
)
·
[

K∑

i=1

1

K

(
∇θ r̃θ(x

(b),y(b)
w )−∇θ r̃θ(x

(b),y
(b)
l )

)]

=

B∑

b=1

−σ
(
∆rθ(y

(b)
l ,y(b)

w )
)
·
[
∇θr

∗
θ(x

(b),y(b)
w )−∇θr

∗
θ(x

(b),y
(b)
l )

]

+K

K∑

i=1

1

K

|Bi|∑

j=1

−σ
(
∆rθ(y

(j)
l ,y(j)

w )
)
·
[
∇θr̃θ(x

(b),y(b)
w )−∇θr̃θ(x

(b),y
(b)
l )

]
,

where we induce the preference source of data samples in the last equation. Vanilla rank loss regards the
importance of data samples as equal. Then, let us observe the gradient of MORE loss:

∇θLMORE(θ;B) =
B∑

b=1

[
−∇θ log(σ(∆r∗θ(y

(b)
w ,y

(b)
l )))

]

+Kmin

K∑

i=1

λi

|Bi|∑

j=1

[
−∇θ log(σ(∆r̃θ(y

(j)
w ,y

(j)
l ))

]

︸ ︷︷ ︸
Reward Drift Mitigation Task

.

In comparison, the gradient ∇θLMORE(θ;B) replaces the coefficients 1
K with adjustable variable λ.

Therefore, the vanilla ranking loss is a special case of MORE loss.

C Experiment Details

Training hyperparameters All RM training batch size is set to 5 (number of preferences)*16 (batch
size of each preference) = 80. For RJS experiments, we set the training batch size to 64. The max input
sequence length is 512. All RMs, Alpaca-SFT, and Alpaca-RJS are finetuned with one epoch. We use
optimizer AdamW (Loshchilov and Hutter, 2017) with learning rate 1e−6.

Experiment platform Our experiments are conducted on computation platform with NVIDIA A100
40G GPU * 8.
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Training Testing Dataset (Acc %) Metrics

Base Model Dataset Method Helpful Harmless Oasst1 Webgpt Summ. Avg. ECE

Pythia-1.4B

- Raw 52.38 50.69 51.25 48.47 51.06 50.77 0.1281
Single Top 67.81 69.07 62.43 65.70 62.56 65.51 0.0362
ALL Averaging 55.73 51.81 57.68 53.60 55.50 54.86 0.0543
ALL MultiTask 65.00 64.57 60.13 66.00 57.49 62.38 0.0541
ALL MORE 64.07 64.57 62.43 63.41 62.22 63.34 0.0364

Pythia-2.8B

- Raw 54.59 46.84 52.92 48.93 51.36 50.92 0.1184
Single Top 68.06 70.84 60.86 64.93 62.33 66.13 0.0342
ALL Averaging 58.80 52.55 59.03 51.83 51.70 54.78 0.0685
ALL MultiTask 66.49 66.73 63.37 64.48 58.95 64.00 0.0456
ALL MORE 65.39 66.34 63.58 65.39 59.39 64.01 0.0366

LLaMa2-7B

- Raw 49.78 47.18 51.15 49.84 49.88 49.56 0.1503
Single Top 73.08 74.84 63.58 67.07 68.65 69.27 0.0334
ALL Averaging 61.90 54.15 56.21 55.16 63.60 58.20 0.0391
ALL MultiTask 72.10 72.70 64.62 71.95 69.30 70.13 0.0570
ALL MORE 71.93 72.70 65.88 70.27 70.85 70.32 0.0458

LLaMa2-13B

- Raw 50.71 48.47 50.35 49.87 49.18 49.71 0.1478
Single Top 75.29 74.82 65.98 67.07 71.18 71.46 0.0275
ALL Averaging 56.04 49.38 56.41 59.32 45.96 53.42 0.0471
ALL MultiTask 73.85 73.91 65.36 71.98 69.59 70.90 0.0561
ALL MORE 73.80 73.22 64.95 69.51 70.14 70.32 0.0502

Table 2: Reward model performance on diverse datasets. Each row represents distinct training configurations, while
the columns represent various evaluation aspects. The term “Avg.” denotes the arithmetic mean of accuracy across
all test domains. We train a reward model on a single dataset and report the top accuracy on its corresponding
preference to show the best reward accuracy.

Dataset Num. of train samples Num. of test samples

Anthropic Helpful 43,774 2,352
Anthropic Harmless 42,537 2,312
OpenAssistant Oasst1 18,165 957
OpenAI Webgpt 17,106 901
OpenAI Summarize 92858 2,000*

Table 3: Statistics of human preference data for reward modeling. *We sample 2000 test examples from the original
testset to align with other datasets.

Data composition We present the statistics of datasets in Table 3. In our implementation, we con-
duct sampling&resampling to balance the samples from different preferences. Concretely, we sam-
ple&resampling 40,000 train samples from each preference to roughly align the number of data samples
with Anthropic HH datasets. This is because the Helpful&Harmless are the main preferred properties in re-
cent works (Ouyang et al., 2022; Touvron et al., 2023b). Besides, we will provide an implementation with-
out requiring data sampling&resampling in our code base. And, we emphasize the sampling&resampling
operation does not break the conclusion in the main paper and does not significantly affect the performance
of the corresponding preference in our preliminary experiments.

Missing experiment results

• We provide missing results in Figure 8 and Figure 9 as supplements of Figure 1.

• We provide count of reward differences outlines in Table 4, 5 and 6 as supplements of Figure 5.

• We provide concrete experiments data in Table 2 as supplements of Figure 4 and 3.
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Figure 8: Statistics of reward differences on test sets. The solid box plot indicates the statistic of positive reward
differences. The hollow box plot indicates the statistic of negative reward differences.
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(b) Webgpt testset
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(c) Oasst1 testset
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Figure 9: Statistics of reward values provided by {RMRaw, RMHelpful, RMHarmless, RMOasst1, RMWebgpt, RMSumm.}.
The reward difference represents the difference in reward value between the winning sample and the losing sample
given by a reward model. The histogram displays the distribution of reward differences.

D GPT4 Evaluation

Our GPT4 evaluation aligns with the DPO (Rafailov et al., 2023). We use the same prompt template of
pairwise comparison evaluation for GPT4 as shown below. For each comparison evaluation, we will swap
the position of responses A and B and call GPT4-API twice. If both results are A is better, the final label
will be A is better. On the contrary, the final label will be B is better. If the results are not consistent, the
final label will be a tie.

Listing 1: GPT4 evaluation for Helpful comparison

For the following prompt to a chatbot, which response is more helpful(The
↪→ information in the response needs to be direct, accurate, helpful, abundant
↪→ and should help the user solve their task)?

Query: {prompt}
Response A: {response_A}
Response B: {response_B}
FIRST provide a one-sentence comparison of the two responses and explain which you

↪→ feel is more helpful. SECOND, on a new line, state only "A" or "B" to
↪→ indicate which response is more helpful.

Your response should use the format:
Comparison: <one-sentence comparison and explanation>
More helpful: <"A" or "B">
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Preference
RM Positive Outliers Negative Outliers

Scheme ECE Count Mean Count Mean

Helpful
Single 0.0160 224 0.866 70 -0.623
MultiTask 0.0171 201 0.628 81 -0.437
MORE 0.0053 201 0.596 76 -0.423

Harmless
Single 0.0213 152 0.852 76 -0.610
MultiTask 0.0183 146 0.526 82 -0.411
MORE 0.0166 152 0.523 72 -0.425

Table 4: Count of reward differences outlines from
Pythia-1.4B base model on Helpful&Harmless test.

Preference
RM Positive Outliers Negative Outliers

Scheme ECE Count Mean Count Mean

Helpful
Single 0.0191 193 0.852 67 -0.606

MultiTask 0.0147 198 0.624 78 -0.417
MORE 0.0109 195 0.640 81 -0.451

Harmless
Single 0.0057 132 0.833 71 -0.608

MultiTask 0.0143 147 0.602 94 -0.465
MORE 0.0047 152 0.595 85 -0.445

Table 5: Count of reward differences outlines from
Pythia-2.8B base model on Helpful&Harmless test.

Preference
RM Positive Outliers Negative Outliers

Scheme ECE ↓ Count Mean Count Mean

Helpful
Top 0.0081 223 1.145 73 -0.784
MultiTask 0.0182 195 1.054 81 -0.734
MORE 0.0080 181 0.806 76 -0.552

Harmless
Top 0.0225 152 1.070 89 -0.891
MultiTask 0.0386 168 1.206 77 -0.901
MORE 0.0206 156 1.075 57 -0.821

Table 6: Count of reward differences outlines from LLaMa-7B base model on Helpful&Harmless test.

Listing 2: GPT4 evaluation for Harmless comparison

For the following prompt to a chatbot, which response is more harmless(The response
↪→ should not fabricate information or mislead the user, cause physical,
↪→ psychological, or social harm to people or the environment)?

Query: {prompt}
Response A: {response_A}
Response B: {response_B}
FIRST provide a one-sentence comparison of the two responses and explain which you

↪→ feel is more harmless. SECOND, on a new line, state only "A" or "B" to
↪→ indicate which response is more harmless.

Your response should use the format:
Comparison: <one-sentence comparison and explanation>
More harmless: <"A" or "B">
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