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Abstract

Large Language Models (LLMs) are increas-
ingly deployed in user-facing applications
worldwide, necessitating handling multiple lan-
guages across various tasks. We propose a
metric called Information Parity (IP) that can
predict an LLM’s capabilities across multiple
languages in a task-agnostic manner. IP is well-
motivated from an information theoretic per-
spective: it is associated with the LLM’s effi-
ciency of compressing the text in a given lan-
guage compared to a reference language. We
evaluate IP and other popular metrics such as
Tokenization Parity (TP) and Tokenizer Fertil-
ity (TF) on several variants of open-sourced
LLMs (Llama2, Gemma, Mistral). Among all
metrics known to us, IP is better correlated
with existing task-specific benchmark scores
from the literature and thus better predicts such
scores in a certain language. These findings
show that IP may be useful for ranking mul-
tilingual LLMs’ capabilities regardless of the
downstream task.

1 Introduction

LLMs comprehend and generate human language
across various domains and tasks, powering appli-
cations like virtual assistants and machine transla-
tion. As LLMs become more widely used globally,
it is necessary to assess their capabilities in pro-
cessing and understanding a specific language.

1.1 Limitations of Current Evaluation
Methods

Standard evaluation metrics for multilingual LLMs
focus on specific tasks like cross-lingual question
answering (Artetxe et al., 2020), cross-lingual NLI
(Conneau et al., 2018), or machine translation.
This approach presents challenges. Task-specific
datasets can be limited in scope or biased (Huang
et al., 2024), the number of languages considered
might be restricted, and the metrics used can be
difficult to compare or interpret across different

Benchmark/Metric IP (Ours) TP
MMLU 0.95 0.83
ARC 0.91 0.74
HellaSwag 0.89 0.75

Table 1: Average absolute Pearson correlation of Infor-
mation Parity (IP) and Tokenization Parity (TP) metrics
with multilingual benchmarks performance. Metrics
were computed on Flores-200 and correlated to the trans-
lated MMLU, ARC, HellaSwag benchmarks from Lai
et al. (2023b) for Mistral 7B IT, Gemma 2B IT, Llama2
7B, 13B, 70B chat models.

tasks and languages (Xu et al., 2024). Additionally,
they often fail to capture the underlying linguistic
factors that influence multilingual ability, such as
variations in grammar, vocabulary, semantics, and
pragmatics (Rajaee and Monz, 2024). Word over-
lap metrics like ROUGE (Lin, 2004) and BLEU
(Papineni et al., 2002) can be unsuitable for com-
parison between languages with significant word
order and phrasing variations. In addition, these
metrics can produce vastly different scores for lan-
guages with rich morphology, even if the underly-
ing meaning remains the same. This is further com-
plicated since multilingual task scores sometimes
exhibit low correlations between languages and can
exhibit unexpected performance drops as models’
sizes increase (Ali et al., 2024; Ahuja et al., 2024).
This situation is in contrast to English downstream
task scores, which often correlate with model size
(Brown et al., 2020). Furthermore, existing tasks
and benchmarks are often skewed by data contami-
nation (Ahuja et al., 2024), where models are ex-
posed to test data during training or fine-tuning,
leading to artificially magnified performance.

1.2 Prompt-Based Evaluation Shortcomings

In LLM evaluation benchmarks, the LLM is given a
natural language query or instruction as the prompt,
and is expected to produce a natural language re-
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Metric/Task ARC HellaSwag MMLU gen_enid belebele xcopa paws-x xnli conv_enid
IP Flores 0.93 0.98 0.98 0.82 0.88 0.95 0.92 0.88 0.86
IP Tatoeba 0.87 0.95 0.97 0.98 0.83 0.92 0.97 0.79 -
TF 0.54 0.67 0.68 0.84 0.84 0.93 - 0.66 0.83
TP 0.72 0.82 0.84 0.82 0.94 0.78 - 0.71 0.79

Table 2: Pearson correlation (absolute values) between metrics and downstream tasks performance under the
LLM Mistral 7B IT. Only correlation values that are statistically significant at level 0.05 are shown. Our proposed
Information Parity (IP) typically better correlates with downstream tasks/benchmarks than other metrics. IP Flores
(respectively, Tatoeba) refer to IP evaluated on the multilingual dataset Flores 200 (Tatoeba), TF and TP refer to the
tokenization metrics, gen_enid, conv_enid refer to IN22 dataset.

sponse or answer. However, the way the prompt
is phrased can significantly impact performance
(Sclar et al., 2023), and different models might re-
quire tailored prompts to showcase their strengths.
Finding these optimal prompts can be a laborious
process that typically depends on human exper-
tise. This situation may lead to irrelevant perfor-
mance judgment, since in certain applications users
may lack the expertise to craft optimal prompts
(Zamfirescu-Pereira et al., 2023). Additionally,
prompts might only assess a narrow aspect of its
language understanding or generation, overlooking
its broader potential or limitations (Biderman et al.,
2024).

These issues escalate in multilingual perfor-
mance evaluations. Inefficient tokenization in a
certain language can limit the number of exam-
ples that can fit into the context window, hindering
a model’s ability to showcase its strengths (Ahia
et al., 2023). Moreover, the need for cross-lingual
prompting strategies introduces additional evalua-
tion variations (Lai et al., 2023a; Qin et al., 2023).
These limitations emphasize the need for a more
standardized evaluation method.

1.3 Evaluation Through the Lens of
Tokenization and Perplexity

Another potential way to evaluate multilingual
LLMs is to measure their intrinsic ability to model
the probability distribution of natural language, via
perplexity. Perplexity quantifies how well an LLM
can predict the next token given a context, and is of-
ten used as a proxy for language modeling quality.
However, perplexity is sensitive to the choice of
vocabulary and tokenizer (Remy et al., 2024), and
can vary significantly across languages and models
(Minixhofer et al., 2022), which makes it imprac-
tical for multilingual evaluations (Cao and Rimell,
2021). It inherently disadvantages languages with
high morphological complexity or languages which

suffer from high tokenizer fertility, requiring more
tokens to represent the same information, as it av-
erages over tokens.

Previous work suggested assessing an LLM’s
multilingual capabilities via tokenization metrics
such as Tokenization Parity (Petrov et al., 2023)
and Fertility (Rust et al., 2021). However, (Ali
et al., 2024) found no correlation between these
metrics and some downstream task performance,
and argued that they have limited explanatory
power for multilingual LLMs. Moreover, newer to-
kenizers such as Gemma’s (Team et al., 2024) miti-
gate some of the multilingual tokenization issues,
potentially reducing the relevance of tokenization-
based metrics in some cases. This motivates a
performance evaluation approach that captures the
information representation capabilities of multilin-
gual LLMs beyond tokenization.

1.4 Information Parity

In this paper, we propose to measure an LLM’s
general language capabilities using a novel metric
called IP. Roughly speaking, for text in language
L, IP is the ratio between the English variant of the
text’s negative log-likelihood and the L text’s neg-
ative log-likelihood. As we explain below, IP has
an interesting information-theoretic interpretation
as the efficiency relative to English of losslessly
compressing the L text using the LLM’s proba-
bilities followed by an entropy encoder (Izacard
et al., 2019; Bellard, 2021; Mao et al., 2022; Levin
and Kipnis, 2024). Such compression strategy at-
tains state-of-the-art performance on large texts
(Mahoney, 2023). Therefore, we may motivate
IP from the concept of an ideal language-agnostic
compressor that encodes text in any language with
optimal efficiency. Since such a compressor is not
attainable, we view English as a proxy for the most
efficient encoding an LLM can achieve as mea-
sured in bits per token. This view is motivated
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Metric/Task MMLU ARC Hellaswag mlqa belebele ind-xnli xsotrycloze xrisawoz
IP Flores 200 0.96 0.82 0.73 0.94 0.52 0.87 0.94 0.97
IP Tatoeba 0.90 0.81 0.67 0.89 0.77 - 0.84 -
TF - 0.52 0.61 - - - 0.74 -
TP 0.95 0.52 0.53 0.84 - 0.90 - -

Table 3: Pearson correlation (absolute values) between metrics and downstream tasks/benchmarks performance
under the LLM Gemma 2B. The Information Parity (IP) metric we propose typically better correlates with
downstream tasks/benchmarks than the other metrics. Xrisawoz refers to the dialogue action accuracy benchmark
subset. Only statistically significant values at level 0.05 are shown.

by the overwhelming prevalence of English text
in the training corpus of popular LLMs (Touvron
et al., 2023; Team et al., 2023; Achiam et al., 2023;
Jiang et al., 2023). By measuring how efficiently
an LLM represents the same information across
different languages, we capture its potential for
multilingual performance relative to a reference.
In our case, the reference is the efficiency of its
English representation.

Since IP measures the total amount of informa-
tion/uncertainty in a sequence as seen by the LLM,
it is less affected by the tokenizer. This makes IP
more robust to variations in tokenization across dif-
ferent languages and models compared to similar
metrics like perplexity (Wang et al., 2023).

1.5 Contributions
We define IP and provide extensive evaluations of
it and other metrics on publicly available LLMs
like Llama2 (Touvron et al., 2023), Gemma (Team
et al., 2024), and Mistral (Jiang et al., 2023). We
demonstrate the usefulness of IP by analyzing its
ability to predict downstream tasks and benchmark
scores including MMLU (Hendrycks et al., 2021),
ARC (Clark et al., 2018), and HellaSwag (Zellers
et al., 2019), which exhibit high correlation to hu-
man preference as seen on Chiang et al. (2024).
We compare IP with existing tokenization-based
metrics like Tokenization Parity and Fertility, and
the proportions of a language text in training data1

(PTD).
Our results show that IP consistently exhibits

strong correlations with the most popular down-
stream tasks and benchmarks. Especially those that
require natural language understanding and com-
monsense reasoning across multiple domains and
that align well with human preferences. Standard
analysis of variance shows that IP has superior pre-
dictive power compared to other metrics we tried.

1PTD is taken from the Llama2 paper (Touvron et al.,
2023).

These findings suggest that IP captures an LLM’s
multilingual capabilities better than any single tok-
enization metric or task-specific/benchmark scores.

Our findings imply that IP is useful as a standard-
ized approach for comparing capabilities across
languages and models which is direct, prompt-
agnostic, task-invariant, and resilient to language
and tokenization biases. Due to its computational
efficiency and predictive prowess, IP emerges as
a straightforward method to evaluate multilingual
capabilities, reducing the need for inconsistent and
complex downstream task evaluations.

1.6 Structure
The remainder of this paper is as follows: We de-
fine the IP metric in Section 2. We define the ex-
perimental setup and analysis methods in Section 3.
We discuss the results in Section 4. We discuss
limitations and challenges associated with the IP
metric in Section 5. Concluding remarks are in
Section 6.

2 Information Parity: Theoretical
Background and Definition

For a given text w1:n = (w1, .., wn) where wi is
the i-th token, denote its negative log-likelihood
under a language model (LM) by

I(w1:n) = − log2 PLM(w1, ..., wn) (1)

=
n∑

i=1

− log2 PLM(wi|w1:i−1)

where PLM(w1, ..., wn) is the probability the LM
assigns to w1:n. In the discussion below, we use
logarithm in base 2 so that I(w1:n) is measured in
bits. A lower value of I(w1:n) indicates that the
LM assigns a higher probability to the observed
text, implying better prediction accuracy (Jurafsky
and Martin, 2024). In the context of data com-
pression, I(w1:n) is roughly the length of the bi-
nary string produced by a compression scheme
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Metric/Task MMLU ARC HellaSwag xnli pawsx xcopa xquad mlqa
IP Flores 200 0.95 0.93 0.96 0.93 0.91 0.89 0.84 0.82
IP Tatoeba 0.89 0.87 0.94 0.92 0.96 0.96 0.82 0.83
PTD - 0.62 0.68 - 0.88 - - -
TF 0.72 0.66 0.71 0.86 - - 0.83 0.84
TP 0.80 0.76 0.79 0.69 0.94 - 0.81 -

Table 4: Pearson correlation (absolute values) between metrics and downstream tasks/benchmarks performance
under the LLM Llama 2 7B. Only correlation values that are statistically significant at level 0.05 are shown.
The proposed Information Parity (IP) metric consistently demonstrates a stronger correlation with multilingual
downstream task performance compared to other evaluated metrics, indicating its superior ability to predict LLM
performance in multilingual settings.

employing the language model probabilities and an
arithmetic encoder (Izacard et al., 2019; Bellard,
2021; Mao et al., 2022; Levin and Kipnis, 2024);
such a scheme achieves state-of-the-art compres-
sion results on large texts (Mahoney, 2023). When
the text is seen as a random sequence of tokens
sampled from some generating mechanism Pgen

and (Pgen,PLM) satisfies some regularity condi-
tion, the limit I(W1:n)/n almost surely exists and
converges to the cross-entropy between Pgen to
PLM (Gray, 2011). This limit also coincides with
the limiting number of bits per token attained by
an asymptotically optimal implementation of the
compression scheme mentioned before (Clarke and
Barron, 1990). These well-known characterizations
of (1) justify the interpretation of I(w1:n) as the
“information content” of the text w1:n under the
LM.

Information Parity: Suppose we have English
text wE and its translation to another language wL.
We define the IP of w under the LM as

IP(wL) =
I(wE)

I(wL)
(2)

In words, IP is the ratio between the information
content of the text in English and the information
content of the translated text in another language.
It aims to measure how efficiently the LLM repre-
sents information provided by a text in the language
L compared to the same information provided in
English. A higher IP indicates a higher represen-
tation efficiency hence a closer alignment with the
ideal language-agnostic compressor.

3 Experimental Setup

3.1 Datasets

• Tatoeba (Tiedemann, 2020) a multilingual
dataset of Machine Translation (MT) bench-

marks derived from user-contributed transla-
tions. Presents inherent variance and bias be-
tween languages since the translation is not
multi-parallel across all languages and the
dataset is imbalanced between languages. We
used a subset of 33 languages in evaluations.

• Flores-200 (Team et al., 2022) a multilin-
gual MT dataset that covers 200 languages,
contains the translated variants of a sentence
across all languages, and has the same number
of samples across all languages. We used a
subset of 50 languages2.

3.2 Models
We perform our analysis on five open-source LLMs:
the instruction-tuned variant of Mistral-7B v0.1
(Jiang et al., 2023), Llama-2-7B-chat, Llama-2-
13B-chat, and Llama-2-70B-chat variants (Touvron
et al., 2023) and Gemma-2B-it (Team et al., 2024).
The latter is the smallest open-sourced instruction-
tuned model from Google and is known for low
rates of tokenizer fertility across languages. We
used the default configuration of each model as
provided in the Huggingface platform (Wolf et al.,
2020).

3.3 Evaluations
We evaluate IP on all datasets in Section 3.1, per
each model variant and across multiple languages.
To conduct further evaluations and comparisons of
multilingual model performance, we use the multi-
lingual variants of MMLU (Hendrycks et al., 2021),
HellaSwag (Zellers et al., 2019), and ARC (Clark
et al., 2018), which were translated by Lai et al.
(2023b) in 26 languages3. We use a 5-shot prompt

2We used the test split of the datasets from huggingface:
Tatoeba, Flores.

3Due to time and compute constraints we evaluate MMLU
only on a subset of zh, hi, ko, ar, de, es, ru, vi languages for
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Figure 1: Inverse Tokenization Parity versus Informa-
tion Parity for Llama 2 7B. Color corresponds to lan-
guage script.

on MMLU, a 25-shot prompt on ARC, and a zero-
shot prompt for HellaSwag. The full evaluation
results are available in Appendix A.

3.4 Additional Evaluations from the
Literature

We used results of evaluations on downstream tasks
reported in MEGAVERSE (Ahuja et al., 2024)
and from our results on the translated variants of
MMLU ARC and HellaSwag benchmarks4 from
(Lai et al., 2023b), as well as results reported in Liu
et al. (2024) for Llama 13B and 70B chat models
under EN-BASIC prompt variant.5 We compute
the Tokenization Parity values on the Flores-200
(Team et al., 2022) dataset and use the Fertility
values given to us by the authors of Ahuja et al.
(2024).

3.5 Statistical Analysis
We analyze our metrics and task/benchmark scores
data independently for every model variant. Our
analysis is based on standard regression and analy-
sis of variance (c.f. Chatterjee and Hadi (2013, Ch.
3)). Consider the simple regression model

yi = β0 + β1xi + ϵi, i = 1, ..., n, (3)

where y = {y}ni=1 is the target score vector, x =
{xi}ni=1 is the predictor vector, ϵ = {ϵi}ni=1 is the
vector of residuals, and β0 and β1 are scalars. For
a given (x, y) vector pair, we fit coefficient β̂0 and
β̂1 that minimize the squared norm of ϵ under the

Gemma and 13B Llama models, and use the reported results
of MMLU on the 70B model in (Bendale et al., 2024).

4All evaluations utilized ~280 GPU hours on A100-80GB.
5For some combinations of language and bench-

mark/metric, we do not have values due to the lack of data
or translation in the original datasets, hence we indicate the
missing values with dashes in the tables.

model (3). Denote ŷi = β̂0 + β̂1xi. The squared
Pearson correlation ρ2 between x and y is given by

ρ2(y;x) = 1− SSres

SStot
:= 1−

∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − ȳ)2

,

where ȳ := 1
n

∑n
i=1 yi. We check that this correla-

tion is significantly different than zero by testing

f(y;x) =
SStot − SSres

1
n−2SSres

, (4)

against F1,n−2, the F distribution with 1 over n− 2
degrees of freedom. We summarize the result by
the P-value

p(y;x) := Pr [f(x; y) ≥ F1,n−2] ,

and reporting that ρ(y;x) is significant if p(y;x) <
0.05. The adjusted coefficient of determination is
useful to measure the explained variance in predict-
ing y based on x:

R2
adj(x; y) :=

n− 1

n− 2
ρ2(y;x). (5)

We are typically interested in the ability of
one x variable to predict multiple target variables
y1, ..., ym. For example, x is the IP metric, and the
y s are the different benchmark/task scores. In this
setup, each (x, yj) pair has a different number of
samples nj . Additionally, the assumption of equal
residual variances in (3) underlying many of the
existing combination methods does not hold in our
case. Arguably, the most reasonable way to summa-
rize prediction errors across multiple independent
predictions in this case is by Fisher’s combination
statistic of F-tests’ P-values:

χ2
y1,...,ym;x :=

1

m

m∑

j=1

2 log(1/pj(yj ;x)), (6)

where the j-th F-test is associated with the regres-
sion of yj on x. Note that χ2

y1,...,ym;x has a chi-
squared distribution over one degree of freedom
when all F statistics f(yj ;x) of (4) are distributed
as their null, hence the larger χ2

y1,...,ym;x, the bet-
ter x predicts the targets y1, ..., ym. Consequently,
we treat χ2

y1,...,ym;x as an index of success of x in
predicting y1, ..., ym in Table 5 .

To compare the predictive power of different
metrics, we also performed competitive regression
analysis for each model variant and downstream
task score. In this analysis, we tested whether
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Result/Metric IP Flores IP Tatoeba TP TF PTD
Llama 2 7B Chat
χ2 26.2 18.62 12.75 10.21 4.73
R2

adj 0.79 0.78 0.61 0.56 0.49
# of significant 8 8 6 6 3
Llama 2 13B Chat
χ2 12.59 8.25 10.24 9.77 4.62
R2

adj 0.77 0.81 0.66 0.66 0.59
# of significant 9 5 10 10 5
Llama 2 70B Chat
χ2 10.64 - 7.89 6.01 3.00
R2

adj 0.73 - 0.55 0.59 0.78
# of significant 15 - 12 8 2
Gemma 2B IT
χ2 7.51 6.27 5.22 2.84 -
R2

adj 0.73 0.63 0.62 0.33 -
# of significant 9 6 6 3 -
Mistral 7B IT
χ2 16.41 9.89 12.49 7.79 -
R2

adj 0.74 0.82 0.66 0.59 -
# of significant 12 9 15 14 -

Table 5: Reported averaged chisquared score (6), averaged R2
adj , and the number of significant correlations, all

associated with prediction capabilities under a linear model as explained in 3.5 (higher is better). Missing values
indicate the unavailability of data, PTD stands for the proportion of language text in training data.

adding a second metric as a predictor x′ to a linear
model that already includes a first metric x can sig-
nificantly reduce the mean squared error (MSE) of
the prediction. This is measured by testing

f(y;x, x′) =
SSres − SS′

res
1

n−3SS
′
res

against F1,n−3, where SS′
res is the residual sum

of squares of the extended model. We report the
results of the competitive regression analysis in 7.

4 Results

4.1 Prediction of Multilingual Performance

The results in Tables 2,3, and 4 show that IP ex-
hibits strong and consistent correlation with down-
stream tasks performance on all tested models. The
results in Table 5 further show that IP is useful in
predicting multilingual capabilities across various
auto-regressive model families and sizes. Notably,
this observation holds for Indic languages, a cate-
gory of low-resource languages in the sense that
their PTD is low. We thus conclude that IP may
serve as a reliable predictor of multilingual per-
formance even for low-resource languages, where

Model/Metric TP TF PTD
Mistral 7B 0.72 0.47 -
Gemma 2B 0.81 0.61 -
Llama 2 7B 0.72 0.62 0.76
Llama 2 13B 0.72 0.62 0.67
Llama 2 70B 0.75 0.63 0.56

Table 6: Pearson correlation (absolute values) between
IP and tokenization metrics computed on Flores 200 and
PTD. High correlation values indicate a strong relation-
ship between tokenization, PTD and language model
effectiveness in encoding multilingual text. Only statis-
tically significant values at level 0.05 are shown.

a lack of data and benchmarks makes it difficult
to evaluate language models using conventional
methods.

4.2 Relation between Tokenization and
Information Parity

Our evaluations reveal that the inverse TP score of
languages with Latin script is high, even if those
languages do not share many linguistic features
with the Indo-European languages; see for example
the languages Euskara and Quechua in Figure 1
showing the relation between IP and inverse TP for
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Figure 2: Gemma 2B IT Information Parity against
inverse Tokenization Parity colored by language script.

Llama2 7B. On the other hand, it appears that IP
manages to capture the linguistic distance between
these languages and the Indo-European and thus
predicts their performance more realistically.

The relation between IP and TP is evident due
to their high correlation in Table 6. This correla-
tion suggests that TP plays a crucial role in LLMs
effectiveness at encoding information in these lan-
guages, as is expected from the viewpoint of data
compression (Ziv and Lempel, 1978). We also ob-
serve high correlations between IP and PTD for the
Llama models, whereas the correlation between
PTD and tokenization metrics is not statistically
significant. This supports our claim that IP takes
into account the samples seen during the training
process which affect the inherent abilities of the
model to encode content in different languages.

Our competitive analysis findings in 7 suggest
that TP and TF are captured within the explained
variance that accounts for IP. This, in turn, could of-
fer insights into when specific aspects of tokeniza-
tion significantly influence the model’s multilingual
performance in downstream tasks. While further
analysis and experiments are necessary to solidify
this hypothesis, it presents promising opportunities
for future research.

5 Limitations

Instruction tuning: The ideology behind IP is that
good multilingual LLMs act as efficient language-
agnostic compressors. Namely, they efficiently en-
code information in text, regardless of the text’s
language. However, we evaluated instruction-tuned
LLMs via reinforcement learning with human feed-
back (RLHF) process (Ouyang et al., 2022) and
DPO (Rafailov et al., 2023). This tuning may af-
fect their compression efficiency. Additionally, IP
does not account for the ability of LLMs to follow

instructions in different languages, which may be
relevant for some applications or tasks.

Dataset contamination: IP relies on parallel
corpora that contain the same information in dif-
ferent languages. However, some of these corpora
may have been used in pre-training which may in-
flate their compression performance.

Machine translation artifacts: Some of the
task-specific metrics like MMLU, ARC, and Hel-
laSwag were machine translated by GPT3.5 in Lai
et al. (2023b). This translation may add biases
and artificats to data that might alter performance
measurements on these benchmarks.

Model/Metric IP Flores TP
Mistral 7B 10 10
Gemma 2B 7 3
Lllama 7B 7 2
Lllama 13B 8 4
Llama 70B 9 5
Model/Metric IP Flores TF
Mistral 7B 9 1
Gemma 2B 7 3
Lllama 7B 7 2
Lllama 13B 7 2
Llama 70B 7 2

Table 7: Competitive regression analysis of metrics as
predictors for downstream tasks. The numbers indicate
how many tasks benefit significantly in terms of MSE
from adding a second predictor to a model that already
includes the other predictor.

6 Conclusions

We introduced the Information Parity (IP) metric
to provide a task-agnostic evaluation of the multi-
lingual capabilities of LLMs. IP is easy to evaluate
and has a natural information-theoretic interpreta-
tion as the efficiency of an LLM in representing the
same information across different languages. Eval-
uations with publicly available LLMs reveal strong
correlations between IP and a diverse set of down-
stream tasks, particularly those involving natural
language understanding and commonsense reason-
ing. These properties suggest that IP could enable
researchers and practitioners to assess model per-
formance even for low-resource languages, leading
to a more comprehensive understanding of LLM
behavior across all languages.
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Code Llama2 70B Llama2 13B Llama2 7B Gemma 2B Mistral 7B
ru 0.73 0.74 0.74 0.72 0.75
fr 0.76 0.77 0.77 0.77 0.79
ko 0.57 0.57 0.57 0.71 0.56
ja 0.65 0.65 0.66 0.74 0.55
he 0.44 0.44 0.44 0.66 0.39
hu 0.63 0.62 0.61 0.54 0.61
no 0.65 0.64 0.64 0.63 0.53
hi 0.47 0.46 0.46 0.61 0.38
fi 0.67 0.64 0.62 0.55 0.4
es 0.7 0.7 0.72 0.73 0.74
de 0.75 0.75 0.75 0.74 0.75
it 0.72 0.72 0.72 0.69 0.73
nl 0.72 0.72 0.7 0.69 0.71
zh 0.64 0.63 0.65 0.79 0.65
vi 0.64 0.64 0.64 0.72 0.44
id 0.69 0.69 0.68 0.7 0.58
ro 0.66 0.65 0.64 0.63 0.61
uk 0.68 0.69 0.68 0.66 0.66
sr 0.65 0.64 0.63 0.57 0.58
hr 0.65 0.63 0.62 0.62 0.63
da 0.69 0.67 0.66 0.65 0.65
ca 0.68 0.68 0.68 0.59 0.68
ar 0.45 0.44 0.44 0.64 0.4
tr 0.52 0.51 0.5 0.64 0.49
cs 0.69 0.66 0.65 0.65 0.65
th 0.38 0.39 0.39 0.64 0.32
bn 0.35 0.36 0.35 0.51 0.28
bg 0.66 0.65 0.63 0.63 0.61
el 0.45 0.42 0.42 0.55 0.33
ur 0.37 0.36 0.36 0.49 0.31
mr 0.35 0.35 0.35 0.46 0.28
eu 0.37 0.34 0.34 0.47 0.3
et 0.42 0.4 0.39 0.43 0.34
ms 0.6 0.59 0.58 0.64 0.53
as 0.27 0.28 0.28 0.42 0.18
gu 0.33 0.33 0.32 0.4 0.27
ka 0.37 0.35 0.36 0.4 0.24
kn 0.32 0.32 0.32 0.44 0.28
ml 0.33 0.33 0.34 0.45 0.24
np 0.37 0.37 0.37 0.52 0.3
or 0.29 0.28 0.28 0.21 0.21
pa 0.31 0.3 0.29 0.4 0.25
ta 0.37 0.36 0.38 0.53 0.29
te 0.33 0.33 0.33 0.42 0.26
my 0.27 0.27 0.26 0.36 0.17
sw 0.42 0.41 0.4 0.5 0.36
pt 0.73 0.72 0.72 0.73 0.73
ht 0.38 0.36 0.36 0.41 0.31
qu 0.31 0.3 0.3 0.39 0.3

Table 8: Information Parity (IP) - mean values evaluated on the Flores 200 dataset.
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Language Llama2 Gemma 2B Mistral 7B
ru 1.62 1.37 1.85
fr 1.47 1.36 1.6
ko 3.14 1.64 2.44
ja 2.24 1.19 2.15
he 3.26 1.62 3.38
hu 1.78 1.66 2.0
no 1.5 1.34 1.59
hi 4.53 1.85 4.5
fi 1.9 1.61 2.0
es 1.46 1.27 1.58
de 1.41 1.25 1.58
it 1.47 1.35 1.62
nl 1.47 1.33 1.6
zh 1.96 1.08 1.6
vi 2.9 1.37 2.9
id 1.75 1.11 1.84
ro 1.69 1.55 1.81
uk 1.71 1.64 1.93
sr 1.72 1.74 1.89
hr 1.65 1.59 1.77
da 1.53 1.37 1.62
ca 1.51 1.52 1.62
ar 3.37 1.49 3.43
tr 2.09 1.4 2.21
cs 1.69 1.5 1.86
th 4.31 1.83 4.18
bn 5.28 2.65 4.84
bg 1.77 1.62 1.92
el 4.93 2.27 5.19
ur 4.31 1.91 4.26
mr 4.52 2.23 4.6
eu 1.79 1.68 1.89
et 1.76 1.62 1.84
ms 1.82 1.18 1.9
as 6.04 3.19 5.61
gu 9.83 2.98 8.52
ka 4.79 3.62 4.79
kn 10.66 3.26 6.19
ml 5.46 3.2 10.67
np 4.44 2.11 4.4
or 11.39 4.91 11.82
pa 9.3 3.19 10.25
ta 5.8 2.58 5.78
te 10.55 2.84 7.11
my 8.26 4.75 8.09
sw 1.85 1.61 1.94
pt 1.42 1.23 1.55
ht 1.58 1.54 1.67
qu 1.97 1.83 2.06

Table 9: Tokenization Parity evaluated on the Flores 200 dataset
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Language Llama2 7B Llama2 13B Gemma 2B Mistral 7B
ar 0.2724 0.2908 0.292 0.2778
de 0.371 0.4238 0.3046 0.4049
es 0.3928 0.4339 0.3133 0.4183
hi 0.273 0.281 0.2817 0.2714
ru 0.3423 0.3978 0.304 0.3775
vi 0.3178 0.3478 0.3078 0.3052
zh 0.3256 0.3732 0.3221 0.3771
bn 0.2562 - - 0.2535
ca 0.3721 - - 0.3997
da 0.3572 - - 0.3817
fr 0.3814 - - 0.4153
hr 0.3359 - - 0.3635
hu 0.3207 - - 0.3423
id 0.3456 - - 0.3352
it 0.3696 - - 0.4005
kn 0.2634 - - 0.2548
ml 0.2563 - - 0.2477
mr 0.2628 - - 0.266
ne 0.2566 - - 0.2669
nl 0.3643 - - 0.3981
ro 0.3499 - - 0.3735
sk 0.32 - - 0.34
sr 0.3282 - - 0.3553
ta 0.2564 - - 0.2524
te 0.2531 - - 0.2476
uk 0.3348 - - 0.3629

Table 10: MMLU accuracy evaluated on Llama2 7B, Llama2 13B, Gemma 2B and Mistral 7B using Okapi
Evaluation Framework for Multilingual LLMs
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Language Llama2 7B Llama2 13B Gemma 2B Mistral 7B
ar 0.2156 0.2181 0.2275 0.2019
bn 0.1805 - - 0.1942
ca 0.3834 0.4142 0.2333 0.3602
da 0.3102 0.3573 0.2279 0.3222
de 0.3507 0.4089 0.2515 0.3576
es 0.3744 0.441 0.2897 0.3923
fr 0.3781 0.4183 0.2789 0.3867
hi 0.2286 0.2269 0.2337 0.1978
hr 0.302 0.3182 0.2062 0.3182
hu 0.2834 0.3048 0.1986 0.2688
id 0.3043 0.3316 0.2308 0.2376
it 0.3824 0.4303 0.2429 0.3944
kn 0.2178 - - 0.2117
ml 0.2215 - - 0.2172
mr 0.2346 - - 0.2242
ne 0.2104 - - 0.2156
nl 0.3584 0.4106 0.2258 0.3447
ro 0.3256 0.3582 0.2099 0.3299
ru 0.349 0.3841 0.2686 0.355
sk 0.2763 0.2806 0.2335 0.2695
sr 0.2917 0.3311 0.2216 0.3131
ta 0.2215 - - 0.2189
te 0.2088 - - 0.2096
uk 0.3199 0.3918 0.2618 0.3576
vi 0.2812 0.312 0.2538 0.2427
zh 0.3316 0.3744 0.2821 0.3291

Table 11: ARC accuracy evaluated on Llama2 7B, Llama2 13B, Gemma 2B and Mistral 7B using Okapi Evaluation
Framework for Multilingual LLMs
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Language Llama2 7B Llama2 13B Gemma 2B Mistral 7B
ar 0.2867 0.3007 0.2634 0.2793
bn 0.2587 - - 0.2624
ca 0.389 0.4239 0.2801 0.3848
da 0.3784 0.4135 0.2794 0.3718
de 0.4021 0.431 0.2859 0.3952
es 0.4396 0.4742 0.291 0.4334
fr 0.4263 0.4599 0.2913 0.4261
hi 0.2825 0.289 0.2743 0.2759
hr 0.3438 0.3727 0.2712 0.3444
hu 0.3282 0.3467 0.2672 0.3246
id 0.3546 0.3794 0.2713 0.3268
it 0.4059 0.4394 0.2846 0.402
kn 0.2589 - - 0.2558
ml 0.2538 - - 0.2485
mr 0.2593 - - 0.2579
ne 0.2635 - - 0.2583
nl 0.3849 0.4195 0.2757 0.3855
ro 0.3653 0.3936 0.282 0.3581
ru 0.3776 0.4111 0.2764 0.3904
sk 0.3068 0.3231 0.2714 0.3026
sr 0.3408 0.3698 0.2739 0.3455
ta 0.2572 - - 0.2502
te 0.2584 - - 0.2552
uk 0.3664 0.3909 0.2764 0.3672
vi 0.3457 0.3647 0.2875 0.3107
zh 0.3601 0.3893 0.2954 0.3736

Table 12: HellaSwag accuracy evaluated on Llama2 7B, Llama2 13B, Gemma 2B and Mistral 7B using Okapi
Evaluation Framework for Multilingual LLMs
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Language Llama2 7B Llama2 13B Gemma 2B Mistral 7B
de 0.74 0.75 0.77 0.7
ru 0.75 0.76 0.75 0.69
it 0.69 0.7 0.75 0.68
nl 0.66 0.68 0.73 0.66
da 0.63 0.65 0.7 0.62
zh 0.58 0.55 0.78 0.62
ca 0.59 0.6 0.64 0.59
hr 0.56 0.58 0.69 0.59
cs 0.58 - 0.67 0.58
ko 0.53 0.51 0.72 0.58
no 0.61 0.63 0.68 0.57
uk 0.67 0.67 0.7 0.57
id 0.6 0.62 0.75 0.57
ja 0.58 0.56 0.74 0.57
hu 0.55 0.56 0.62 0.55
ro 0.58 0.61 0.67 0.54
tr 0.52 - 0.67 0.52
bg 0.57 - - 0.51
sr 0.57 0.57 0.64 0.51
vi 0.56 0.56 0.74 0.49
he 0.47 0.48 0.71 0.48
hi 0.49 0.49 0.69 0.48
th 0.47 - 0.73 0.47
fi 0.54 0.56 0.62 0.46
el 0.45 - - 0.44
ar 0.46 0.46 0.69 0.44
et 0.43 - - 0.42
eu 0.35 - - 0.37
ur 0.4 - - 0.36
mr 0.39 - - 0.35
bn 0.42 - - 0.33

Table 13: Information Parity (IP) evaluated on the Tatoeba dataset.

Task/Metric IP Flores TP TF
HellaSwag 0.89 0.82 0.88
ARC 0.90 0.82 0.86
MMLU 0.95 0.95 0.90
xnli-TIAYN 0.93 0.72 0.80
pawsx-TIAYN 0.98 0.94 0.84
xnli 0.75 0.90 0.94
xquad 0.82 0.70 0.78
mgsm-TIAYN 0.96 0.69 0.73
xcopa-TIAYN 0.83 - 0.77
pawsx - 0.83 -
xcopa - 0.91 0.87

Table 14: Pearson correlation (absolute values) between metrics and downstream tasks/benchmarks performance
under the LLM Llama 2 13B. Only correlation values that are statistically significant at level 0.05 are shown. TIAYN
refers to results from (Liu et al., 2024)
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Task/Metric IP-Flores TP TF
MMLU 0.89 0.76 -
xnli 0.89 0.81 0.86
pawsx 0.91 0.99 0.93
xquad 0.77 0.68 0.76
mlqa 0.87 - -
belebele 0.98 0.91 0.78
conv-iden 0.77 0.64 -
gen-enid 0.78 0.61 -
gen-iden 0.78 0.67 0.71
xriawoz 0.96 - -
MGSM 0.96 0.69 0.73
xnli-TIAYN 0.86 0.59 0.74
pawsx-TIAYN 0.85 0.91 -
xcopa-TIAYN 0.85 - -
xcopa - 0.87 0.87

Table 15: Pearson correlation (absolute values) between metrics and downstream tasks/benchmarks performance
under the LLM Llama 2 70B. Only correlation values that are statistically significant at level 0.05 are shown.Xrisawoz
refers to the success rate accuracy benchmark subset, gen-enid,gen-iden, conv-enid refer to IN22 dataset. TIAYN
refers to results from (Liu et al., 2024)
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Language Name Code
English en

Hungarian hu
Russian ru

Norwegian no
Hindi hi
French fr
Korean ko

Japanese ja
Hebrew he
Finnish fi
Spanish es
German de
Italian it
Dutch nl

Chinese zh
Vietnamese vi
Indonesian id
Romanian ro
Ukrainian uk
Serbian sr
Croatian hr
Danish da
Catalan ca
Arabic ar
Turkish tr
Czech cs
Thai th

Bengali bn
Bulgarian bg

Greek el
Urdu ur

Marathi mr
Basque eu

Estonian et
Malay ms

Assamese as
Gujarati gu
Georgian ka
Kannada kn

Malayalam ml
Nepali np
Odia or

Punjabi pa
Tamil ta
Telugu te

Burmese my
Swahili sw

Portuguese pt
Haitian Creole ht

Quechua qu

Table 16: Flores 200 used languages - language Names to codes
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Language Code Language Name
ru Russian
fr French
ko Korean
jp Japanese
he Hebrew
hu Hungarian
no Norwegian
hi Hindi
fi Finnish
es Spanish
de German
it Italian
nl Dutch
zh Chinese
vi Vietnamese
id Indonesian
ro Romanian
uk Ukrainian
sr Serbian
hr Croatian
da Danish
ca Catalan
ar Arabic
tr Turkish
cs Czech
th Thai
bn Bengali
bg Bulgarian
el Greek
ur Urdu
mr Marathi
eu Basque
et Estonian

Table 17: Tatoeba used languages - language Names to codes
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