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Abstract

Integrating speech and text capabilities into
large language models (LLMs) is a challeng-
ing task and we present Large Rank Adaptation
(LaRA) for effective cross-modal integration
of speech and text in the LLM framework. Un-
like conventional LoRA, our method requires
significantly larger ranks comparable to the
pretrained weights to accommodate the com-
plexities of speech-text cross-modality learn-
ing. The approach utilizes HuBERT to con-
vert speech into discrete tokens and fine-tunes
the pretrained LLM to adapt to cross-modal in-
puts and outputs. The work employs a Hi-Fi
GAN vocoder to synthesize speech waveforms
from the generated speech units. The initial
studies use the Librispeech corpus to teach the
model the relationships between speech and
text, and Daily Talk, which involves dialog con-
versations, to adapt for interaction. The pro-
posed work demonstrates adaptation for spo-
ken and text conversations. However, the pro-
posed framework can be easily extended to
other cross-modal applications.

1 Introduction

In humans, speech is the most preferred mode of
communication. It encompasses rich information
such as tone, emotion, gender, and speaker infor-
mation. On the other hand, text is a less complex
mode, making it better suited for storage and com-
putational tasks. With the recent advancement of
larger deep learning models, the text domain has
seen revolutionary changes (Brown et al., 2020;
Singhal et al., 2023; OpenAI et al., 2024; Anil and
et al., 2024). Applications such as summarizing,
conversation, and translation have shown tremen-
dous ability to reason with the input data.

Speech, unlike text, is a high bit rate and com-
plex signal. Understanding its semantics is cru-
cial for language comprehension. Training a large
language model (LLM) with speech from scratch

is computationally intensive and requires an enor-
mous amount of training data, which is not com-
monly available (Kalyan, 2023). Considering the
capabilities of LLMs, the scope of expanding them
to speech domain which already possesses the
knowledge in the text domain, can be explored (Hu
et al., 2024). This approach to enhancing the ca-
pabilities of LLMs is a significant area of research
for further exploration.

In this paper, we propose Large Rank Adapta-
tion (LaRA)1, an approach that utilizes the existing
knowledge of pretrained large language models for
cross-modal applications. The main contributions
of the paper are as follows:

• We present an approach, which involves cross-
modal fine-tuning and alternative-cross-modal
data modeling techniques during the training
phase. This method enables seamless support
for both speech and text inputs, as well as their
corresponding outputs in either speech or text
formats.

• Unlike recent proposed works that require
extensive retraining and large computing re-
sources, our approach achieves cross-modal
adaptation with relatively modest computa-
tional requirements.

• Through extensive experimentation in spoken
dialog and speech-text translation tasks, we
show that conventional low-rank adaptation
methods (LoRA) are insufficient for cross-
modal adaptation tasks. Instead, a large rank
adaptation (LaRA) method, which is compa-
rable to the pretrained model weights, is nec-
essary to effectively integrate speech and text
modalities.

The remaining paper is divided in the following
manner. Section 2 extends the introduction and

1The code for the proposed work can be found here:
https://github.com/Zuhashaik/LaRA
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gives an insight into the current literature. Section
3 details the architecture of the model. Section
4 discusses the data corpus and formatting, fine-
tuning, and experiments carried out. Section 5
provides a comprehensive analysis of the work.
Finally, Section 6 concludes the paper.

2 Related work

Recent advancements in unified models for speech
and text tasks have demonstrated the potential for
a single architecture to handle diverse input and
output modalities effectively. Since we worked on
fine-tuning the decoder-only model, we looked into
similar work done in the literature. One significant
development is the decoder-only model introduced
by LauraGPT (Chen et al., 2023), which can per-
form tasks such as speech recognition, speech-to-
text translation, machine translation, text-to-speech
synthesis, and speech emotion recognition. This
model processes continuous audio inputs and pro-
duces discrete audio outputs, exemplifying the ca-
pability of a unified model to seamlessly integrate
multiple functions.

The necessity of fine-tuning the entire parame-
ters of large models is often computationally ex-
pensive and resource-intensive. To address this, a
more efficient method involves training low-rank
decomposed matrices and attaching them to the
dense layers, thereby reducing fine-tuning costs
significantly (Hu et al., 2021). This approach has
paved the way for adapting large language models
(LLMs) for various downstream tasks. For instance,
the AudioPaLM model described in (Rubenstein
et al., 2023a) combines the linguistic strengths of
the text-based PaLM-2 with the paralinguistic ca-
pabilities of AudioLM, using separate embedding
matrices for audio and text. This dual approach
enhances the model’s ability to process complex
audio and text tasks. Similarly, SpeechGPT, as
detailed in (Zhang et al., 2023), employs a three-
step training process to fine-tune the Llama-13B
pretrained model, incorporating a low-rank adapter
to improve performance across different modal-
ities. Other notable works including the Listen,
Think, and Understand (LTU) model (Gong et al.,
2023b), which extends the Llama LLM for general
audio reasoning, and the LTU Audio-Speech (LTU
AS) model (Gong et al., 2023a), which combines
Whisper and Llama 2 to understand both environ-
mental sounds and speech. These advancements
underscore the ongoing efforts to develop com-

prehensive models capable of addressing a wide
array of speech and text-related tasks, pushing the
boundaries of what unified multitask learning can
achieve.

The work by (Chen et al., 2024) focuses on
speech-to-text applications, capturing nuances in
audio for tasks like speech translation by adapting
a Low-Rank Adaptation (LoRA). Another similar
approach is discussed in (Le et al., 2024), emphasiz-
ing the importance of detailed audio representation
in enhancing speech recognition accuracy.

From the literature we observe that on text-based
LLMs interact with the speech modality (Nguyen
et al., 2024; Hassid et al., 2024; Rubenstein et al.,
2023b; Fathullah et al., 2023; Chou et al., 2023;
Maiti et al., 2024). Some studies have also ex-
plored the multi-modality in LLM using low-rank
adapters. Furthermore, models designed to com-
bine speech and text have typically been pretrained
with both types of data. So, our work aims to de-
velop a model that can be easily adapted for speech
by leveraging the knowledge from the pretrained
text large language model using adapters.

3 Method

As shown in Figure 1, our methodology begins by
converting speech input into discrete tokens using
a speech tokenizer based on the HuBERT archi-
tecture (Hsu et al., 2021). In this work, we use
Llama-2 7B2 as our base LLM (Touvron et al.,
2023). The speech tokens are added to the LLM’s
vocabulary, and the embedding layer is resized ac-
cordingly. The embedding for speech tokens are
initially set using a Gaussian random distribution
and then replaced with HuBERT’s quantized hid-
den representations projected to match the LLM’s
dimensions using a projection layer. Cross-modal
learning involves creating input sequences with
speech tokens followed by text tokens and vice
versa. The LLM is trained to predict the next to-
ken, whether speech or text, based on the previous
tokens, allowing it to associate speech units with
corresponding text.

For efficient training, Large Rank Adaptation
(LaRA) technique is proposed, usage of high-rank
adapters to enable the LLM to adapt to the new
speech modality while preserving its text genera-
tion capabilities. During inference, the input se-
quence with speech and text tokens is processed,

2Model can be found here: https://huggingface.co/meta-
llama/Llama-2-7b
This model is open-sourced under the license llama2.
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Figure 1: Overall training architecture of the proposed model. The adapters in each decoder block having
Wq,Wk,Wv,Wo weight matrices are trained with larger ranks while keeping the pretrained weights fixed.

and the generated speech tokens are converted into
speech waveform using a unit HiFi-GAN vocoder
(Polyak et al., 2021a), which synthesizes the final
speech output.

3.1 Speech Tokenizer

Speech Tokenizer module uses HuBERT architec-
ture which employs a self-supervised learning and
vector quantization approach to discretize speech
(Hsu et al., 2021). Initially, it utilizes k-means clus-
tering on the model’s intermediate representations,
or Mel-frequency cepstral coefficients for the ini-
tial iteration, to create discrete labels for masked
audio segments.

By pre-training on an unlabeled speech corpus
in the target language, a HuBERT model can then
transform the target speech into hidden represen-
tations, computed at each 20-ms frame. Subse-
quently, a k-means algorithm is employed on these
learned representations from the unlabeled speech

to get discrete speech representation. The k cluster
centroids are then utilized to encode speech utter-
ance into sequences of cluster indices, computed
every 20-ms interval (Lakhotia et al., 2021; Polyak
et al., 2021b). In the end, adjacent repeated cluster
indices are merged to get a discretized speech utter-
ance S represented as, S = [s1, s2, . . . , sf ], si ∈
{0, 1, . . . , k − 1} ∀1 ≤ i ≤ f

where f is the number of frames. In the pro-
posed work we have used three HuBERT vari-
ants, they are: mHuBERT-km1000, HuBERT-Base-
KM50, and HuBERT-Base-KM100, which com-
press speech into discrete tokens having k = 1000,
100, and 50 clusters, respectively. When using
mHuBERT-km1000, the speech input is quantized
into 1000 cluster indices (0 to 999). To add these
speech units to the LLM’s vocabulary without con-
flicting with existing numeric tokens in the em-
bedding matrix, we enclose each index in angle
brackets, ex.: < 588 >,< 949 >. Similarly, for
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Figure 2: The speech embedding matrix (d× k) is replaced using HuBERT’s hidden representations, which are
upsampled to the LLM’s hidden size via a projection layer to align dimensions.

HuBERT-Base-KM100 the tokens are from 0 to 99,
and HuBERT-Base-KM50 for we get tokens from
0 to 49.

3.2 Cross modal Token Embedding layer

The embedding layer E in a large language model
(LLM) acts as a lookup table E ∈ Rd×N , where
d is the dimension of the embedding and N is the
vocabulary size. After tokenizing the speech input,
the speech tokens are added to the LLM’s vocab-
ulary. The total number of tokens becomes No,
which can be expressed as No = N +K+S. Here
K represents the cluster indices, and the additional
four special tokens (S=4) account for the start <sp>
and end </sp> speech tokens, as well as the start
<txt> and end </txt> text tokens.

Now we resize the embedding matrix with the
vocabulary size No which can be represented
as E ∈ Rd×No , where entries from N th index
to No − 1 are initialized using a Gaussian
distribution. This resizing ensures the matrix
can handle the expanded vocabulary, and the
Gaussian distribution to ensure they start with
moderate values, promoting consistency during
training and preventing issues from extreme values.

Transfer Learning: We then replace the d× k
embedding matrix of speech tokens <0> to <k-1>
with HuBERT’s quantized hidden representations
to leverage the knowledge from HuBERT. How-
ever, since HuBERT’s representation dimension
is 768 and the LLM’s dimension is 4096, we use
a projection layer to upsample from 768 to 4096
dimensions.

This projection layer helps align the dimensions,
ensuring the embeddings fit seamlessly into the

LLM’s architecture, is illustrated in Figure 2. The
embedding layer remains trainable to maximize the
cross-modal understanding.

3.3 Cross-modal Learning

In our approach, we represent speech as a sequence
of tokens, where each token represents a cluster
index obtained through HuBERT’s vector quan-
tization process. Let’s denote the speech tokens
as <s1>, <s2>, .. <sf> where f is the number of
frames in the speech and <si> represents the ithth
speech token. Similarly, we have text tokens de-
noted as <t1>, <t2>, .. <tl>, where l is the length of
the text sequence and <tj> represents the jth text
token.

To train the LLM and make it understand speech
units, we create a cross-modal input consisting of
speech tokens followed by text tokens as shown
below

< sp >< s1 >< s2 > ... < /sp >< txt ><
t1 >< t2 > ... < /txt >< sp > ...

The goal of the autoregressive model is to max-
imize the probability of the next token xt (which
can be either a speech token si or a text token tj)
given t− 1 tokens. This can be expressed as:

P (xt | x1, x2, . . . , xt−1) (1)

This formulation ensures that the prediction of
the next token (whether it’s a speech token or a text
token depends on all previously generated tokens
up to that point). This process helps the LLM
learn to associate speech units with corresponding
text, improving its ability to generate accurate text
output from speech input and vice versa.
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(a) Data modeling of the Librispeech-360 dataset for training.

(b) Data modeling of the DailyTalk dataset for training. The dataset contains conversations between
two people and they are represented by <A> and <B>.

Figure 3: Alternative-Cross-Modal data modeling for different datasets.

3.4 Large Rank Adaptation (LaRA)

We propose Large Rank Adaptation (LaRA) for
cross-modal learning, allowing us to use pre-
trained language models without needing to retrain
them from scratch on a large dataset with exten-
sive computing power. LaRA builds on the idea
of Low-Rank Adaptation (LoRA) but modifies it
slightly in concept and inference. For a pre-trained
weight matrix W0 ∈ Rd×k, we update it using a
low-rank decomposition W0 +∆W =W0 + βα,
where β ∈ Rd×r and α ∈ Rr×k, with the rank
r being less than min(d, k) but not significantly
smaller as in LoRA.

Unlike LoRA, which uses a rank r ≪ min(d, k),
we believe this is not effective for cross-modal
adaptation. Instead, we propose using a rank r that
is less than but close to min(d, k) that can be rep-
resented as r < min(d, k). This makes the adap-
tor weights comparable to the base model weights,
enabling better new modality learning. We have
applied LaRA for four weight matrices in the self-
attention module which are Wq,Wk,Wv,Wo.

3.5 Inference

Unit-vocoder: We use the unit HiFi-GAN (Polyak
et al., 2021a) to decode the speech signal from the
discrete speech token generated by LLM. During
the inference phase, the model utilizes the cross-
modal learning acquired during training to effi-
ciently process new input data. The input sequence
consists of both speech tokens, delineated by <sp>,
and text tokens, delineated by <txt>. These tokens
are initially parsed, and based on their type, the
model generates either speech or text tokens ac-
cordingly. Speech tokens are then converted into
speech units and fed into a unit HiFiGAN-based
vocoder. The vocoder synthesizes the generated

speech, providing the final output for the given
input sequence. This comprehensive process seam-
lessly integrates the model’s understanding of both
speech and text modalities to produce coherent and
natural-sounding speech output.

4 Experiments

This section describes the experimental setup and
datasets used for evaluating the proposed ap-
proach. The experiments were conducted using
the LibriSpeech-360 and DailyTalk datasets, which
contain speech recordings and corresponding tran-
scriptions. It also provides details on the dataset
statistics, experimental configurations, and hyper-
parameter settings used for training and evaluation.

4.1 Dataset

Librispeech: We utilized the LibriSpeech-3603

variant (Panayotov et al., 2015), sourced from au-
diobooks, which offers a dataset consisting of ap-
proximately 360 hours of audio recordings, each
accompanied by its respective transcription and we
present a summary of their statistics in Table 1.
This vast corpus directly links speech and text, pro-
viding a rich training ground for our model to un-
derstand the relationship between speech and text
tokens. The dataset is structured in an alternative-
cross-modal format, alternating between speech
sequences and text sentences. Each data point con-
sists of speech tokens enclosed within speech start
and end tokens, followed by a text sentence, also en-
closed within text start and end tokens. This format
ensures clear boundaries between speech and text
modalities. The data modeling of the LibriSpeech-
360 is illustrated in the Figure 3a.

3LibriSpeech ASR corpus: https://www.openslr.org/12

8205



Dataset Libri-speech Daily talk

hours 360 hours 20 hours
Total sentences 28,539 2,541

Train Split:

Speech Tokens 20 M 1.1 M
Text Tokens 4.1 M 0.15 M

Validation Split:

Speech Tokens 0.3 M 0.12 M
Text Tokens 63.2k 17.5k

Table 1: This table illustrates the statistics of the
datasets utilized in our work.

DailyTalk: We also utilized the DailyTalk
dataset4 (Lee et al., 2022), containing approx-
imately 20 hours of speech conversations and
their transcripts. We present a summary of their
statistics in Table 1. This dataset was employed
to teach the alignment between conversational
speech and text in a cross-modal context. The
conversations are structured to indicate the speaker,
denoted as <A> or <B>, with their corresponding
speech tokens enclosed within speech start and end
tokens, or text sentences enclosed within text start
and end tokens. This fixed configuration maintains
consistency in the dataset structure, facilitating
effective training of the model. The data modeling
follows a format similar to LibriSpeech and
alternative-cross-modal approach, as illustrated in
Figure 3b.

4.2 Experimental setup
For the proposed work we adapted HuBERT in
speech tokenizer. The base LLM used was Llama-
2 7B, which has 32 decoder layers and a vocabulary
size (N) of 32,000 with a hidden dimension (d) of
4096. Extensive experimentation was performed
on the following aspects:

• Since speech is a continuous signal, we
need to discretize it before feeding it to the
model when adapting cross-modality. We
employed three models: mHuBERT-km1000,
HuBERT-Base-KM50, and HuBERT-Base-
KM100, which discretize speech into units
having 1000, 100, and 50 clusters, respec-
tively.

4DailyTalk: https://github.com/keonlee9420/DailyTalk
Both datasets are licensed under CC BY 4.0.

• As mentioned in the previous section, we at-
tempted transfer learning by replacing the ran-
domly initialized ((speech token embeddings
H(<0>, <1> ..<Sk−1>) where H is the hid-
den state of the word embedding matrix for
the respective <Sk−1>th token)) with Hubert’s
hidden states.

• The impact of using increasing ranks on the
model’s learning capability was investigated,
as LaRA (Large Rank Adaptation) was dis-
covered during this process.

The hyperparameters and training configurations
employed in our experiments are presented in Ta-
ble 2. The training and inference were carried out
utilizing a computational setup consisting of four
V100 Tesla GPUs, each equipped with 32GB of
VRAM (Video RAM). Three of the GPUs, collec-
tively providing 96GB of VRAM, were dedicated
to the training phase, while the remaining 1 GPU,
with its 32GB of VRAM, was allocated for infer-
ence and testing purposes.

Hyper parameter Value

Rank-(r) r = 2n−1, n ≤ 11
Scaling_factor (ψ) 1
Dropout 0.2
Learning Rate 2× e−5
Batch size 1
adam_beta1 0.9
adam_beta2 0.999
adam_epsilon 1× e−8
rms_norm_eps 1× e−5

Table 2: Hyperparameters for the Training, where
ψ = α/rank and ψ used to give weight to the resultant

of LaRA matrices as follows, h = W0 + ψ(βα).

5 Analysis

We employed the cross-entropy loss for training
the network, which is defined as:

L = −
N∑

i=1

yi log(ŷi) (2)

where yi represents the ground truth probability
distribution over the vocabulary, and ŷi denotes the
predicted probability distribution generated by the
model. Minimizing this cross-entropy loss is equiv-
alent to maximizing the conditional probability of
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(a) Llama-2: Train-loss / Billion Tokens (b) Llama-2-LaRA (Ours): Train-loss / Million Tokens

Figure 4: The training of the base model (Llama-2-7B) with increasing parameters, as well as the training of our
proposed work with increasing ranks. In sub-figure b, we can’t see the saturation of loss while increasing the ranks.

the next token xt (which can be either a speech
token si or a text token tj) given the previous to-
kens x1, x2, . . . , xt−1 as mentioned in equation 1.
This objective reflects the model’s cross-modal un-
derstanding between speech and text, as it learns
to associate speech units with corresponding text
by optimizing the likelihood of generating the cor-
rect token sequence from the cross-modal input
consisting of both speech and text tokens.

5.1 Text-Speech Embedding Space

Initially, word embeddings and speech embeddings
are unrelated. By utilizing the Alter cross-modal
data modeling format for training auto-regressive
models on cross-modal understanding, our ap-
proach can learn patterns between speech and text
sequences. This allows the model to capture lin-
ear relationships between text and speech tokens,
bringing their embeddings closer together in the
shared embedding space, as shown in Figure 5. In
figure 4 we illustrate base model (llama-2) training
and our model (cross-modal) training with increas-
ing ranks.

5.2 Model performance on larger ranks

When utilizing base models, adapting them to dif-
ferent tasks is essential due to computational and
data limitations that make it impractical to train
entire models from scratch.

LoRA (Low-Rank Adaptation) introduces
adapters with rank r ≪ min(d, k), allowing ef-
ficient training with limited data and computational
resources. However, this method is effective only
for adapting models within the same modality, as
different modalities have embeddings or hidden
states that do not lie in the same space, and thus,

the model lacks understanding between them.

Rank Text Speech Sp-Txt Trainable %

1 1.23 0.22 1.97 3.76
4 1.18 0.20 1.95 3.80
16 1.16 0.17 1.92 3.97
32 1.16 1.17 1.90 4.20
64 1.16 0.17 1.88 4.66

128 1.16 0.17 1.84 5.56
512 1.16 0.18 1.79 10.60

1024 1.17 0.18 1.77 16.54
2048 - 0.19 1.74 26.34

Table 3: This table represents the validation loss for
text, speech, and speech-text cross-modal learning at
different ranks, along with the percentage of trainable
parameters. Blue indicates the first least validation loss
across text and speech. Red highlights where the loss
begins to increase, suggesting saturation in the case of
Speech and Text, for the speech-text (Sp-Txt) modality,
where the loss consistently decreases, indicating no sat-
uration.

As shown in Table 3 and Figure 4b, increasing
the ranks of cross-modal adapters leads to better
performance. However, most prior work focuses
on model architectures (Wu et al., 2023; Shen et al.,
2024) rather than experimenting with adapter ranks
because of computational reasons. As a result,
they overlook the potential benefits of using higher
ranks for cross-modal adapters and blindly employ
low-rank (r ≪ min(d, k)) adapters instead. Our
findings suggest that using higher capacity cross-
modal adapters with larger ranks can significantly
improve cross-modal performance by better cap-
turing inter-modality relationships. Still keeping
r < min(d, k) such that we don’t overpass the base
model parameters. Lower ranks perform better (Hu
et al., 2021) when the modality is the same, and
our model should address task-specific problems or
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(a) Before training

(b) After training

Figure 5: t-SNE visualization of the same text
embeddings (TXT-E) and speech embeddings (SP-E)
before and after the cross-modal training procedure.

situations that require little tweaking to the model.

5.3 K-means Cluster Indices
We experimented with different k-means cluster
sizes: 50 (HuBERT-km50), 100 (HuBERT-km100),
and 1000 (HuBERT-km1000). We initially as-
sumed that models with fewer clusters would per-
form better, as they would face less uncertainty
in token prediction and could more effectively
understand the relationships between speech to-
kens. However, the results, illustrated in Figure
6a, showed a different trend. In the early training
stages, HuBERT-km1000 exhibited higher training
and validation loss compared to HuBERT-km50
and HuBERT-km100, which was expected due to
the increased number of tokens to predict. Surpris-
ingly, as training progressed, the loss for HuBERT-
km1000 decreased and eventually fell below the
losses for HuBERT-km50 and HuBERT-km100.
This unexpected result prompted further analy-
sis. The higher cluster indices in self-supervised
speech models like HuBERT capture more de-
tailed speaker, gender, and acoustic information
(Sicherman and Adi, 2023). The HuBERT mod-
els with larger cluster sizes effectively preserve

(a) Training loss

(b) Validation loss

Figure 6: Training and Validation losses for HuBERT
models with different k-means cluster sizes

speaker and gender information while still captur-
ing phoneme details. Our findings mention that
HuBERT-km1000 benefits from learning richer rep-
resentations, encompassing more speaker, gender,
and acoustic details, which enhances its ability to
understand and predict speech tokens. This leads to
a reduction in loss over time, despite the increased
complexity of predicting more tokens.

In summary, while we initially favored models
with fewer clusters, our experimental results and
insights from related research suggest that higher
cluster indices can enhance speech representation,
ultimately improving model performance on spo-
ken language modeling tasks.

5.4 MMLU Evaluation on Text-Only
Performance

We conducted an additional experiment using the
MMLU dataset. We compared the performance of
the Llama-2 7B baseline model with our Llama-
2-LaRA models to determine if there were any
significant declines in text generation capabilities.
As shown in Table4, our results show a slight de-
crease in performance across most subjects, with
the exception of formal logic, where the perfor-
mance remained consistent with the baseline. This
slight decline can be attributed to the shift in text
embedding vectors caused by cross-modal learning,
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Subject Base model LaRA

Astronomy 0.39 0.36
College Biology 0.44 0.38
College CS 0.31 0.27
High School CS 0.44 0.32
College Mathematics 0.31 0.27
Formal Logic 0.24 0.26

Average 0.35 0.31

Table 4: Comparison of MMLU performance between
the Base Model (llama-2-7B) and llama-LaRA-7B. The
table shows a slight decrease in text-only performance
for most subjects.

as illustrated in the t-SNE plot in Figure 5. Given
the multimodal capabilities of the model, which
now supports both speech and text, this minor de-
crease is acceptable and expected.

The results indicate that while there is a slight re-
duction in performance, the overall text generation
capability of the model remains largely unaffected
by the integration of speech modality.

6 Conclusion and Future Work

In this paper, we presented a large-rank adapter for
Llama-2 7B LLM. Our approach shows the adapta-
tion of the speech modality for the pretrained LLM
with a significantly larger rank of 2048. The find-
ings underscore the importance of adapting existing
text-based LLMs to incorporate speech modality
without the need for training from scratch. Future
work will focus on extending this framework to
other cross-modal applications, further enhancing
the versatility and applicability of large language
models in multimodal contexts.

7 Ethical considerations

All datasets utilized in this work (LibriSpeech and
DailyTalk) are licensed under the Creative Com-
mons BY 4.0 license, ensuring their ethical and
legal use for research purposes. Additionally, the
base language model employed, Llama-2 7B, is
open-sourced under the Llama2 license, further
promoting transparency and responsible develop-
ment.

However, risks exist with large language models
like biases in the training data or misuse of gen-
erated content. Careful evaluation and safeguards
are needed before real-world deployment. Integrat-
ing speech raises privacy concerns since voice data
contains personal identifiers. Anonymization tech-
niques and strict data protocols must protect user

privacy.
While focusing on technical aspects, it is impor-

tant to consider the broader ethical implications
of increasingly capable AI systems. Continuous
efforts towards transparency, accountability, and
responsible AI development benefiting society are
crucial.

Limitations

We solely focused on cross-modal integration be-
tween speech and text modalities. The exploration
of vision modality and its integration with speech
and text is left for future work. We limited our
experiments to the llama-2 7B base model, as our
primary objective was to demonstrate the effec-
tiveness of cross-modal integration and the LaRA
approach. Choosing a single base model allowed us
to conduct consistent and controlled experiments to
showcase our findings. Considering multiple base
models would have introduced additional computa-
tional constraints and complexity, which we aimed
to avoid in this initial study.
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