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Abstract

In a practical scenario, multi-domain neural
machine translation (MDNMT) aims to con-
tinuously acquire knowledge from new do-
main data while retaining old knowledge. Pre-
vious work separately learns each new do-
main knowledge based on parameter isolation
methods, which effectively capture the new
knowledge. However, task-specific parameters
lead to isolation between models, which hin-
ders the mutual transfer of knowledge between
new domains. Given the scarcity of domain-
specific corpora, we consider making full use
of the data from multiple new domains. There-
fore, our work aims to leverage previously ac-
quired domain knowledge when modeling sub-
sequent domains. To this end, we propose
an Iterative Continual Learning (ICL) frame-
work for multi-domain neural machine trans-
lation. Specifically, when each new domain
arrives, (1) we first build a pluggable incremen-
tal learning model, (2) then we design an itera-
tive updating algorithm to continuously update
the original model, which can be used flexi-
bly for constructing subsequent domain models.
Furthermore, we design a domain knowledge
transfer mechanism to enhance the fine-grained
domain-specific representation, thereby solving
the word ambiguity caused by mixing domain
data. Experimental results on the UM-Corpus
and OPUS multi-domain datasets show the su-
perior performance of our proposed model com-
pared to representative baselines.

1 Introduction

Multi-domain neural machine translation (MD-
NMT) aims to train a single model with mixed-
domain data and has shown great performance in
recent years (Lu and Zhang, 2023; Zhang et al.,
2023; Man et al., 2024a,b; Wu et al., 2024). Tradi-
tional work (Chu et al., 2017) fine-tunes a model
for each domain based on an original model. How-

†Yujie Zhang is the corresponding author.

ever, fine-tuning models individually for each do-
main increases maintenance costs and limits the
ability to utilize diverse knowledge. Therefore, a
smarter and more practical approach is to contin-
uously update the original translation model with
new domain data, rather than fine-tuning multiple
domain-specific models.

In this scenario, the key challenge is how to
continuously and sequentially learn new domain
knowledge while avoiding catastrophic forgetting,
which is a challenge in the field of Continual Learn-
ing (CL). Currently, existing studies can be divided
into three lines: (i) Replay-based methods: These
methods retain part or all training data from previ-
ous tasks (de Masson d’Autume et al., 2019; Peng
et al., 2020; Liu et al., 2021; Kanwatchara et al.,
2021; Garcia et al., 2021). (ii) Regularization-
based methods: These methods aim to approxi-
mate the loss incurred on previous tasks and are
usually in quadratic form (Luong and Manning,
2015; Castellucci et al., 2021; Gu et al., 2022; Shao
and Feng, 2022). These methods effectively learn
the knowledge between different domains. How-
ever, they cannot completely avoid the problem
of catastrophic forgetting. To address this limita-
tion, researchers propose (iii) Parameter isolation-
based methods: These methods design separate
pluggable modules and freeze all original param-
eters to completely retain the performance on pre-
vious tasks (Bapna and Firat, 2019; Madotto et al.,
2021; Huang et al., 2022, 2023b; Lu and Zhang,
2023). These methods are also called "plug and
play" (Nguyen et al., 2017; Dathathri et al., 2019;
Tiong et al., 2022). However, the parameters intro-
duced for each domain in these methods are learned
independently, so subsequent domains cannot lever-
age knowledge from previous domains.

To deal with this challenge, we propose an
Iterative Continual Learning (ICL) method for
multi-domain neural machine translation based on
a parameter isolation framework. In this work, we
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aim to address the challenge of utilizing knowledge
across multiple new domains. Specifically, our ap-
proach consists of three stages: First, we train origi-
nal and incremental models for the original and new
domains, respectively. Then we attach parameters
to the original model to create pluggable modules
via domain knowledge transfer, including the word
embeddings layer and FFN layers. Finally, as new
domains arrive, the pluggable modules from the
previous domain are continuously integrated into
the original model for the new domain. Compared
to previous work, our approach not only prevents
catastrophic forgetting but also makes full use of
the knowledge across domains. Moreover, compre-
hensive experimental results and analyses on multi-
ple language pairs demonstrate that our proposed
model improves across all baselines. In conclusion,
our contribution can be summarized as follows:

• We propose a novel iterative incremental learn-
ing framework that acquires knowledge from
new domains and updates the original model
to enable knowledge transfer between new do-
mains.

• Our framework adapts stably to multiple do-
mains, even when the learning order changes,
demonstrating its robustness in iterative incre-
mental learning.

• We further design a domain knowledge trans-
fer strategy to resolve word ambiguities and
enhance domain-specific representations dur-
ing incremental learning.

2 Related Work

Recent work on continual learning of NMT can be
divided into three categories:

Replay-based methods. The first category of
methods requires retaining part or all of the training
data from previous tasks (Lakew et al., 2018; Sun
et al., 2019; Feyisetan et al., 2020; Liu et al., 2021;
Garcia et al., 2021). However, these methods result
in higher training costs, particularly when applied
to large-scale pre-trained multi-lingual neural ma-
chine translation (MNMT) models. Furthermore,
previous training data may be inaccessible due to
privacy concerns or storage limitations. In contrast,
our approach does not require additional data and
offers greater flexibility for continual learning.

Regularization-Based Methods. The second cat-
egory of works alleviates catastrophic forgetting

by adding penalty terms to the learning objective,
balancing performance between previous and new
tasks (Kirkpatrick et al., 2017; Thompson et al.,
2019; Castellucci et al., 2021). In this scenario,
Gu et al. (2022) uses a hard constraint to update
parameters in regions with a low risk of forgetting.
Shao and Feng (2022) introduce an online knowl-
edge distillation approach, where previous models
assist in training the current model. In contrast to
these methods, our framework naturally prevents
catastrophic forgetting.

Parameter-Isolation Based Methods. The third
category of works designs separate pluggable mod-
ules and freezes original parameters to retain per-
formance on previous tasks (Bapna and Firat, 2019;
Madotto et al., 2021; Zhu et al., 2022). In partic-
ular, Huang et al. (2023b) propose a knowledge
transfer method to efficiently adapt MNMT mod-
els to diverse incremental language pairs. Further-
more, Huang et al. (2023a) propose a two-stage
approach that encourages original models to ac-
quire language-agnostic multilingual representa-
tions from new data while preserving the model
architecture without adding new parameters. How-
ever, the parameters introduced for each domain
in this method are independent of one another. By
contrast, our method aims to better utilize knowl-
edge across incremental domains, preventing catas-
trophic forgetting.

3 Method

In this work, our goal is to address the challenge
of how to learn knowledge across multiple new
domains. As shown in Figure 1 (a), the original
model needs to build a single pluggable module
for each new domain, and the knowledge between
multiple new domains cannot learn from each other
within the framework of Pluggable Incremental
Learning (PIL) (Huang et al., 2023b). However, in
real-world scenarios, the domain-specific corpus
is typically low-resource, and new domains often
arrive in stages over time. Consequently, we aim
to effectively utilize knowledge from multiple new
domains. Specifically, we focus on learning knowl-
edge from different domains by iteratively updating
the original model, as shown in Figure 1 (b). Com-
pared with PIL, our approach differs in two key
aspects: domain knowledge transfer strategy (§
3.2) and iterative continual learning framework (§
3.3).
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Figure 1: Comparison of (a) Pluggable Incremental Learning (PIL) and (b) Iterative Continual Learning (ICL)
frameworks. Our motivation is to leverage knowledge from multiple domains; our base model is updated with new
domain data. The parameters of each updated model are frozen.

3.1 Task Definition
In our work, the scenario of continual learning in-
volves adding new domain data one by one based
on the original MDNMT model while retaining
translation qualities on original language pairs with-
out accessing previous training data. We define our
scenario by referencing the approach of MNMT
(Huang et al., 2023b). Formally, an MDNMT
model is trained on initially selecting a set of avail-
able parallel data D = {D1,D2, ...,DJ} from J
different domains. Accordingly, the source sen-
tence is denoted as x, while the target sentence is
denoted as y, and Dj represents the original domain
corpus on the i-th domain. The training objective :

L(θ) =
∑

Dj∈D

∑

(x,y)∈Dj

logp(y|x; θ) (1)

where θ represents the trainable parameters of the
external models.

Continual learning is updating the original MD-
NMT model on an updated set of parallel data
D(ALL) = {D1,D2, ...,DJ , ...,DN}, which cov-
ers N domains. The training data D of original
model is often unavailable. Therefore, we use each
domain data D(New) = {DJ+1}, ..., {DN} to con-
tinually train the original model, and Di is the incre-
mental parallel training corpus on the i-th domain,
and the optimization objective:

L(θ) =
∑

Di∈D(New)

∑

(x,y)∈Di

logp(y|x; θ) (2)

where the number of domains supported by the
MDNMT model increases from J to N .

3.2 Domain Knowledge Transfer via
Pluggable Modules

To better learn the knowledge of new domains
into original model, inspired by PIL (Huang et al.,
2023b), we also introduce two types of pluggable
modules to bridge the representation gap of differ-
ent domains, and we further incorporate domain
knowledge into the pluggable module to enhance
the features of different domains.

Domain Embedding Transfer. In multilingual
neural machine translation, the significant differ-
ences between languages due to different characters
lead to considerable variation (Dabre et al., 2020).
Therefore, the purpose of MNMT is to address the
alignment between different languages. However,
in MDNMT, the corpora from different domains
belong to the same language pair, and words can
become ambiguous due to varying contexts. Thus,
MDNMT aims to resolve the ambiguity of words
across different domains (Chu and Wang, 2018).
For example, the word “column” has the transla-
tion “柱” and “列” in Spoken and Education do-
mains, respectively. This phenomenon reflects the
domain-specific representation with context in dif-
ferent domains. Therefore, we expand the vocab
in the embedding layer and concatenate the em-
bedding of different domain tokens between the
original and incremental models, enhancing the
domain representation features by adding domain
tags. This mechanism can enhance the domain fea-
tures, thereby relieving the word ambiguity caused
by the mixed domain data.
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Figure 2: This framework consists of three stages: Incremental Model Training, Pluaggable Model Training, and the
Inference Phase. Moreover, it is important to highlight another aspect of our work: for all updated original models,
we freeze their parameters to retain the performance in the training phase.

Feed-Forward Network Transfer. FFN has previ-
ously been investigated by (Sukhbaatar et al., 2019;
Huang et al., 2023b), inspired by these work, we
utilize the continuous representations in the FFN
layers of an external model, containing valuable
language knowledge, and transfer this knowledge
into the FFN layers of the original model, forming a
pluggable module. By combining the outputs of the
original FFN layers FFN1(H) with these injected
modules FFN2(H), we share domain knowledge,
addressing the representation gap through adap-
tation in the Feed-Forward layers. The resultant
fused FFN output:

H(f) = FFN1(H) + FFN2(H) (3)

3.3 Training and Inference

We propose a new framework ICL to continuously
iterative and update knowledge from new domains.
As shown in Figure 2, our model consists of three
essential stages:

Stage 1: Incremental Model Training. We uti-
lize each new domain data to train a incremental

machine translation model:

LD(New)(θ
′
) =∑

Di∈D(New)

∑

(x,y)∈Di

logp(y|x; θ′
) (4)

where we only retain the parameters in the embed-
ding layer θ

′
e and FFN layers θ

′
f of the external

model as the pluggable modules for the next train-
ing stage.

Stage 2: Pluggable Model Training. After the
first stage, we migrate the trainable parameters θ

′
e

and θ
′
f in the new model to the original model. The

specific training function is:

LD(New)(θ
′
e, θ

′
f ) =∑

Di∈D(New)

∑

(x,y)∈Di

logp(y|x; θ′
e, θ

′
f) (5)

Stage 3: Iterative Continual Learning. When
a new domain arrives, the pluggable model is up-
dated, which then becomes the new base model
for future domain integration. As outlined in Algo-
rithm 1, we start with an initial model, M0. Upon
receiving the first domain data, we train an incre-
mental model, M1, as described in Stage 1. This
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Algorithm 1 Iterative Continual Model Training

Require: M0, Mi, N ;
Ensure: M0;

for i from 1 to N do
Extract parameters θe and θf from M0

Transfer parameters θe and θf to Mi

Update the fused model Mi->M
′
i

end for
Output M′

i

process yields a pluggable model, M
′
1. We then

update the original model by replacing it with M
′
1.

Lastly, Stage 2 is repeated to train a new plug-in
model, M2, by updating the parameters θ

′
e and θ

′
f .

Inference. For the inference phase, as shown in
Figure 1, this model can select the appropriate infer-
ence model based on the input labels. This frame-
work preserves the performance of each original
model while preventing catastrophic forgetting.

4 Experiments

We conduct experiments for our framework (ICL)
to explore the following questions: (i) Can ICL
learn more knowledge between new domains under
low-resource domain scene? (§ 4.3) (ii) How is the
performance of ICL on original domains compared
with previous work? (§ 4.3) (iii) Which factors
affect the performance of ICL? (§ 4.5, § 4.6)

4.1 Datasets

We conduct experiments on the English-to-
Chinese1 multi-domain translation tasks (Tian
et al., 2014). For the German-to-English trans-
lation task, we utilize the OPUS2 multi-domains
dataset (Kobus et al., 2017), which has been resplit
by (Aharoni and Goldberg, 2020). These datasets
have been widely used in previous research (Zeng
et al., 2018; Jiang et al., 2020). The overall statis-
tics of the datasets are listed in Table 1. The data
similar to the test set are filtered out for fair com-
parison.

Domain Choice. To better approximate the real
scenario, we split the original and incremental do-
mains according to the size of the dataset. Notably,
the data volume of Microblog being extremely low-
resource. The detailed division of the original and
incremental domains is shown in Table 1. A de-

1http://nlp2ct.cis.umac.mo/um-corpus/
2http://opus.nlpl.eu/

English-to-Chinese
Original Train Valid Test
Education 440K 1996 462
News 440K 1997 1500
Thesis 290K 2000 624
Incremental Train Valid Test
Science 260K 1992 503
Subtitles 220K 2000 596
Spoken 210K 1985 455
Microblog 4.6K 200 266

German-to-English
Original Train Valid Test
Subtitles 470K 1,899 2,000
Law 434K 1,861 2,000
Medical 233K 1,873 2,000
Incremental Train Valid Test
It 211K 1,888 2,000
Koran 16K 1,872 2,000

Table 1: The statistics of our datasets. The number in
Valid/Test columns denotes the amount of sentence pairs
in each domain.

tailed description and comprehensive information
regarding the datasets for all domains can be found
in Appendix A.

4.2 Implementation Details
Baselines for Comparison. We compare our
method (ICL) with different multi-domain neural
machine translation adaptation methods. All meth-
ods utilize the preprocessing script of a shared BPE
model with 32k tokens based on the Sentencepiece
library3. These baselines can be listed as follows:

Base systems. Single, which trained on a sin-
gle incremental domain parallel data based on
Transformer (Vaswani et al., 2017). Mixed, which
trained on the mix of original domain parallel data
based on Transformer.

Multi-domain adaption NMT Baselines. To com-
pare the effectiveness of learning the knowledge
from new domains, we compare our approach with
Multi-domain adaption NMT Baselines, including:
FT (Luong and Manning, 2015), which first trains
the NMT model on original domain training cor-
pus, and then fine-tunes it by using incremental
domain training corpus. Adapter (Bapna and Firat,
2019), which introduces extra parameters in each
FFN layer of the original MNMT model.

3https://github.com/google/sentencepiece
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Incremental domains (English-to-Chinese)

Methods Subtitles Science Spoken Microblog AVG
BLEU COMET BLEU COMET BLEU COMET BLEU COMET BLEU COMET

Single 16.73 0.244 17.65 0.241 21.86 0.301 5.55 0.023 15.45 0.202
FT 17.81 0.261 18.83 0.267 22.13 0.312 13.11 0.126 17.97 0.242
Adapter 17.10 0.252 18.05 0.254 22.33 0.324 12.69 0.120 17.54 0.238
PIL 18.23 0.270 19.65 0.291 23.54 0.347 14.20 0.161 18.91 0.267
ICL (Ours) 18.65 0.282 20.13 0.311 23.88 0.342 15.14 0.172 19.45∗ 0.277∗

Incremental domains (Chinese-to-English)

Methods Subtitles Science Spoken Microblog AVG
BLEU COMET BLEU COMET BLEU COMET BLEU COMET BLEU COMET

Single 11.02 0.145 10.05 0.110 14.70 0.130 2.13 0.012 9.48 0.099
FT 12.61 0.150 11.86 0.119 15.48 0.138 10.25 0.117 12.55 0.131
Adapter 12.14 0.149 10.99 0.092 14.98 0.132 10.10 0.113 12.05 0.122
PIL 13.44 0.163 12.01 0.124 16.10 0.144 11.48 0.129 13.26 0.140
ICL (Ours) 13.65 0.169 12.36 0.121 16.38 0.140 12.16 0.136 13.64∗ 0.142

Table 2: BLEU and COMET scores on the English-to-Chinese and Chinese-to-English translation directions. We
bold the best performance results. The order of domains is that Subtitles->Science->Spoken->Microblog. Results
with ∗ are statistically (Koehn, 2004) better than the "PIL" with p < 0.01. Others are our re-implementation results
using the released code with the same setting for a fair comparison. The highest score is highlighted in bold.

Continual Learning Baselines. To compare the
effectiveness of mitigating catastrophic forgetting
in the original domain, we further compare our
method with state-of-the-art methods in contin-
ual learning, including: Replay (Sun et al., 2019),
which involves creating pseudo data for the original
language pairs and jointly training new language
pairs using both the pseudo data and incremental
training data. EWC (Thompson et al., 2019), which
uses the Fisher information matrix to model the im-
portance of parameters, applying more constraints
to the crucial ones to ensure they remain close to
their original values. PIL (Huang et al., 2023b),
which proposes pluggable incremental learning for
multilingual machine translation.

Training. Our experiments are conducted under
fairseq4 (Ott et al., 2019) framework, we built on
Transformer model (Vaswani et al., 2017) which
has 6 encoder and decoder layers with embedding
dimension 512, feed-forward dimension 1024, and
attention head 4. All experiments are trained with
label smoothing cross-entropy loss with a smooth-
ing parameter of 0.1. We use 8 NVIDIA P100 GPU
and Adam optimizer with an initial learning rate of
1e-4. In our experiments, we do not use ensembles
or n-best reranking, and training is stopped when
there is no performance improvement.

4https://github.com/facebookresearch/fairseq

Evaluation. We set beam size to 5, and we
use the SacreBLEU script for English5. For Chi-
nese, we calculate the BLEU at the character gran-
ularity, which is consistent with previous work
(Jiang et al., 2020; Wang et al., 2020). The
eamt22-cometinho-da model is used to generate
the COMET6 scores, the scope is 0-1. In particular,
we use the paired bootstrap resampling methods
(Koehn, 2004) for the statistical significance test.

4.3 Main Results

The performance of English-to-Chinese task
Table 2 presents the performances of five systems
across four domains in two translation directions.
The results show that our approach outperforms
several baselines in terms of average BLEU and
COMET scores for all incremental translation di-
rections. In comparison with Single, other methods
(FT, Adapter, PIL, and ICL) based on the original
model achieve significant improvement, demon-
strating that the original model trained on large-
scale data brings rich translation knowledge. For
example, FT exceeds the Single on Microblog with
+7.56 BLEU. Because the data in the Microblog
domain is extremely low-resource (4.6k sentences,
as shown in Table 1), it is evident that fine-tuning

5Signature: nrefs:1|case:mixed|eff:no|tok:13a|smooth:exp|
version:2.1.0

6https://github.com/Unbabel/COMET
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Incremental domains (German-to-English)

Methods IT Koran
BLEU COMET BLEU COMET

Single 41.33 0.689 18.14 0.132
FT 42.56 0.693 19.37 0.145
Adapter 41.23 0.686 19.01 0.141
PIL 42.68 0.697 19.71 0.149
Ours 42.91 0.712 19.94 0.158

Table 3: BLEU and COMET scores on the German-to-
English translation direction. We bold the best perfor-
mance results. The order of domains is that IT->Koran.

the original model leads to significant performance
improvements. Compared with the FT, Adapter,
and PIL, ICL shows a better ability to acquire new
knowledge between different domains. Addition-
ally, overall performance for English-to-Chinese is
better than Chinese-to-English. This trend is con-
sistent with existing studies (Wang et al., 2020), as
the BLEU score for Chinese needs to be calculated
based on characters due to the unique characteris-
tics of Chinese.

The performance of German-to-English task
To further show the advantages of our method, we
compare the results of ICL with existing works on
the German-to-English translation task. Table 3
presents detailed comparisons, we can see that our
model reaches the highest average BLEU score and
COMET on IT and Koran, respectively. The results
of German-to-English translation tasks further val-
idate the robustness and versatility of our model.
Similarly, there is a further performance improve-
ment in the relatively low-resource Koran. This
indicates that IT domain knowledge has been uti-
lized and demonstrates the stability of our method.

Degeneration in Continual Learning
As shown in Table 4, to demonstrate the reliabil-
ity and effectiveness of our approach, we exam-
ined the degradation in performance on the original
domains, comparing it with various methods, our
method can maintain the performance of original
model. Additionally, the findings reveal that replay-
based and regularization-based methods still exists
significant degradation in the original translation
directions when the original data is not available.

4.4 Results on Pre-trained Models

As shown in Table 5, we leverage pre-trained
multi-lingual machine translation model mBART-

Original domains (English-to-Chinese)
Methods Education News Thesis
Mixed 35.35 34.79 36.23
Replay -1.45 -2.16 -2.91
EWC -0.81 -2.55 -1.13
Ours 0.00 0.00 0.00

Original domains (German-to-English)
Methods Law Medical Subtitles
Mixed 54.73 50.89 27.74
Replay -3.32 -3.56 1.24
EWC -1.12 -2.21 -0.97
Ours 0.00 0.00 0.00

Table 4: Results on the original domains with different
continual learning. The darker the color, the closer the
performance is to the original domains. The highest
score is highlighted in bold.

Incremental domains (English-to-Chinese)
Sub Sci Spo Mic AVG

Base 20.14 22.45 25.98 18.24 21.70
PIL 22.34 24.67 27.19 19.78 23.50
ICL 23.06 25.76 28.80 23.33 25.24

Table 5: Results of English-to-Chinese with pre-trained
model mBART-nn on the incremental domains.

nn (Tang et al., 2020) as the external model and
investigate the effectiveness of our method, and
the average BLEU score of ICL (ours) across four
domains exceeds PIL with +1.74 BLEU compared
to PIL. It further proves that the large pre-trained
model contains more useful knowledge and the
effectiveness of our approach.

4.5 Ablation Study

To give a better understanding of our framework
ICL, we conduct several ablation study in this sec-
tion. These studies are taken on the English-to-
Chinese translation task.

Effect of Domain knowledge Transfer Strategy
To investigate the effectiveness of our approach
with different transfer strategy (i.e., Embedding
and FFN), we compare our method with four strate-
gies: S1-S4. According to Figure 3, S1 yields
relatively bad results, indicating the significance of
domain knowledge. In contrast to S1, our approach
(S2 and S3) illustrates that each pluggable mod-
ule can achieve significantly better optimization
when treated separately. Furthermore, S4 achieves
superior performance across four domains by uti-
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Domain Orders Subtitles Science Spoken Microblog AVG
Microblog->Science->Subtitles->Spoken 18.44 20.01 24.33 13.21 19.00
Subtitles->Microblog–>Science->Spoken 18.65 20.24 24.12 14.14 19.29
Subtitles->Science->Microblog->Spoken 18.65 20.13 23.02 14.69 19.12
Subtitles->Science->Spoken->Microblog 18.65 20.13 23.88 15.14 19.45

Table 6: Effect of different domain orders. The performance remains unchanged when the order in a particular
domain does not change. The highest score is highlighted in bold.
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Figure 3: Effect of Domain knowledge Transfer Strat-
egy. S1-S4 represents for the different strategies. Specif-
ically, S1: Embedding (✗), FFN (✗); S2: Embedding
(✓), FFN (✗); S3: Embedding (✗), FFN (✓); S4: Em-
bedding (✓), FFN (✓).

lizing both Embedding and FFN through domain
knowledge transfer.

Effect of Different Domain Orders
To verify the stability of our method, we attempt
to change the domain order, centering on the Mi-
croblog. As shown in Table 6, we primarily draw
conclusions by observing the performance changes
in Microblog: Changing the order of domains af-
fects the performance of subsequent domains but
not the performance of previous domains. For ex-
ample, the performance of Microblog varies with
its position. The later a domain is, the more knowl-
edge it acquires from preceding domains.

4.6 Analysis and Discussion

To further investigate the effectiveness of our ap-
proach, we conduct more in-depth studies, divided
visualization and case study.

Domain Knowledge Transfer and Similarity
We observed an interesting phenomenon in Table
6 where performance significantly changes when
the order of preceding and succeeding domains
changes, such as in the Spoken. We speculate this

Subtitles Science Spoken Microblog

Su
bt

itl
es

Sc
ie

nc
e

Sp
ok

en
M

icr
ob

lo
g

1.00 0.15 0.54 0.23

0.15 1.00 0.13 0.11

0.54 0.13 1.00 0.26

0.23 0.11 0.26 1.00

Domain Similarity

0.2

0.4

0.6

0.8

1.0

Figure 4: Domain Similarity between incremental do-
mains (Chinese test sentences). We calculate the domain
similarity based on cosine. The deeper the color, the
better the similarity.

is related to similarities between domains. To in-
vestigate this, we calculate the cosine similarity
between target languages on different domain train-
ing sets. As shown in figure 4, there is a high
similarity between the Spoken and the Subtitles.
Therefore, when the spoken domain follows the
subtitles domain, performance improves.

Case Study
Within the example in Table 7 shows that two trans-
lation cases selected from the test datasets in the
Spoken and Science domains. For the first case,
the English word “columns” is difficult to trans-
late for baseline model as “柱”. However, this
English word has multiple translations in different
domains, for example, it may be translated into
“列” in the Science domain. Benefiting from the
domain knowledge transfer mechanism, our model
can generate the correct translation. Similar to the
second case, the English word “column” appears
to translation. Our model can successfully trans-
late them, further showing that our method can
effectively learn multiple new domain knowledge.
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Domain Spoken
Src Between the columns were light, hollow panel walls of double brick.
Ref 柱间是两砖厚的轻质空心间墙。
PIL 列间是双层砖砌成的轻质空心墙。
ICL (Ours) 柱子之间是双层砖砌成的轻质空心板墙。

Domain Science
Src 4 different information types in the column space left in the margin.
Ref 4种不同的信息类型位于页边空白处的列空间中。
PIL 4种不同的信息类型留在空白处(?)。
ICL (Ours) 4种不同的信息类型位于页边空白处的列空间中。

Table 7: English-to-Chinese translation cases. Blue indicates the correct translation, while red indicates an incorrect
translation.

5 Conclusion

In this work, we propose an ICL method for multi-
domain neural machine translation, this method can
makes full use of knowledge between multiple new
domains. Specifically, our framework constantly
updated original model to obtain the new knowl-
edge. Moreover, we design the domain knowledge
transfer mechanism to enhance the domain-specific
features of word. Experimental results demonstrate
the effectiveness of our approach.

Limitations

Although our method has achieved outstanding per-
formance compared to current incremental learning
methods, it is still has the limitation: e.g., Differ-
ences from the real scene, we don’t utilize the Large
Language Models (LLMs) in the experiments. We
have only preliminarily explored the effectiveness
of the method, and we will use more models and
language directions to verify the proposed method
in the future work. To restore the real scenes, we
will refer to the original model by the Large Lan-
guage Models.
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A Detailed Domain Information

Regarding the division between the original do-
main and new domains, we primarily consider
segmenting based on the size of the data in each
domain. For the English-to-Chinese translation
task, datasets such as Education, News, and Thesis
with relatively large data sizes are categorized as
the original domain, while datasets like Science,
Subtitles, and Spoken with smaller data sizes are
treated as incremental domains. Additionally, to
explore the performance of our method under ex-
tremely low-resource scene, we utilize Microblog
data. Similarly, for the English-to-German transla-
tion task, we adopt a similar approach for division:
original domain including Subtitles, Law, Medical,
and incremental domains comprising IT and Koran.
Furthermore, to better illustrate the dataset charac-
teristics, we computed the average sentence lengths
across different translation tasks, as depicted in Fig-
ures 5 and 6.
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