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Abstract

We propose edit operation based lexically con-
strained decoding for sentence simplification.
In sentence simplification, lexical paraphrasing
is one of the primary procedures for rewrit-
ing complex sentences into simpler correspon-
dences. While previous studies have confirmed
the efficacy of lexically constrained decoding
on this task, their constraints can be loose and
may lead to sub-optimal generation. We ad-
dress this problem by designing constraints
that replicate the edit operations conducted in
simplification and defining stricter satisfaction
conditions. Our experiments indicate that the
proposed method consistently outperforms the
previous studies on three English simplification
corpora commonly used in this task.

1 Introduction

Lexically constrained decoding (Anderson et al.,
2017; Post and Vilar, 2018; Hu et al., 2019) allows
to explicitly apply human knowledge in language
generation, which has been employed in various
tasks. Applications include machine translation
using a bilingual dictionary of technical terms as
constraints (Chatterjee et al., 2017; Hokamp and
Liu, 2017), data augmentation using references as
constraints (Geng et al., 2023b), style transfer using
style-specific vocabulary as constraints (Kajiwara,
2019), knowledge-grounded generation (Choi et al.,
2023), and commonsense reasoning using common
concepts as constraints (Lu et al., 2021). The no-
table advantage of lexically constrained decoding
is its direct applicability to decoders without the
need for model (re)training.

Lexically constrained decoding is particularly
appealing for sentence simplification, where the
transformation of complex tokens to simpler ones
is crucial. Laufer (1989) points out that learners
of a foreign language need to know 95% of to-
kens in the input text to comprehend the text mes-
sage. A recent evaluation metric for sentence sim-
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Figure 1: Our method constrains generation based on
edit operations during beam search. Here, ‘artisans’ is
replaced by ‘craftsmen’ by a substitution constraint.

plification (Heineman et al., 2023) also focuses
on word-level edit quality. Previous studies em-
ployed negative and positive lexical constraints,
i.e., to suppress the output of difficult tokens (neg-
ative constraints) (Dehghan et al., 2022) and to
encourage the output of their corresponding sim-
pler alternatives (positive constraints) (Zetsu et al.,
2022). These studies showed that such simple con-
straints significantly improve the quality of simpli-
fication. However, their naive constraints are not
tight enough, which leads to sub-optimal simplifi-
cation satisfying easier constraints yet failing on
difficult ones.

To address this problem, we design constraints
more directed to simplification associated with
stricter satisfaction conditions. Sentence simplifi-
cation conducts three edit operations to rewrite sen-
tences, i.e., insertion, deletion, and substitution of
tokens. We expand NeuroLogic decoding (Lu et al.,
2021) to perform these edit operations via con-
strained decoding. Figure 1 illustrates our method
that constrains generation using a substitution op-
eration during beam search.

We evaluate our method using standard sentence
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simplification corpora that are publicly available,
namely, Turk (Xu et al., 2016), ASSET (Alva-
Manchego et al., 2020a), and AutoMeTS (Van
et al., 2020). The experiment results using oracle
constraints extracted from references confirm that
the proposed method largely outperforms previous
methods utilising lexically constrained decoding.
Furthermore, the results when constraints are pre-
dicted by a simple model indicate the consistent ef-
ficacy of the proposed method over these baselines.
The implementation of our edit-constrained decod-
ing, as well as model outputs, are available at https:
//github.com/t-zetsu/EditConstrainedDecoding.

2 Related Work

2.1 Sentence Simplification

Sentence simplification (Shardlow, 2014; Alva-
Manchego et al., 2020b) paraphrases complex sen-
tences into simpler forms. The primary approaches
can be categorised into three types: (a) translation-
based, (b) edit-based, and (c) hybrid approaches.
The translation-based approach, e.g., (Nisioi et al.,
2017; Zhang and Lapata, 2017; Kriz et al., 2019;
Surya et al., 2019; Sheang and Saggion, 2021; Mar-
tin et al., 2022; Anschütz et al., 2023), formalises
sentence simplification as monolingual machine
translation from complex to simple sentences. This
approach learns rewriting patterns from corpora
and thus allows flexible rewriting; however, the in-
frequent nature of simplification operations hinders
a model from learning necessary operations. As
a result, it tends to maintain complex tokens in-
tact and end up in too conservative rewriting (Zhao
et al., 2018; Kajiwara, 2019).

In contrast, the edit-based approach (Alva-
Manchego et al., 2017; Dong et al., 2019; Kumar
et al., 2020; Mallinson et al., 2020; Omelianchuk
et al., 2021) rewrites a source sentence by editing,
i.e., deleting, inserting, and replacing, its tokens.
This approach can address the conservativeness
problem owing to explicit token-by-token edits.
However, it lacks the flexibility to rewrite an entire
sentence to change its structure (Zetsu et al., 2022).

Finally, the hybrid approach gets the best of
both worlds by applying lexical constraints to
translation-based models. Agrawal et al. (2021)
biases a non-autoregressive simplification model
by setting an initial state of decoding, considering
the lexical complexity of a source sentence. Kaji-
wara (2019) and Dehghan et al. (2022) apply a neg-
ative lexical constraint using lexically constrained

decoding to avoid outputting complex tokens while
Zetsu et al. (2022) employ both positive and nega-
tive lexical constraints. In line with these previous
studies, we further enhance the hybrid approach by
defining constraints based on edit operations.

2.2 Enhanced Constrained Decoding

Earlier studies on lexically constrained decoding
have focused on computational efficiency (Post and
Vilar, 2018; Hu et al., 2019; Miao et al., 2019;
Sha, 2020). Since its prevalence in text genera-
tion tasks, recent studies have expanded the types
of constraints considered. Bastan et al. (2023) en-
hanced NeuroLogic decoding to consider syntactic
constraints, namely, dependency types up to two en-
tities. Similarly, Geng et al. (2023a) proposed con-
strained decoding by grammar and McCarthy et al.
(2023) proposed finite-state constraints. Transfor-
mation of syntactic structure is another primary fac-
tor in simplification (Niklaus et al., 2019). In our
method, structure transformation is implicitly han-
dled by the base translation-based model. Our con-
straints are lexical but expand the simple concepts
of positive and negative constraints to replicate edit
operations conducted in sentence simplification.

3 Edit-Constrained Decoding

We expand NeuroLogic Decoding (Lu et al., 2021)
to realise edit-based constraints, for its efficacy and
computational efficiency when applied to sentence
simplification (Zetsu et al., 2022).

3.1 Preliminary: NeuroLogic Decoding

We briefly review NeuroLogic Decoding. Concep-
tually, it seeks for a hypothesis with the highest
generation likelihood and constraint satisfaction:

argmax
Y ∈Y

Pθ(Y |X) s.t.
L∑

i=1

Ci = L, (1)

where Pθ(X|Y ) is the likelihood to generate a se-
quence Y = {y0, y1, · · · , yN} given an input se-
quence X = {x0, x1, · · · , xM}, Y is the possible
generation space, and Ci is i-th positive or nega-
tive constraint (in total L constraints). Specifically,
NeuroLogic Decoding achieves this by expanding
the beam search to conduct pruning, grouping,
and selecting processes at every timestep.

NeuroLogic Decoding first prunes candidates
by discarding hypotheses confirmed as non-
satisfying constraints and then filtering out less
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likely hypotheses with fewer constraint satisfac-
tion. Namely, it drops any candidates not in the
top-α in terms of likelihood and not in the top-β
in terms of number of satisfied conditions. These
α ∈ N+ and β ∈ N+ are hyper-parameters. Next,
it groups the remaining candidates based on the
states of constraint satisfaction, and then selects a
hypothesis from the candidates in each group that
preserves high generation likelihood and the larger
number of constraint satisfaction.

These grouping and selecting steps aim to diver-
sify candidates in a beam and broaden the search
space to avoid biasing toward hypotheses being
highly likely yet satisfying only easy constraints at
early timesteps. However, as we discuss in §3.2,
further consideration is needed for properly han-
dling negative constraints (i.e., deletion operations).
For more details on NeuroLogic Decoding, please
refer to Lu et al. (2021).

3.2 Edit-based Constraints
Inspired by the edit operations conducted in sen-
tence simplification, we define edit constraints of
insertion, denoted as CI , deletion, denoted as
CD, and substitution, denoted as a tuple CR =
(CRi , CRo) where CRi is replaced by CRo . These
edit constraints are associated with satisfaction and
dissatisfaction conditions. Furthermore, instead
of a binary weight, we use a numerical score s to
allow flexibility in appreciating different types of
constraints. Therefore, the second term in Equa-
tion (1) changes to maximise the total edit score:

t∑

i=0

yi(s), (2)

where yi(s) denotes the score that the i-th output
token receives and t is the current timestep. Note
that yi corresponds to a node nj in the lattice of
beam search; we use yi and nj interchangeably in
the following for notation simplicity.

Insertion operation is equivalent to the positive
constraint. If the node ni is equivalent to the j-th
insertion constraint CI

j ,1 the ni receives the score
s as follows.

s =

{
λI if ni = CI

j ,

0 otherwise,
(3)

where λI ∈ R+ is a weight of insertion operation.
1We use exact matching of node and constraint tokens.

Deletion operation conceptually corresponds to
the negative constraint. Previous studies (Kajiwara,
2019; Dehghan et al., 2022; Zetsu et al., 2022)
naively defined negative constraints, i.e., they re-
gard a negative constraint as satisfied if a certain
word is simply avoided, without further conditions.
However, we argue that the deletion operation, or
negative constraint, requires more careful consider-
ation to be properly handled. Otherwise, we may
end up with a sub-optimal generation that satisfies
only negative constraints CD at early timesteps.
This is because the size of the vocabulary is typi-
cally much larger than that of deletion constraints;
their satisfaction is far easier than the positive coun-
terpart. As a result, hypotheses that have high like-
lihoods and exclude negative constraints at early
timesteps remain in a beam, which struggles to
satisfy harder positive constraints later on. For ex-
ample, in Figure 2, the second beam candidate ‘are
old .’ can be the best hypothesis because it sat-
isfies all positive (‘old’) and negative (exclusion
of ‘remain’ and ‘aged’) constraints and has high
likelihood due to its shorter length.2

To address this problem, we design a stricter
condition for the satisfaction of deletion constraint.
Intuitively, the deletion operation is regarded as sat-
isfied by selecting sibling nodes other than the one
equivalent to the constraint. Specifically, the node
ni is regarded as satisfying the deletion constraint
CD
j and avoids a penalty (negative score) if and

only if its sibling node nk ∈ π is equivalent to CD
j ,

where π denotes the set of sibling nodes of ni and
nk in the lattice. These nodes receive the score s:

s =

{
−λD nk = CD

j ,

0 ∀ni ∈ {π \ nk = CD
j },

(4)

where λD ∈ R+ is a weight of deletion operation.
Note that no penalty is given when no node in
siblings is equivalent to CD

j , i.e., the score s = 0.

Substitution operation replaces a token CRi to
CRo . You may think that this operation can be
realised by a combination of the insertion and
deletion operations (or positive and negative con-
straints); however, it would lead to sub-optimal gen-
eration due to the lack of a mechanism to ensure the
simultaneous satisfaction of both constraints like
in (Zetsu et al., 2022). Therefore, similar to the

2Length normalisation in beam search should alleviate this
problem in general; however, we empirically confirmed that
adjustment of length normalisation parameter has little effect
on our problem.
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Figure 2: Edit-based constraint decoding example (beam size is 3)

deletion operation, we design a strict satisfaction
condition for substitution. The constraint is re-
garded as satisfied when selecting a node ni equiv-
alent to CRo if and only if ni has a sibling node
nk ∈ π equivalent to CRi . These sibling nodes
receive the score s:

s =

{
−λR nk = CRi ,

λR ni = CRo ,
(5)

where λR ∈ R+ is a weight of substitution opera-
tion. When there is no pair of nodes equivalent to
CRi and CRo in π, these nodes receive no reward
nor penalty, i.e., s = 0.

3.3 Algorithm
Our method conducts the same pruning, grouping,
and selecting processes as NeuroLogic Decoding at
each timestep of beam search. The only difference
is the pruning conditions. Namely, our method
drops candidates whose edit scores (Equation (2))
are less than δ ∈ R+ from the top score.3

Figure 2 illustrates an example of edit-
constrained decoding with a beam size of 3. At
timestep 2, in the first beam, the substitution con-
straint is satisfied as the token ‘artisans’ is replaced
by its sibling of ‘craftsmen.’ These nodes receive

3Remind that NuroLogic Decoding filters out candidates
other than top-β ones.

the penalty and reward scores, respectively. In con-
trast, in the second beam, the substitution constraint
is unsatisfied because the token ‘craftsmen’ appears
in siblings but ‘artisans’ does not. At timestep 3,
the deletion constraint is satisfied in the first beam
as ‘remain’ appears among siblings. Finally, at
timestep 4, the insertion constraint of ‘old’ is satis-
fied.

4 Experiment Settings

We conducted two kinds of evaluations. The first
evaluation (§5) aims to compare the performance
of lexically constrained decoding with different
constraint designs. To make the effects of method-
ological differences clearer, this evaluation used
oracle constraints extracted from references. The
second evaluation (§6) follows to observe the per-
formance under a practical setting with predicted
constraints. Preceding these evaluations, this sec-
tion describes the common experiment settings.

4.1 Datasets
We measured the performance on three sentence
simplification corpora, namely, Turk (Xu et al.,
2016), ASSET (Alva-Manchego et al., 2020a), and
AutoMeTS (Van et al., 2020). Turk and ASSET are
commonly used public evaluation corpora in simpli-
fication. In addition, we also included AutoMeTS,
aiming to investigate the effects of our method in
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Train Validation Test

Turk 488, 332
2, 000 359

ASSET (Wiki-Auto)
AutoMeTS 1, 967 411 418

Table 1: Numbers of sentence pairs in train, validation,
and test sets used in our experiments

a domain where technical terms are prevalent, and
thus, lexical paraphrasing is crucial.

Turk focuses on lexical paraphrasing, i.e., replac-
ing difficult tokens with simpler synonyms. Turk
was created by crowd-sourcing, where annotators
were instructed to rewrite sentences by reducing
the number of difficult tokens or idioms.

ASSET expanded the Turk corpus to encompass
a variety of rewriting patterns, not only lexical para-
phrasing but also sentence splitting and deleting
unimportant information. ASSET uses the same
source sentences with Turk and crowdsourced these
dynamic rewrites.

AutoMeTS is a simplification dataset in the med-
ical domain. It extracted pairs of expert-oriented
and simpler sentences from the sentence-aligned
English Wikipedia corpus (Kauchak, 2013) us-
ing the medical term dictionary selected from the
Unified Medical Language System (Bodenreider,
2004). This dataset contains technical terms fre-
quently that are expected to be properly rephrased.
We discarded pairs whose source and reference
were identical, which reduced the number of pairs
from what was reported in the original paper.

As Turk and ASSET miss a training set, we em-
ployed Wiki-Auto (Jiang et al., 2020) following
the convention. All of these corpora originate from
English Wikipedia. Table 1 lists the numbers of
training, validation, and test sets used.

4.2 Evaluation Metrics

As the primary evaluation metric to measure
the quality of sentence simplification, we used
SARI (Xu et al., 2016). SARI evaluates the success
rates of addition, keeping, and deletion of tokens by
comparing model-generated simplifications with
the source sentence and references. The final score
is computed by averaging F1 scores of addition,
keep, and deletion operations. For fine-grained
analysis of the effects of our edit-based constraints,

we also report the individual scores of these opera-
tions.

In addition, we also employed metrics com-
monly used in simplification, namely, BLEU (Pa-
pineni et al., 2002), Flesch-Kincaid Grade
Level (FKGL) (Kincaid et al., 1975), and
BERTScore (Zhang et al., 2020). SARI, BLEU,
and FKGL were computed by a standard evalu-
ation package of EASSE (Alva-Manchego et al.,
2019)4 while BERTScore used its official imple-
mentation.5

4.3 Baselines

We compared our method to previous studies also
using lexically constrained decoding, namely, Kaji-
wara (2019) and Zetsu et al. (2022). While lexically
constrained decoding theoretically applies to any
base models using decoders, we limited ourselves
to a basic pretrained sequence-to-sequence model,
namely BART (Lewis et al., 2020), expecting to
make the analysis simpler and easier. Exploration
of the best possible performance by applying to
superior base models, such as large language mod-
els (LLMs) (Kew et al., 2023) or models trained
with large corpus (Martin et al., 2022) constitutes
our future work. We also compare our method to
Agrawal et al. (2021) as the strong previous study
that takes the same hybrid approach to simplifica-
tion with us (see §2). In addition, the performance
of naive beam search on the fine-tuned BART-base
was also examined as the bottom line.

4.4 Implementation

The baseline methods were replicated using the
codes released by the authors. For methods us-
ing lexically constrained decoding, we fine-tuned
BART-base6 with an AdamW (Loshchilov and Hut-
ter, 2019) optimiser using the corresponding train-
ing set of each corpus. The fine-tuning was con-
ducted for 5 epochs at maximum with early stop-
ping based on validation SARI score. For inference,
we set the beam size to 20.

The proposed method was implemented utilising
the released codes of NeuroLogic Decoding7. Its
hyper-parameters, namely, λI , λD, λR, and δ, were
searched using Optuna (Akiba et al., 2019) to max-
imise validation SARI score. The λ values were
searched in the range of [0, 1], while the δ value

4The default 4-gram BLEU and SARI were measured.
5
https://github.com/Tiiiger/bert_score

6
https://huggingface.co/facebook/bart-base

7
https://github.com/GXimingLu/neurologic_decoding
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SARI (↑) add keep del BLEU (↑) FKGL (↓) BS (↑) Len

Turk

Beam search 39.7 4.6 58.7 55.8 35.2 6.5 91.7 13.6
Agrawal et al. (2021) 42.0 4.0 63.9 58.0 27.9 7.4 90.4 27.1
Kajiwara (2019) 38.1 1.7 64.9 47.7 22.6 5.3 89.5 36.9
Zetsu et al. (2022) 50.7 10.8 74.9 66.4 53.4 7.2 94.8 16.9
Proposed method 55.4 21.0 76.5 68.7 56.9 7.6 94.9 18.4

ASSET

Beam search 38.4 5.7 53.0 56.4 30.7 6.5 93.9 13.6
Agrawal et al. (2021) 43.1 3.6 64.4 61.4 41.1 7.3 92.7 17.4
Kajiwara (2019) 37.8 2.6 62.2 48.5 21.5 5.8 89.5 36.2
Zetsu et al. (2022) 48.3 10.4 65.8 68.6 40.2 6.1 93.6 14.8
Proposed method 50.8 17.0 66.8 68.6 43.7 6.8 93.8 16.7

AutoMeTS

Beam search 35.9 0.8 57.5 49.4 43.9 11.5 91.5 27.1
Agrawal et al. (2021) 38.9 0.6 45.3 70.8 20.1 6.4 86.7 20.5
Kajiwara (2019) 42.9 3.2 59.2 66.3 29.3 10.7 88.9 35.8
Zetsu et al. (2022) 49.3 3.7 69.4 74.8 44.2 9.2 92.0 22.3
Proposed method 52.3 8.0 72.9 75.9 50.0 9.1 92.3 25.2

Table 2: Evaluation results with oracle constraints; the scores were measured on the single references from which
the constraints were extracted (‘BS’ and ‘Len’ represent BERTScore and average output length, respectively).

was searched in [0, 2]8 with 100 attempts. For α,
we used the default value due to its limited impact
on the performance. §A.1 describes more details of
implementation and shows hyper-parameter values.

5 Evaluation with Oracle Constraints

We first measure the performance of the proposed
method under a setting where highly reliable con-
straints are given. This setting eliminates possible
performance variations depending on the quality of
constraints and clarifies how different lexically con-
strained decoding mechanisms contribute to sen-
tence simplification.

5.1 Oracle Constraint Extraction

We extracted highly reliable constraints from refer-
ences. Specifically, we conducted word alignment
between the source and reference sentences in a
corpus using the state-of-the-art word aligner (Lan
et al., 2021). The alignment results were converted
to constraints using simple heuristics below, which
are referred to as ‘oracle’ constraints hereafter9.

8This is because when λ ranges in [0, 1], the maximum
gap between edit scores is at most 2 for each timestep.

9To be precise, these constraints are imperfect due to align-
ment errors; we assume their effects are minimal in this study.

• Source tokens of null alignment were set as
deletion operations (the proposed method) or
negative constraints (baselines).

• Source tokens aligned to the identical tokens
were set as insertion operations (the proposed
method) or positive constraints (baselines).10

• Source tokens aligned to ones with different sur-
faces were regarded as substitution operations
(the proposed method) or a set of negative and
positive constraints (baselines).

While Turk and ASSET provide multiple ref-
erences, we used the every first reference of each
source sentence for extracting the oracle constraints
to keep the constraints and reference consistent.
Therefore, the evaluation metrics were computed
with these first references to meet the condition of
oracle constraint extraction.

5.2 Results
Table 2 shows results on the test sets under the or-
acle setting. The proposed method largely outper-
forms the previous studies. Breakdown scores of

10We discarded reference tokens of null alignment from
insertion constraints assuming that it is challenging in practice
to predict new content to add based on a given sentence.
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Turk ASSET AutoMeTS
Comp. Ours Comp. Ours Comp. Ours

Insertion 92.2 91.9 96.6 97.1 95.4 96.3
Deletion 82.0 89.9 89.0 94.0 86.3 93.1
Substitution 17.9 55.3 20.9 53.1 10.1 44.3

Table 3: Percentage of satisfied constraints; ‘Comp.’
represents (Zetsu et al., 2022).

Comp. Ours

Failed to generate named entities 6 3
Dropped information when a sentence is
complex and has multiple clauses

15 4

Altered meaning or focus of the sentence 4 3

Table 4: Results of manual error analysis; ‘Comp.’ rep-
resents (Zetsu et al., 2022)

src He left a detachment of 11,000 troops to garrison the newly conquered region .
reference He left 11,000 troops there to defend the region .

Agrawal et al. (2021) He left a of 11 000 troops to the conquered region .
Zetsu et al. (2022) He left 11,000 troops .
Proposed method He left 11,000 troops to defend the region .

edit-constraints [insert] left, troops [delete] detachment, newly [substitute] (garrison, defend)
src by most accounts , the instrument was nearly impossible to control .
reference most people said that the device was very hard to control .

Agrawal et al. (2021) the instrument was to control .
Zetsu et al. (2022) It was almost impossible to control .
Proposed method Most people did not know how to control it , and most of them thought it was

very hard .
edit-constraints [insert] most, was, control [substitute] (accounts, said), (instrument, device),

(nearly, very), (impossible, hard)

Table 5: Example outputs of simplification models (bold constraints are satisfied by the proposed method.)

SARI indicate that our method improved all opera-
tions. We conjecture that this is because the stricter
satisfaction conditions allowed proper handling of
edit-based constraints.

Among the methods employing lexically con-
strained decoding, Kajiwara (2019) uses only nega-
tive constraints. Table 2 indicates that this method
generated significantly longer sentences than oth-
ers. As we observed their outputs, sentences were
often disfluent with repeated tokens. We conjecture
that this is an adverse effect using multiple negative
constraints, which may have corrupted the decoder.

In contrast, Zetsu et al. (2022) consider both
positive and negative constraints, which may en-
able it to avoid this corruption problem. As we
discussed in §3.2, their conditions of constraint sat-
isfaction are looser than ours. Table 3 shows the
percentages of constraints satisfied by Zetsu et al.
(2022) and the proposed method, where our method
achieved significantly higher constraint satisfaction
rates. We further investigated the differences be-
tween Zetsu et al. (2022) and our method by error
analysis of their simplification outputs. We sam-
pled 100 source sentences from the ASSET corpus

and manually annotated errors to simplification of
each method. Table 4 shows the three major er-
ror types and their numbers of occurrences. The
proposed method consistently decreased errors of
all types, in particular, avoided overly dropping in-
formation when a source sentence is syntactically
complex. These results indicate that our strict con-
ditions for edit-constraint satisfaction effectively
avoid sub-optimal generation.

Table 5 shows example outputs.11 For both cases,
Agrawal et al. (2021) rewrote less, which has been
known as the conservativeness problem of the sim-
plification models (see §2). In contrast, Zetsu et al.
(2022) and our method addressed this problem. In-
deed, Agrawal et al. (2021) generated exactly the
same sentences as their sources for 10.0% cases on
ASSET, while the proposed method decreased it
down to 4.5%. In addition, the proposed method
satisfied more constraints compared to Zetsu et al.
(2022) by avoiding sub-optimal generation.

11We omitted outputs of Kajiwara (2019) due to their dis-
fluent generation.

7167



SARI (↑) add keep del BLEU (↑) FKGL (↓) BS (↑) Len

Turk

Beam search 39.7 4.6 58.7 55.8 35.2 6.5 91.7 13.6
Agrawal et al. (2021) 38.6 2.9 58.9 53.8 37.0 6.6 90.7 16.7
Kajiwara (2019) 33.4 2.9 64.8 32.5 49.5 8.7 92.9 19.7
Zetsu et al. (2022) 42.2 8.5 59.2 58.9 36.0 6.0 91.9 14.3
Proposed method 42.6 7.9 61.5 58.5 38.9 6.4 92.1 15.3

ASSET

Beam search 38.4 5.7 53.0 56.4 30.7 6.5 93.9 13.6
Agrawal et al. (2021) 36.7 2.2 53.3 54.6 31.5 6.6 91.5 16.7
Kajiwara (2019) 32.8 2.3 60.8 35.2 44.0 8.7 93.9 19.7
Zetsu et al. (2022) 40.9 7.5 54.8 60.4 31.7 6.0 92.7 14.3
Proposed method 40.9 7.4 56.2 59.1 33.9 6.4 92.9 15.3

AutoMeTS

Beam search 35.9 0.8 57.5 49.4 43.9 11.5 91.5 27.1
Agrawal et al. (2021) 36.0 0.4 38.9 68.7 16.1 6.2 86.0 19.4
Kajiwara (2019) 42.2 6.5 63.4 56.8 44.7 11.6 92.4 31.1
Zetsu et al. (2022) 41.6 2.0 56.8 66.0 34.3 8.6 90.7 21.3
Proposed method 42.9 2.4 60.2 66.2 38.9 9.0 91.2 23.7

Table 6: Evaluation results with predicted constraints; the scores were measured on the same single references with
Table 2 (‘BS’ and ‘Len’ represent BERTScore and average output length, respectively).

6 Evaluation with Predicted Constraints

In this section, we evaluate the proposed method
under a practical setting, where constraints are pre-
dicted by a simple neural model.

6.1 Constraint Prediction

We employed the simple constraint prediction
model developed by Zetsu et al. (2022). It first
predicts which tokens in a source sentence should
be inserted, deleted, and substituted as a token
classification problem. Specifically, we fine-tuned
BERT-base (Devlin et al., 2019)12 using the oracle
constraints extracted in §5.1 as described in the
original paper.

For tokens predicted as substitution, replacing
tokens were determined using a lexical translation
table, which was assembled from each training set
using the Moses toolkit (Koehn et al., 2007) .13 The

12
https://huggingface.co/google-bert/bert-base-uncased

13While Zetsu et al. (2022) fine-tuned a pretrained model
for predicting replacing tokens, our preliminary experiment
confirmed our simpler method utilising the translation table is
superior and computationally faster. Note that we reused the
same word alignment results computed for creating the oracle
constraints for assembling the translation table. Furthermore,
we postprocessed the translation table to discard target tokens
with probabilities smaller than 0.002.

pairs of tokens were set as substitution operations
in the proposed method (or a set of negative and
positive constraints in baselines). When a token
had multiple substitution candidates, these pairs
were handled as ‘OR’ constraints.

6.2 Results

Table 6 shows results on test sets where constraints
were predicted.14 To ensure side-by-side compari-
son with Table 2, the evaluation metrics were com-
puted using the same single references on Turk and
ASSET (i.e., every first reference). §A.2 provides
the results computed on multiple references, which
show the same trends with Table 6. While the gains
became smaller, the proposed method consistently
outperformed the baselines on SARI. The results
of Agrawal et al. (2021) and Kajiwara (2019) re-
vealed their instability; they can be comparable to
or even worse than the naive beam search, depend-
ing on the corpus. In contrast, our method achieved
consistent improvements over the baselines.

Obviously, the quality of simplification by these

14The simplification outputs on Turk and ASSET become
equivalent because their source sentences and thus correspond-
ing predicted constraints are the same, as can be seen in the
equal values in FKGL and Len.
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Turk ASSET AutoMeTS

Insertion: CI 80.5 74.6 76.6
Deletion: CD 50.7 54.9 66.1
Substitution: CR 23.2 23.8 43.3

from: CRi 29.2 28.1 43.3
to: CRo 56.8 62.2 73.3

Table 7: Precision of predicted constraints (%)

methods depends on the quality of constraint pre-
diction. Table 7 shows the precision of each edit
constraint compared to the oracle constraints. As
expected from the naive design of the prediction
model, the results indicate that there is a large room
for improvement in constraint prediction, particu-
larly in deletion and substitution operations. The
development of a sophisticated prediction model
constitutes our future work. Nonetheless, it is re-
markable that the proposed method outperforms the
previous studies even with imperfect constraints.

7 Summary and Future Work

In this study, we proposed the edit-constrained de-
coding for sentence simplification. Our constraints
directly replicate the edit operations involved in
simplification and are associated with strict sat-
isfaction conditions. These features allow us to
avoid the sub-optimal generation observed in previ-
ous studies. The evaluation with oracle constraints
confirmed that our method largely outperforms the
previous methods using lexically constrained de-
coding. Furthermore, the evaluation with a simple
constraint prediction model confirmed consistent
improvement by our method over the previous stud-
ies even with imperfect constraints.

In future work, we will apply our edit-
constrained decoding to LLMs to further enhance
the sentence simplification technology. As Valen-
tini et al. (2023) revealed, LLMs still lack the abil-
ity to control lexical complexities. The proposed
method is promising as complementation on this
issue. We will also improve the constraint pre-
diction model, which should boost the quality of
simplification by a large margin.

Limitations

To derive the full potential of our method for sen-
tence simplification, we should improve the quality
of constraint prediction as discussed in §6.2. Em-
ployment of LLMs is promising given their high

performances in simplification (Kew et al., 2023).
We also observed that there is room for improve-

ment in the mechanisms of lexically constrained
decoding itself. While existing methods use con-
stant weights for constraints and attempt to apply
them since the beginning of generation, this of-
ten excessively affects generation and ends up in
degenerate solutions. Considering the generation
likelihood changes over timesteps, the constraint
weights should be adjusted depending on the gen-
eration states. This direction also constitutes our
future work.
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A Additional Experiment Details

A.1 Implementation Details
All the experiments were conducted on NVIDIA
RTX A6000 (48GB memory) GPUs installed on a
Ubuntu server. The main memory size was 1TB,
and the central processor was AMD EPYC CPU.

We used a fine-tuned BART-base as the
sequence-to-sequence generation model. For exper-
iments targeting ASSET, we reused the model fine-
tuned employing Turk’s validation set (for early
stopping) to save computational costs. Given that

Turk ASSET AutoMeTS
oracle predicted oracle predicted oracle predicted

λI 0.11 0.01 0.05 0.01 0.03 0.05
λD 0.66 0.94 0.67 0.94 0.81 0.94
λR 0.23 0.05 0.28 0.05 0.16 0.01
δ 0.12 0.18 0.14 0.18 0.10 0.10

Table 8: Hyper-parameter settings

the source sentences of Turk and ASSET are com-
mon, we assume this setting does not significantly
deteriorate the model’s performance on ASSET.

Table 8 shows the hyper-parameter values on the
proposed method. To speed up the hyper-parameter
search, we used 300 random samples from the
validation sets on Optuna. When evaluating the
performance on Turk and ASSET with predicted
constraints, we used the common hyper-parameter
values tuned on Turk to save computational costs.

The hyper-parameter values in Table 8 are con-
siderably different between the oracle and predicted
constraints. We conjecture the discrepancy is due
to the combination of the generation model perfor-
mance and constraint prediction quality. The plain
beam search on fine-tuned BART (‘Beam search’
rows in Table 2 and Table 6) has a much higher
deletion score than the addition score (see ‘del’ and
‘add’ columns), which indicates that the generation
model is originally weaker on insertion and substi-
tution operations. As oracle constraints are com-
pletely reliable, our method can put more emphasis
on them to promote these edit operations. In con-
trast, predicted constraints are imperfect as shown
in Table 7, our method cannot increase weights
on these operations, which may deteriorate their
performance.

A.2 More Experiment Results
Table 9 shows results when constraints were pre-
dicted, where the scores were measured on test
sets of Turk, ASSET, and AutoMeTS using all of
the multi-references. The trend is the same with
Table 6; the proposed method consistently outper-
forms the baselines.
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SARI (↑) add keep del BLEU (↑) FKGL (↓) BS (↑) Len

Turk

Beam search 36.3 2.8 60.6 45.6 71.3 6.5 93.9 13.6
Agrawal et al. (2021) 37.3 1.7 62.8 47.4 68.2 6.6 92.7 16.7
Kajiwara (2019) 36.6 2.6 72.9 34.3 89.9 8.7 95.8 19.7
Zetsu et al. (2022) 39.2 4.9 61.4 51.2 69.1 6.0 93.8 14.3
Proposed method 40.0 5.2 63.8 50.9 72.0 6.4 94.1 15.3

ASSET

Beam search 38.9 3.2 54.7 58.6 84.3 6.5 96.0 13.6
Agrawal et al. (2021) 38.5 1.6 55.7 58.1 71.7 6.6 94.4 16.7
Kajiwara (2019) 33.4 2.2 60.1 38.0 87.8 8.7 97.5 19.7
Zetsu et al. (2022) 42.1 5.3 57.2 63.9 80.6 6.0 96.1 14.3
Proposed method 42.2 5.6 58.4 62.5 82.4 6.4 96.3 15.3

Table 9: Evaluation results with predicted constraints; the scores were measured using all of the multi-references
(‘BS’ and ‘Len’ represent BERTScore and average output length, respectively).
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