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Abstract

The development of state-of-the-art generative
large language models (LLMs) disproportion-
ately relies on English-centric tokenizers, vo-
cabulary and pre-training data. Despite the fact
that some LLMs have multilingual capabilities,
recent studies have shown that their inference
efficiency deteriorates when generating text in
languages other than English. This results in in-
creased inference time and costs. Cross-lingual
vocabulary adaptation (CVA) methods have
been proposed for adapting models to a target
language aiming to improve downstream per-
formance. However, the effectiveness of these
methods on increasing inference efficiency of
generative LLMs has yet to be explored. In
this paper, we perform an empirical study of
five CVA methods on four generative LLMs
(including monolingual and multilingual mod-
els) across four typologically-diverse languages
and four natural language understanding tasks.
We find that CVA substantially contributes to
LLM inference speedups of up to 271.5%. We
also show that adapting LLMs that have been
pre-trained on more balanced multilingual data
results in downstream performance comparable
to the original models.1

1 Introduction

Generative large language models (LLMs) obtain
strong generalization performance in many down-
stream natural language processing tasks (Ope-
nAI, 2023; Touvron et al., 2023a; Jiang et al.,
2023) across various languages. For example,
BLOOM (Scao et al., 2022) supports 46 languages
while Open AI’s ChatGPT reportedly supports 90
languages (Ahuja et al., 2023).

Despite the multilingual capabilities of state-of-
the-art LLMs, their development disproportionately
relies on English-oriented tokenizers, vocabulary
and pre-training data. For example, around 30%
of the training data in BLOOM is English. This

1Our code and models are available on GitHub.
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Figure 1: Example of overfragmentation when applying
the Mistral-7B tokenizer to non-English text.

negatively affects the efficiency and downstream
performance of LLMs in other languages. It has
been demonstrated that LLMs overfragment text in
underrepresented languages with different writing
systems (Rust et al., 2021; Muller et al., 2021), re-
sulting to increased processing time, latency and
costs for non-English speakers (Ahia et al., 2023;
Petrov et al., 2023). Moreover, recent studies (Lin
et al., 2022; Ahuja et al., 2023; Muennighoff et al.,
2023) found that LLMs often perform better in a
given language other than English when prompted
in English instead of prompting directly in the other
language. This is an unrealistic setting for non-
English speakers that introduces extra disadvan-
tages. Figure 1 shows an illustrative example of
overfragmentation in non-English text generation.

Cross-lingual vocabulary adaptation (CVA) is an
efficient method for cross-lingual transfer (Tran,
2019; Wang et al., 2020; Chau et al., 2020). The
vocabulary of a source model is first updated (or
replaced) with tokens from a target language, fol-
lowed by fine-tuning the embedding matrix on
data from the target language. Previous work on
CVA primarily aims to improve downstream per-
formance such as natural language inference and
named-entity recognition (Minixhofer et al., 2022;
Dobler and de Melo, 2023). However, the effec-
tiveness of these methods on improving inference
efficiency of generative LLMs has yet to be ex-
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plored. We hypothesize that LLM inference in a
target language can be improved by adapting the
vocabulary of the source model to reduce text over-
fragmentation.

To test our hypothesis, we perform an empiri-
cal study of five CVA methods, on four genera-
tive LLMs, including a wide range of downstream
tasks, from text classification, and span prediction,
to summarization in zero-shot and few-shot set-
tings across four diverse languages (i.e. German,
Japanese, Arabic, and Swahili). Our contributions
are as follows:

• We demonstrate that CVA accelerates infer-
ence by up to 271.5% in 99% of cases (§5.1).

• We show that multilingual LLM vocabulary
adaptation leads to comparable downstream
performance to multilingual source LLMs
(§5.2).

• We conduct an analysis to shed light on dif-
ferent design choices regarding the practical
application of CVA in generative LLMs (§6),
and provide specific recommendations on how
to select an optimal vocabulary initialization
method following our analysis (§7).

2 Related Work

Impact of Tokenization on LLMs Subword
tokenization splits text into subword units and
is the standard approach for tokenization in
LLMs (Scao et al., 2022; Touvron et al., 2023a;
Jiang et al., 2023). It includes methods such as
WordPiece (Schuster and Nakajima, 2012), Byte
Pair Encoding (BPE) (Sennrich et al., 2016), and
Unigram (Kudo, 2018). Other approaches in-
clude word- (Bengio et al., 2000; Mikolov et al.,
2013), character- (Al-Rfou et al., 2019) and byte-
level (Xue et al., 2022) tokenization.

The impact of tokenization on LLMs has
been actively studied including model perfor-
mance (Bostrom and Durrett, 2020; Rust et al.,
2021; Gow-Smith et al., 2022; Toraman et al., 2023;
Fujii et al., 2023), inference speed (Hofmann et al.,
2022; Sun et al., 2023; Petrov et al., 2023), mem-
ory usage (Sun et al., 2023), training (Ali et al.,
2024) and API costs (Ahia et al., 2023; Petrov
et al., 2023). It is acknowledged that tokenizers
lead to disproportionate fragmentation for different
languages and scripts in multi- and cross-lingual
settings (Rust et al., 2021; Muller et al., 2021).

Cross-lingual Vocabulary Adaptation Tran
(2019) used English BERT as a source LM. They
initialized target language token representations
as a weighted sum of the source embeddings fol-
lowed by fine-tuning both the source and target
models. Wang et al. (2020) and Chau et al. (2020)
added a fixed number of new target language to-
kens to the source vocabulary, expanding the source
embedding matrix and output projection layers ac-
cordingly. The embeddings of the new tokens are
randomly initialized over the expanded elements.
Both studies performed additional pre-training on a
target language corpus, often called language adap-
tive pre-training, i.e. LAPT (Chau et al., 2020),
after the target vocabulary initialization. LAPT
enables learning a target language model more
efficiently than training it from scratch which is
prohibitive with the size of current LLMs. It has
become standard practice in more recent CVA stud-
ies (Minixhofer et al., 2022; Dobler and de Melo,
2023; Downey et al., 2023; Ostendorff and Rehm,
2023; Liu et al., 2024). More recently, state-of-the-
art methods completely replace the source embed-
dings with target language embeddings instead of
expanding the source vocabulary (Minixhofer et al.,
2022; Dobler and de Melo, 2023; Ostendorff and
Rehm, 2023; Downey et al., 2023). The aim is to
utilize overlapping tokens between the source and
target vocabularies for efficiency.

CVA has been extensively used to adapt genera-
tive LLMs to specific target languages (Cui et al.,
2023; Balachandran, 2023; Larcher et al., 2023; Pi-
patanakul et al., 2023; Fujii et al., 2024). However,
the majority of these approaches simply expand
the source embedding matrix followed by LAPT,
while vocabulary replacement approaches have not
been explored. To the best of our knowledge, this
is the first systematic study on the efficacy of var-
ious CVA methods for improving the inference
efficiency of LLMs across languages.

3 Cross-lingual Vocabulary Adaptation

3.1 Problem Setting

Let Ms be a source pre-trained LLM with Ts and
Vs its corresponding tokenizer and vocabulary. The
aim is to learn a model Mt with the same architec-
ture as Ms for a target language that supports a tar-
get vocabulary Vt given a tokenizer Tt. Mt is first
initialized with the weights of Ms. Subsequently,
its input embedding and output layer matrices are
replaced such that the former is of dimensionality
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|Vt| ×Ht and the latter Ht × |Vt|, where Ht is the
hidden dimensionality of Mt. The weights of both
matrices can be initialized by applying a target vo-
cabulary initialization method (§3.2). Finally, Mt
is adapted to the target language (i.e. with LAPT)
by training it on target language data D using a
causal language modeling objective.

3.2 Target Vocabulary Initialization Methods

Random. The simplest approach is to randomly
initialize the embeddings of Mt (de Vries and Nis-
sim, 2021; Downey et al., 2023).

Cross-lingual and Progressive Initialization
(CLP). CLP (Ostendorff and Rehm, 2023) first
finds overlapping tokens between Vt and Vs, i.e.
Vt ∩ Vs, and simply copies their weights from Ms
to Mt. Each target token that does not overlap
with any source token, i.e. Vt\(Vt ∩ Vs) is initial-
ized by its weighted average across all embeddings
in Vt ∩ Vs, i.e. common tokens in the source and
target vocabularies. The weight of each embedding
in Vt∩Vs is computed as the cosine similarity score
between the respective overlapping token and the
target non-overlapping token. Since there is no
common representation between these two, CLP
uses vector representations from an auxiliary tar-
get language-specific model (Maux) with the same
tokenizer and vocabulary as Mt.

Heuristics. Downey et al. (2023) proposed a rule-
based method for embedding initialization. First,
embeddings are initialized according to their iden-
tity, in the same way that overlapping tokens are
initialized in CLP, i.e. by copying from Ms. For
all remaining tokens in Vt, their embeddings are
initialized based on the type of SCRIPT identified
by the Unicode block. Each token that belongs to a
particular script (e.g. Hebrew) is represented by a
vector sampled from a Normal distribution with the
same mean and standard deviation computed over
all embeddings in Vs that belong to the same group.
A group can further be divided into two according
to the POSITION of each subword token, i.e. at the
beginning or in the middle (e.g. “_the” vs. “the”).
Finally, the embeddings of any remaining tokens
are randomly initialized.

FOCUS. Dobler and de Melo (2023) proposed
fast overlapping token combinations using sparse-
max (FOCUS) initialization. Similar to CLP, FO-
CUS reuses the embeddings of Ms in Mt for
tokens in Vt ∩ Vs. For non-overlapping tokens

Vt\(Vt ∩ Vs), it uses fastText (Bojanowski et al.,
2017) vectors trained on target specific data D to-
kenized by Tt to compute the cosine similarity be-
tween tokens in Vt ∩ Vs and Vt\(Vt ∩ Vs). It then
applies sparsemax (Martins and Astudillo, 2016), a
sparse variant of softmax that assigns zero to any
low-probability elements, over the similarity scores.
The token embeddings in Vt\(Vt ∩ Vs) are finally
initialized by taking the weighted sum of the source
embeddings of tokens in Vt ∩ Vs, where weights
are the similarity scores with sparsemax applied.

CLP+. Finally, we propose CLP+, a modification
to CLP motivated by the use of sparsemax in FO-
CUS. The aim is to dynamically select semantically
similar tokens from Vt ∩Vs to initialize a target em-
bedding for a token in Vt\(Vt ∩ Vs), leading to a
better initialization of the embeddings (Tran, 2019).
We follow the same process as CLP for tokens in
Vt∩Vs. For non-overlapping tokens in Vt\(Vt∩Vs),
instead of taking the weighted average of all over-
lapping source embeddings of Vt ∩ Vs as in CLP,
we use the weighted sum of embeddings whose
weight is calculated with sparsemax. Note that
the main difference between CLP+ and FOCUS
is that the former uses Maux while the latter uses
fastText trained on D tokenized by Tt to compute
similarities between Vt ∩ Vs and Vt\(Vt ∩ Vs).2

4 Experimental Setup

4.1 Source Models

We use BLOOM-1B and BLOOM-7B (Scao et al.,
2022), which are trained on data from 46 languages
including Arabic (4.6%) and Swahili (0.02%). We
also use TigerBot-7B (Chen et al., 2023), which is
based on LLaMA 2 (Touvron et al., 2023b) adapted
using data from East Asian languages, i.e. Chinese
(54%), Korean (0.001%), and Japanese (0.01%). Fi-
nally, we experiment with Mistral-7B (Jiang et al.,
2023) which is an English-centric model. Table 1
shows the tokenizer and vocabulary size of each
source model. Note that the weights of the embed-
ding and output layer matrices are tied for BLOOM
but not for the rest.

2Note that proposing a new vocabulary initialization ap-
proach is not the main focus of our paper; we see CLP+ as a
straightforward improvement of CLP motivated by FOCUS.
Our overarching aim in this paper is to investigate how CVA
methods affect inference efficiency and downstream perfor-
mance of generative LLMs.
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Source (Ms) Tokenizer (Ts) |Vs|
BLOOM Byte-level BPE 250,680
TigerBot Byte-level BPE 60,512
Mistral Byte-level BPE 32,000

Target (Mt) Tokenizer (Tt) |Vt|
German Byte-level BPE 50,257
Japanese Unigram 32,000
Arabic Byte-level BPE 64,000
Swahili Byte-level BPE 50,257

Table 1: Tokenizers and vocabulary size for source and
target models.

4.2 Target Languages and Adaptation Data
We experiment with a typologically diverse
set of target languages including German
(Indo-European), Japanese (Japonic), Arabic
(Afro–Asiatic), and Swahili (Niger–Congo). We
use these languages because of the availability of
language-specific (1) tokenizers; and (2) down-
stream task datasets with the same formulation
across languages.3 For adapting the source mod-
els, we use the OSCAR language-specific subcor-
pus (Jansen et al., 2022) for German, Arabic, and
Japanese (Jan 2023). For Swahili, we use its sub-
set of CC-100 (Conneau et al., 2020) following
Minixhofer et al. (2022). We use publicly avail-
able tokenizers and vocabularies for each target
language. Table 1 shows the tokenizers and vocab-
ulary size for the source and target models. More
details are available in Table 3 in the Appendix.

4.3 Tasks
Following Ahia et al. (2023), we experiment with
four tasks in each target language with 500 test sam-
ples: (1) textual entailment (NLI) using JNLI (Kuri-
hara et al., 2022) for Japanese and XNLI (Con-
neau et al., 2018) for the rest; (2) X-CSQA (Lin
et al., 2021) for multiple choice question-answering
(MC); (3) summarization (SUM) including ML-
SUM (Scialom et al., 2020) for German and XL-
Sum (Hasan et al., 2021) for the rest; and (4) span
prediction (SPAN) using XQuAD (Artetxe et al.,
2020) for Arabic and German, JSQuAD (Kurihara
et al., 2022) for Japanese and KenSwQuAD (Wan-
jawa et al., 2023) for Swahili.4

4.4 Prompt Templates
We use the same English prompt templates as Ahia
et al. (2023) for NLI and SUM. For MC and SPAN,

3Note that data for the same task across languages does
not match. Model performance is not directly comparable.

4Due to computational constraints, we conduct zero-shot
experiments on SUM. For all other tasks, we evaluate models
in zero- and few-shot settings. We use five demonstrations for
NLI and MC and three for SPAN in the few-shot cases.

we formulate a task-specific English prompt. We
translate the English prompt templates into each
corresponding target language using Google Trans-
late following Yong et al. (2023). The prompt tem-
plates can be found in Appendix A.7.

4.5 Baselines

We compare the CVA methods against two base-
lines: (1) we use the source models directly on
the target language tasks without any adaptation
(Source); and (2) we adapt the source models by
continuing pre-training on data from a target lan-
guage by keeping the source vocabulary (LAPT)
following Yong et al. (2023).

4.6 Evaluation Metrics

Inference Efficiency. We calculate the average
number of prompt tokens per sample for each
dataset and tokenizer, and use its relative ratio
to each source tokenizer as a proxy for inference
speedup following Ahia et al. (2023) and Petrov
et al. (2023). We use the average number of prompt
tokens rather than the actual inference time because
commercial APIs (e.g. OpenAI) often charge users
on the basis of the total number of prompt and
generated tokens. Note that inference efficiency is
independent of the model size. Moreover, previous
work (Petrov et al., 2023; Hong et al., 2024) has
shown a strong correlation between the length of
tokenized inputs and actual processing times, i.e.
longer input sequence leads to longer processing
time.

Downstream Performance. For downstream
performance evaluation, we use standard metrics
for each dataset such as accuracy for NLI and MC,
F1 for SPAN, and ROUGE-L (Lin, 2004) for SUM.

4.7 Implementation Details

We perform our experiments under resource-
constrained settings due to limited access to com-
putational resources. For computational efficiency,
we use a low-rank adaptation approach LoRA (Hu
et al., 2022) applied on all linear layers (setting rank
r = 8) with LAPT, following (Yong et al., 2023;
Cui et al., 2023; Balachandran, 2023; Larcher et al.,
2023). We pre-train each model for a maximum of
four days. We use a batch size of 8 for BLOOM-1B
and 16 for the 7B models with gradient accumula-
tion steps set to 4 and a sequence length of 1,024.
We set the learning rate to 1e-4. For a fair com-
parison, we use the checkpoints with the largest
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Figure 2: Relative speedup ratios to each base model/tokenizer when prompted in English and a target language.
Dotted lines denote the average speedup ratio across tasks in each setting.

number of steps available across all vocabulary ini-
tialization approaches and the LAPT baseline for
the same source model size and language.5

5 Results

5.1 Inference Efficiency
Figure 2 shows the relative inference speedup ratio
between the target and source model prompted in
the target language and English. Overall, the re-
sults confirm our hypothesis that CVA accelerates
inference in 95 out of 96 cases including zero- and
few-shot settings.

Examining the efficiency of CVA across lan-
guages, we observe that the German CVA mod-
els show moderate average speedup ratios (25.4-
43.7%) across different tasks, source models and
prompting languages. This is possibly due to the
close relationship between German and English
(i.e. both Germanic and Indo-European languages).
The Japanese target models also exhibit moderate
but slightly greater average speedups compared
to German of up to 60.6% using BLOOM and
TigerBot as source models. In contrast, inference
speedups are substantially greater using Mistral as
the source model (66.9-93.2% on average). These
differences may stem from the inclusion of Chinese
pre-training data in BLOOM,6 and Chinese and
Japanese data in TigerBot. Arabic and Swahili tar-
get models obtain smaller speedups than the other
languages using BLOOM as the source model (up
to 24.0% on average). This is also likely due to the
inclusion of Arabic and Swahili pre-training data
in BLOOM. In contrast, CVA models in both lan-
guages obtain substantial gains using TigerBot and
Mistral, up to an impressive 271.5% for Arabic and

5For more details, see Appendix A.4.
6Note that the Japanese script includes Chinese characters.

95.0% for Swahili. This is due to the absence of the
two languages from the training data of TigerBot
and Mistral7, and the different Arabic script.

Looking into individual tasks, we observe that
CVA models gain larger speedup ratios in SPAN and
SUM compared to the other two tasks across LLMs
and languages. In particular, we record a maximum
speedup of 331% in Arabic SUM with in-language
prompting using TigerBot as source. In contrast,
speedup ratios tend to be smaller than average in
NLI and MC across different target and source mod-
els, except for NLI with in-language prompting.
Specifically, the Arabic model using BLOOM as
source shows a slowdown of 7.63% when prompted
in English. Our hypothesis is that this is due to the
ratio of English-related words included in a prompt
in each task, resulting to overfragmentation of such
words by the target-language tokenizer, which is
detrimental to inference speedup. Indeed, the num-
ber of tokens of the NLI English prompt template8

is ten when tokenized with the BLOOM source to-
kenizer, increasing to 21 with the Arabic tokenizer.

Finally, we investigate the inference efficiency
for the target models by prompting language. We
observe that the target models show greater infer-
ence speedup ratios with in-language prompts than
English in all cases. The average differences be-
tween in-language and English prompts are 12.8%,
24.6%, and 26.8%, using BLOOM, TigerBot, and
Mistral as source models, respectively. This sug-
gests that the CVA models are susceptible to code-
mixed text (i.e. including English prompts), lead-
ing to overfragmentation for words not in a target
language. Furthermore, in-language prompting is

7We do not have enough information about the training
data of Mistral apart from that it is good in English tasks.

8Question: True, False, or Neither? Answer:
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German Japanese Arabic Swahili
Model NLI MC SUM SPAN NLI MC SUM SPAN NLI MC SUM SPAN NLI MC SUM SPAN

Z
er

o-
sh

ot

BLOOM-1B (Source) .35 .21 17.8 .06 .29 .20 18.2 .22 .31 .20 12.0 .15 .35 .22 12.0 .03
BLOOM-1B (LAPT) .34 .22 14.3 .09 .28 .20 20.7 .26 .31 .19 11.4 .13 .35 .18 7.7 .07
+ Random .34 .22 15.3 .14 .29 .21 19.0 .32 .32 .19 11.5 .14 .34 .22 10.2 .08
+ CLP .37 .18 14.6 .14 .29 .25 18.8 .33 .31 .21 11.2 .14 .33 .22 11.5 .11
+ Heuristics .35 .19 15.3 .13 .29 .19 19.2 .31 .31 .22 11.3 .13 .34 .22 11.9 .11
+ FOCUS .38 .19 16.1 .13 .29 .21 19.2 .33 .32 .20 11.2 .14 .34 .22 11.2 .12
+ CLP+ .35 .15 15.8 .13 .29 .19 19.4 .33 .32 .17 11.3 .15 .33 .20 10.4 .10
BLOOM-7B (Source) .32 .21 23.1 .15 .28 .21 19.0 .33 .32 .17 11.5 .25 .34 .22 14.3 .18
BLOOM-7B (LAPT) .32 .21 19.4 .14 .21 .21 21.6 .36 .33 .16 11.5 .21 .32 .20 13.0 .14
+ Heuristics .37 .22 19.7 .21 .29 .23 19.5 .38 .31 .19 10.7 .21 .34 .22 11.6 .16
+ CLP+ .36 .21 18.7 .20 .29 .21 19.5 .40 .31 .21 11.0 .21 .34 .23 10.9 .17
TigerBot-7B (Source) .38 .24 23.9 .26 .17 .24 19.4 .57 .33 .21 9.0 .04 .34 .22 12.4 .03
TigerBot-7B (LAPT) .36 .21 18.5 .18 .17 .21 21.6 .49 .33 .18 9.8 .13 .32 .21 15.9 .10
+ Heuristics .37 .20 16.1 .18 .29 .22 19.6 .40 .32 .17 10.3 .08 .32 .22 8.1 .05
+ CLP+ .37 .20 14.1 .19 .29 .20 19.8 .41 .34 .22 11.2 .16 .30 .22 8.6 .09
Mistral-7B (Source) .36 .25 24.1 .35 .17 .28 23.7 .60 .33 .20 11.2 .21 .32 .22 15.4 .07
Mistral-7B (LAPT) .37 .25 24.2 .28 .17 .20 23.4 .60 .33 .18 10.8 .14 .33 .22 16.2 .12
+ Heuristics .40 .26 21.2 .22 .29 .20 19.7 .43 .33 .19 10.7 .13 .33 .22 10.6 .14
+ CLP+ .39 .25 20.2 .21 .28 .20 19.9 .46 .31 .16 11.5 .21 .33 .21 10.2 .16

Fe
w

-s
ho

t

BLOOM-1B (Source) .36 .20 - .10 .44 .19 - .32 .34 .17 - .20 .32 .23 - .02
BLOOM-1B (LAPT) .34 .17 - .13 .27 .21 - .34 .32 .16 - .16 .34 .19 - .02
+ Random .35 .21 - .16 .29 .21 - .34 .36 .22 - .16 .34 .20 - .06
+ CLP .34 .21 - .17 .30 .20 - .33 .33 .21 - .15 .33 .19 - .08
+ Heuristics .37 .23 - .17 .30 .22 - .32 .34 .21 - .15 .32 .19 - .07
+ FOCUS .34 .18 - .17 .27 .20 - .36 .37 .20 - .15 .33 .19 - .08
+ CLP+ .35 .20 - .19 .30 .22 - .36 .35 .20 - .15 .31 .18 - .08
BLOOM-7B (Source) .35 .23 - .29 .40 .19 - .49 .36 .18 - .29 .34 .18 - .11
BLOOM-7B (LAPT) .36 .24 - .23 .33 .19 - .53 .36 .18 - .23 .36 .18 - .07
+ Heuristics .36 .22 - .28 .28 .21 - .46 .35 .21 - .24 .33 .19 - .13
+ CLP+ .36 .22 - .25 .30 .20 - .46 .36 .22 - .25 .34 .18 - .13
TigerBot-7B (Source) .33 .37 - .42 .16 .34 - .65 .30 .19 - .10 .32 .19 - .03
TigerBot-7B (LAPT) .35 .39 - .36 .16 .34 - .66 .30 .20 - .17 .34 .20 - .09
+ Heuristics .35 .26 - .21 .29 .24 - .49 .36 .20 - .09 .35 .21 - .04
+ CLP+ .44 .31 - .31 .30 .21 - .50 .39 .19 - .19 .33 .18 - .06
Mistral-7B (Source) .47 .53 - .48 .16 .42 - .69 .30 .32 - .31 .33 .21 - .12
Mistral-7B (LAPT) .41 .46 - .27 .16 .37 - .68 .30 .30 - .26 .37 .34 - .21
+ Heuristics .45 .41 - .24 .30 .24 - .49 .34 .18 - .17 .33 .18 - .09
+ CLP+ .39 .47 - .25 .29 .25 - .50 .38 .23 - .23 .34 .20 - .14

Table 2: Mean performance over five runs with in-language prompting on 500 randomly selected test samples for
each dataset. Gray denotes baselines without CVA. Bold indicates comparable or better results than the baselines.
Darker blue and red indicate higher positive and negative relative performance change over Source, respectively.

a more realistic scenario for non-English speakers
to use LLMs than English prompting. These differ-
ences highlight the advantage of CVA and confirm
the limitations of using a source tokenizer, reported
by Ahia et al. (2023) and Petrov et al. (2023).

5.2 Downstream Performance

We compare the downstream performance of all
CVA methods (§3.2) to the Source and LAPT base-
lines (§4.5). Table 2 shows the zero- and few-
shot performance of all models with in-language
prompting.9 Results using English prompts are
included in Table 10 in the Appendix.

Overall, CVA models show comparable or bet-
ter performance than the baselines in the major-
ity of the cases across tasks and languages using
BLOOM-1B as source. Models adapted with sim-
ple Random target vocabulary initialization are
competitive compared to more sophisticated ap-
proaches and the baselines in the majority of the
cases – 17 for Source and 26 for LAPT out of 28
cases, respectively. However, they are not as robust

9Full results are in Table 11 in the Appendix. We only
show results with Heuristics and CLP+ for 7B models in Table
2 as two representative approaches for brevity.

with English prompting (see Appendix C.2). CVA
with Heuristics also performs similar to the seman-
tic similarity-based methods (i.e. CLP, FOCUS
and CLP+) corroborating findings by Downey et al.
(2023). They are similar to or better than Source in
18 out of 28 cases, and LAPT in 20 out of 28 cases
without a substantial drop in performance observed
in Random with English prompting.

Experiments with larger source models show
that adapting BLOOM-7B with Heuristics is gen-
erally on par with CLP+ and other semantic
similarity-based methods. We also note that it out-
performs Source and LAPT in 15 and 19 out of
28 cases across tasks and languages, respectively.
When using TigerBot-7B and Mistral-7B as source,
we find that CVA models are not always better than
the baselines. For instance, CLP+ exhibits similar
performance to Source and LAPT in 15 and 14 out
of 28 cases, while Heuristics is similar to or better
than them in 13 and 14 cases, respectively. This
suggests that LLMs such as TigerBot and Mistral,
which are not as multilingual as BLOOM, may
not perform well with CVA. This is possibly due
to less transferable cross-lingual knowledge, and
the small amount of target language data included
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Figure 3: Performance difference between English and in-language prompts. Positive and negative values indicate
better performance using in-language or English prompts respectively.

during pre-training. Furthermore, Heuristics CVA
might not be suitable with such LLMs, especially
for languages that are not included in pre-training
(i.e. Arabic and Swahili for TigerBot and Mis-
tral), as we observe poor performance in generative
tasks like SUM and SPAN in Arabic and Swahili
compared to CLP+.

Finally, we observe that language overlaps be-
tween source and target models affect downstream
performance, similar to inference speedups, espe-
cially in generative tasks such as SUM and SPAN.
BLOOM-based CVA models show substantial per-
formance improvement in German and Japanese
zero-shot SPAN compared to baselines, while they
generally achieve competitive or slightly lower per-
formance in Arabic and Swahili across tasks, ex-
cept for Swahili zero-shot SPAN in BLOOM-1B.
CVA models based on TigerBot-7B and Mistral-7B
with CLP+ for Arabic and Swahili are competitive
to the baselines across generative tasks (3 out of
4 cases in zero-shot tasks regardless of the source
model). However, this is not the case for German
and Japanese CVA models.10

6 Analysis

In-language vs. English Prompting. Figure
3 shows the performance difference between En-
glish and in-language prompting across models,
languages and tasks for two representative CVA
methods (Heuristics and CLP+).11

Recent studies have showed that in-language
prompting yields lower performance than prompt-

10TigerBot is built on top of LLaMA2, with German being
the largest among non-English languages in the pre-training
corpus (0.17%) (Touvron et al., 2023b).

11One heuristic- and one semantic similarity-based method.

ing in English (Lin et al., 2022; Ahuja et al., 2023;
Muennighoff et al., 2023). Surprisingly, we find no
major performance drop with in-language prompt-
ing in the majority of the zero-shot settings across
languages. We note similar or better performance
with in-language prompting in 11 out of 16 cases.
We also observe a drop of 0.03 or larger (non-
shaded areas in Figure 3) in only 6 out of 16 cases.
The few-shot settings also exhibited similar trends
with substantial performance degradation of 0.03 or
more in 4 out of 12 cases, and similar or better per-
formance in 7 out of 12 cases. Some in-language
prompting cases with lower performance than En-
glish, such as in German across tasks and zero-shot
NLI in Arabic and Swahili, can be related to the to-
kenization effects discussed in §5.1. Previous stud-
ies have also found a strong correlation between
tokenization and performance (Rust et al., 2021;
Bostrom and Durrett, 2020; Fujii et al., 2023).

LAPT Steps. LAPT is an integral part of
CVA (Minixhofer et al., 2022; Dobler and de Melo,
2023; Ostendorff and Rehm, 2023; Downey et al.,
2023). However, it is computationally intensive,
requiring updating models over a large number of
training steps. Therefore, we investigate the re-
lationship between downstream performance and
the number of LAPT steps.12 Figure 4 shows the
Kendall’s tau (Kendall, 1938) correlation coeffi-
cients between them. Overall, LAPT helps im-
prove downstream performance in both zero- and
few-shot settings in 69.5% and 59.4% of the cases,
respectively.13 In particular, both TigerBot and

12Every 2k steps starting from 1k and every 10k after 13k.
13We observe similar trends with English prompting (Figure

6 in the Appendix).
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Figure 4: Kendall’s τ correlation between the number of
LAPT steps and performance (in-language prompting).

Mistral, which are not as multilingual as BLOOM,
tend to benefit more from LAPT, especially in zero-
shot SUM and SPAN across languages. This sug-
gests that LAPT helps CVA models to increase tar-
get language knowledge and reach a performance
similar BLOOM-7B (Source) in a similar number
of steps.

Examining the correlation by task across zero-
and few-shot settings, we often observe negative or
no correlation in classification tasks like NLI and
MC. In contrast, SPAN and SUM generally benefit
from LAPT in zero-shot settings across languages,
in addition to few-shot SPAN in Japanese and Ara-
bic. We hypothesize that zero-shot generative tasks,
i.e. SUM and SPAN, can be more challenging than
the other text classification tasks (Davletov et al.,
2021; Yamaguchi et al., 2022), and thus require
better target language representations to perform
well.

LoRA Rank r. There is a trade-off between com-
putational efficiency and performance when adapt-
ing LLMs with LoRA (Hu et al., 2022). We fur-
ther analyze how the LoRA rank affects perfor-
mance in CVA. To keep computational costs low,
we experiment by setting r = {8, 32, 64, 128} us-
ing BLOOM-1B on SPAN in Japanese and Swahili
where we observe large performance variations (Ta-
ble 2). Figure 5 shows how performance changes
with respect to r. On the one hand, the performance
of CVA models does not generally increase with
r in the zero-shot setting. On the other hand, per-
formance improves with r in the few-shot setting.
This suggests that setting r = 8 is a reasonable
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Figure 5: Performance changes in SPAN with respect to
LoRA rank r.

choice in zero-shot settings. Increasing r to 32, 64
or 128 can yield better few-shot performance but
results to higher computational costs. For instance,
the best-performing Swahili model (r = 64) re-
sults in a 14% increase in the number of trainable
parameters compared to r = 8.

7 Recommendations

Our findings suggest that CVA offers substantial in-
ference speedups across tasks, languages and mod-
els regardless of the target embedding initialization
approach. However, downstream performance is
sensitive to the embedding initialization and LoRA
fine-tuning. Therefore, we provide the follow-
ing recommendations to researchers and practition-
ers14:

1. Simple Heuristics-based initialization should
be used to save computational costs when the
source model is sufficiently multilingual, cover-
ing several languages and scripts. This should
also be the case when the target language is
included in the source model pre-training data.

2. Semantic similarity-based initialization meth-
ods (e.g. FOCUS, CLP, CLP+) should be used
in cases where the target language is not in-
cluded in the source model pre-training data, to
obtain better downstream performance.

3. Careful cost-benefit consideration is needed to
choose an optimal LoRA rank r. A low rank
(r = 8) is a good starting point in zero-shot
settings considering performance and computa-

14If we do not care about inference efficiency at all, it might
make sense to use LAPT only instead of CVA methods.
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tional costs; r = 32 or larger is recommended
in few-shot settings.

8 Conclusion

We have conducted an extensive study on the effec-
tiveness of CVA on LLM inference efficiency and
performance. Our experiments in four diverse lan-
guages demonstrated that CVA substantially con-
tributes to LLM inference speedups of up to 271.5%
while maintaining comparable downstream perfor-
mance to baselines when adapting multilingual
LLMs. We supplement our results and analysis
with specific recommendations for effective CVA
with LLMs. In future work, we plan to explore
various inference-aware methods for cross-lingual
transfer, such as cost-effective subword vocabulary
selection (Gee et al., 2023).

Limitations

Prompt Tuning. We use a translated version of
in-language prompts from English. This may af-
fect the downstream performance due to machine
translation noise, underestimating the performance
of in-language prompting.

Languages. This study covers four linguistically
diverse languages (German, Arabic, Japanese, and
Swahili), following previous work on CVA that
has also tested a similar number of languages. For
instance, de Vries and Nissim (2021) tested two
languages, and Dobler and de Melo (2023) tested
five languages. Nonetheless, exploring more lan-
guages is an interesting avenue for future work but
out of the scope of this paper given our limited
computing capacity.

Model Size. We use LLMs of various sizes rang-
ing from 1B to 7B, which are far larger than those
tested in previous CVA studies. For example,
Dobler and de Melo (2023), Liu et al. (2024), and
Downey et al. (2023) use XLM-R (Conneau et al.,
2020) (0.28B). Note that inference efficiency mea-
sured by the number of processed (or generated)
tokens is not affected by the model size. However,
investigating the performance of CVA approaches
with larger models would be valuable in future
studies.
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Appendix

A Implementation Details

A.1 Tokenizer
To reduce the computational costs, we utilized pub-
licly available existing tokenizers for each target
language, which means we used them as Tt. Table
3 lists the tokenizers used in our experiments.

A.2 Language-specific pre-trained LM
For language-specific pre-trained LMs used in CLP
and CLP+, we used the corresponding models to
Tt, which are listed in Table 3 and are all decoder-
based models. Note that we only used the embed-
ding of each language-specific pre-trained LM for
vocabulary adaptation, and therefore, one can also
use encoder and encoder-decoder based models.

A.3 fastText in FOCUS
For FOCUS, we trained a fastText model for each
language on a corresponding CC-100 (Conneau
et al., 2020) text with the same configuration as
Dobler and de Melo (2023).

A.4 Hyperparameters and Generation
Configurations

LAPT Table 4 shows the hyperparameters in
LAPT for each model size. Note that due to the
computational resource constraints and funds for
running experiments, we could run pre-training
of up to four days for each approach. Therefore,
we picked up checkpoints with the largest num-
ber of steps available across models with the same
base model (i.e. BLOOM-1B, BLOOM-7B, etc.)
and language for evaluation to make a fair com-
parison. We also temporarily trimmed the unused
embeddings of BLOOM models for LAPT, whose
tokens did not appear in the training corpus during
pre-training to save memory and for faster compu-
tation.15

Generation Following Cui et al. (2023), we intro-
duced a verbalizer for the classification tasks: NLI

and MC, where we mapped the first generated token
into a label to compute accuracy. For mapping, we
simply picked up a token with the maximum log-
likelihood among candidate tokenized words. The
list of candidate label words for each task is shown
in Table 5. Table 6 lists the parameters used during
evaluation. To make a fair comparison, we did not

15We used the implementations by Ushio et al. (2023) and
Williams and Aletras (2023).

conduct any generation parameter tuning and used
the same ones across all approaches. For SUM and
few-shot SPAN in Swahili, we truncated an article
whenever it exceeded the maximum prompt length
of 4,096 to avoid the CUDA out-of-memory error.

A.5 Checkpoints
As explained in A.4, we trained all models for up
to four days each due to limited computational re-
sources and funds for experiments. The only excep-
tion was Swahili since the dataset is small enough
to complete LAPT. To make a fair comparison, we
used checkpoints with the largest number of steps
available across models with the same target lan-
guage and base model. Table 7 shows the list of
checkpoints used for evaluation.

A.6 Libraries and Hardware
We implement our models using PyTorch (Paszke
et al., 2019), Hugging Face Transformers (Wolf
et al., 2020) and PEFT (Mangrulkar et al.,
2022). We preprocess data with Hugging Face
Datasets (Lhoest et al., 2021). For evaluation, we
use Hugging Face Evaluate16 to compute down-
stream performance metrics. We use a single
NVIDIA A100 (80GB) GPU for all experiments.

A.7 Prompt Templates
Table 8 shows the prompt templates used in our
evaluation.

A.8 Code
Our code and models are available here: https:
//github.com/gucci-j/llm-cva.

16https://github.com/huggingface/evaluate
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Language Tokenization
Algorithm Hugging Face Identifier Citation License

German Byte-level BPE malteos/gpt2-xl-wechsel-german MIT
Japanese Unigram rinna/japanese-gpt-neox-3.6b-instruction-ppo MIT
Arabic Byte-level BPE aubmindlab/aragpt2-base (Antoun et al., 2021) See here
Swahili Byte-level BPE benjamin/gpt2-wechsel-swahili (Minixhofer et al., 2022) MIT

Table 3: List of tokenizers used for each language-specific model with vocabulary adaptation.

Hyperparameters 1B 7B
Batch size 8 16
Gradient accumulation steps 4 4
Maximum number of training epochs 1 1
Maximum number of training days 4 4
Adam ϵ 1e-8 1e-8
Adam β1 0.9 0.9
Adam β2 0.999 0.999
Sequence length 1,024 1,024
Learning rate 1e-4 1e-4
Learning rate scheduler cosine cosine
Warmup steps 100 100
Weight decay 0.01 0.01
Attention dropout 0.0 0.0
Dropout 0.05 0.05
LoRA rank r 8 8
LoRA dropout 0.05 0.05
LoRA α 32 32
Training precision FP16 FP16
Model quantization int 8 int 8

Table 4: Hyperparameters for LAPT.

Task Language Label words
NLI English True, False, Neither

German Wahr, Falsch, Weder
Japanese 真, 偽, どちらでもない

Arabic iJ
m��,

A¢ 	k, ¼@ 	X Bð @ 	Yë B

Swahili Kweli, Uongo, Wala
MC All A, B, C, D, E

Table 5: List of candidate label words for each classifi-
cation task.

Parameters Values
Maximum prompt length 4,096
Temperature 0.8
Repetition penalty 1.1
Top k 40
Top p 0.9
Beam width 5
Sampling True
Early stopping True

Table 6: Parameters for generation.

Model Language
de ja ar sw

BLOOM-1B 47k 48k 50k 9k
BLOOM-7B 8k 8k 8k 4k
TigerBot-7B 8k 8k 8k 4k
Mistral-7B 6k 6k 6k 4k

Table 7: List of checkpoints used for evaluation. We
used checkpoints with the largest number of steps avail-
able across all models with the same base model and
language.
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Task Language Template

NLI

English {premise} Question: {hypothesis} True, False, or Neither? Answer:
German {premise} Frage: {hypothesis} Wahr, Falsch oder Weder? Antwort:
Japanese {premise} 質問: {hypothesis} 真、偽、どちらでもない？ 答え:

Arabic {premise} È@ ñ�: {hypothesis} �éK. Ag. @ ? ¼@
	X Bð @ 	Yë B ð


@

A¢ 	k , iJ
m��:

Swahili {premise} Swali: {hypothesis} Kweli, Uongo au Wala? Jibu:

MC

English
{question} A. {choice_1}, B. {choice_2}, C. {choice_3}, D. {choice_4},
E. {choice_5} Answer:

German
{question} A. {choice_1}, B. {choice_2}, C. {choice_3}, D. {choice_4},
E. {choice_5} Antwort:

Japanese
{question} A. {choice_1}, B. {choice_2}, C. {choice_3}, D. {choice_4},
E. {choice_5} 答え:

Arabic
{question} A. {choice_1}, B. {choice_2}, C. {choice_3}, D. {choice_4},
E. {choice_5} �éK. Ag. @:

Swahili
{question} A. {choice_1}, B. {choice_2}, C. {choice_3}, D. {choice_4},
E. {choice_5} Jibu:

SUM

English
Write a short summary of the following text in {language}.
Article: {text} Summary:

German
Schreiben Sie eine kurze Zusammenfassung des folgenden Textes auf Deutsch.
Artikel: {text} Zusammenfassung:

Japanese 次の文章の要約を日本語で書きなさい。記事: {text} 要約:
Arabic �éËA �®ÖÏ @ . �éJ
K. QªË@ �é 	ªÊËAK. ú
ÍA

�JË @ �	JÊË @ �Q�
��̄ A �� 	jÊÓ I. �J» @: {text} � 	jÊÖÏ @:

Swahili
Andika muhtasari mfupi wa maandishi yafuatayo kwa Kiswahili.
Makala: {text} Muhtasari:

SPAN

English
Answer the following question. Context: {context} Question: {question}
Answer:

German
Beantworten Sie die folgende Frage. Artikel: {context} Frage: {question}
Antwort:

Japanese
次の文章の質問に答えなさい。文章: {context} 質問: {question}
答え:

Arabic ��AJ
� . ú
ÍA
�JË @ È@ ñ�Ë@ úÎ« I. k.


@: {context} È@ ñ�Ë@: {question} �éK. Ag. B @:

Swahili Jibu swali lifuatalo. Makala: {context} Swali: {question} Jibu:

Table 8: Prompt template for each task and language.
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B Licenses

This study used various publicly available mod-
els and datasets with different licenses, as detailed
below, all of which permit their use for academic
research.

B.1 Models

BLOOM is licensed under the BigScience RAIL
License.17 TigerBot and Mistral are licensed under
the Apache-2.0 License. The licenses of the helper
models are listed in Table 3.

B.2 Datasets

XNLI is distributed under CC BY-NC 4.0. JNLI,
XQuAD, and JSQuAD are distributed under CC
BY-SA 4.0. XCSQA is a derivative of Common-
senseQA (Talmor et al., 2019), which is licensed
under an MIT license. OSCAR and KenSwQuAD
are licensed under CC0 – no rights reserved. XL-
Sum is licensed under CC BY-NC-SA 4.0, while
MLSUM is distributed under an MIT license.

C Results

C.1 Perplexity

Table 9 shows the perplexities of adapted mod-
els measured on the language-specific subset of
Wikipedia 50K articles.

C.2 Additional Downstream Results

Table 10 shows the full results with standard devi-
ations when prompted in English, and Table 11
shows the full results with standard deviations
when prompted in a target language.

Poor Performance with Random Initialization
in English Prompting Although models adapted
with Random are competitive to other approaches
using in-language prompts (Tables 2 and 11), this
is not the case when prompting in English (Table
10). We see a substantial drop in performance,
especially in the Japanese, Arabic, and Swahili

17https://huggingface.co/spaces/bigscience/lic
ense

Model German Japanese Arabic Swahili
BLOOM-1B
Source 45.6 44.7 14.6 45.4
LAPT 22.6 21.0 20.9 55.4
Random 58.5 55.1 53.7 305.1
CLP 75.2 62.6 46.5 190.2
Heuristics 71.5 51.2 46.0 176.5
FOCUS 70.8 50.1 46.1 168.9
CLP+ 75.5 48.8 45.6 185.5
BLOOM-7B
Source 18.7 21.4 9.5 14.9
LAPT 13.6 13.7 11.0 19.4
Random 45.0 54.1 44.5 179.1
CLP 49.1 165.9 30.9 91.8
Heuristics 36.4 43.5 32.0 85.8
FOCUS 36.8 42.3 32.0 82.4
CLP+ 37.0 41.8 29.9 89.7
TigerBot-7B
Source 7.6 8.2 5.1 30.9
LAPT 8.6 10.0 3.0 9.5
Random 116.2 77.8 130.7 636.3
CLP 87.6 39.9 103.0 688.3
Heuristics 47.3 41.4 124.1 605.4
FOCUS 43.9 39.2 81.8 398.6
CLP+ 45.2 38.8 81.6 559.4
Mistral-7B
Source 4.5 8.0 3.7 18.4
LAPT 5.5 9.7 2.9 7.5
Random 78.0 54.4 77.2 587.7
CLP 33.7 41.4 74.5 358.6
Heuristics 34.8 41.4 81.5 413.3
FOCUS 33.4 41.0 66.1 287.4
CLP+ 35.4 40.0 58.1 297.0

Table 9: Perplexity on the language-specific subset of
Wikipedia 50K articles. Bold and underlined indicate
the best and second-best perplexities across adapted
models with the same base model for each language.
Note that perplexities are not comparable between mod-
els with grey and others due to their difference in
vocabulary.

SPAN tasks with BLOOM-1B. For larger models,
Random adversely affects not only SPAN but also
performance in SUM. For instance, we observe up
to 53.0% (German CVA TigerBot-7B) and 60.0%
(Japanese CVA TigerBot-7B) performance degra-
dation in zero-shot SUM and SPAN, respectively.
Our hypothesis is that random initialization can
severely impair the ability of the LLM to under-
stand English prompts, which cannot be fully re-
covered with LAPT due to the exclusion of English
data.

C.3 English Downstream Performance

Table 12 shows the results on the English datasets.
Despite the entire replacement of embeddings for
CVA approaches, their adapted models exhibit com-
parable or better results in most of the tasks for
BLOOM, except for SPAN, where Source showed
the best result followed by LAPT. This can be as-
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cribed to the following reasons: First, LAPT can
retain more source model knowledge than CVA ap-
proaches, as their embeddings have not changed.
Second, SPAN can be seen as a challenging task
as it requires more linguistic understanding of a
prompt than simply classifying a text as in NLI

and MC. We, therefore, see such a huge perfor-
mance difference in SPAN since CVA approaches
lost more source linguistic knowledge than LAPT
counterparts in exchange for faster inference in a
target language.

For TigerBot and Mistral, which are not as mul-
tilingual as BLOOM, we see quite similar trends
observed in §5.2 in that (1) models with CVA fail
to achieve competitive downstream performance to
the baselines and (2) their few-shot performance
is far lower than LAPT. These results suggest that
there can be a relationship between downstream
performance in a target language and those in En-
glish, and maintaining competitive downstream per-
formance to the baselines in English might be a key
to improving models with CVA in terms of their
downstream performance.

C.4 How helpful is LAPT for LLMs with
cross-lingual vocabulary adaptation?

Figure 6 visualizes Kendall’s tau correlation coeffi-
cient between the number of LAPT steps and down-
stream performance when prompted in English.
Similar to Figure 4, we observe that LAPT helped
improve downstream performance in both zero-
shot and few-shot settings even when prompted in
a target language in 65.6% and 63.5% of the cases,
respectively.

C.5 Loss Curves

Figures 7 to 10 show the loss curves in LAPT for
each model setting.

C.6 Kendall’s Tau Correlation Coefficient for
Figure 5

Table 13 lists all Kendall’s tau correlation coeffi-
cients corresponding to Figure 5 in §6. Models
using CVA do not exhibit a strong correlation in
the zero-shot setting, ranging from -0.226 to 0.173.
The only exception is Heuristics in Japanese with
English prompting (0.45). We observe a positive
correlation ranging (0.59-0.889) in the few-shot
setting, except for CLP+ in Japanese with English
prompting (-0.95).
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Figure 6: Kendall’s τ correlation between the number
of LAPT steps and performance (English prompting).

Approach Japanese Swahili
English Target English Target

Zero-shot
LAPT 0.720 0.333 0.788 0.187
+ Heuristics 0.453 0.173 0.173 0.160
+ CLP+ -0.160 -0.106 -0.226 0.066

Few-shot
LAPT 0.626 1.00 0.453 0.906
+ Heuristics 0.706 0.600 0.591 0.701
+ CLP+ -0.946 0.626 0.886 0.756

Table 13: Kendall’s tau correlation coefficients corre-
sponding to Figure 5. We include LAPT results for
reference.
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Approach German Japanese Arabic Swahili
NLI MC SUM SPAN NLI MC SUM SPAN NLI MC SUM SPAN NLI MC SUM SPAN

BLOOM-1B Zero-shot
Source .34.00 .20.00 14.90.7 .08.00 .17.00 .25.00 3.70.1 .23.00 .35.00 .19.00 9.90.1 .17.01 .34.00 .21.00 10.60.4 .08.00
LAPT .33.00 .21.01 17.00.1 .09.01 .17.00 .20.00 17.20.3 .25.00 .34.00 .18.00 11.60.1 .14.01 .34.00 .18.00 9.70.1 .08.00
+ Random .31.00 .22.00 19.00.2 .12.00 .17.00 .20.00 17.70.2 .19.00 .36.00 .18.00 10.40.2 .09.00 .32.00 .22.00 9.80.1 .05.00
+ CLP .34.00 .23.00 18.70.2 .12.01 .17.00 .21.00 17.60.1 .27.01 .36.00 .18.00 11.20.1 .14.00 .38.00 .22.00 11.60.1 .11.00
+ Heuristics .32.00 .22.00 17.70.4 .11.00 .17.00 .20.00 17.90.1 .25.00 .39.00 .18.00 10.90.1 .13.00 .35.00 .22.00 11.90.1 .10.00
+ FOCUS .34.00 .22.00 17.40.4 .11.00 .17.00 .21.00 16.50.1 .28.00 .36.00 .18.00 11.20.1 .13.00 .34.00 .22.00 12.00.1 .11.00
+ CLP+ .32.00 .22.00 19.20.2 .12.00 .17.00 .20.00 18.60.1 .30.00 .40.01 .18.00 11.20.1 .14.00 .38.01 .22.00 11.40.1 .10.00

BLOOM-7B
Source .33.00 .22.00 6.30.1 .15.01 .17.00 .20.00 8.10.1 .36.00 .33.00 .18.00 2.80.1 .21.00 .34.00 .22.00 7.30.2 .17.00
LAPT .34.00 .19.01 18.70.5 .17.01 .17.00 .19.01 18.20.2 .36.01 .35.00 .17.00 9.70.2 .22.00 .33.00 .20.00 13.20.1 .14.00
+ Random .33.00 .22.00 16.90.2 .16.00 .17.00 .21.00 17.70.1 .28.00 .31.00 .19.00 8.10.1 .15.00 .31.00 .22.00 9.50.1 .07.00
+ CLP .36.00 .18.00 19.50.3 .20.00 .17.00 .22.00 4.30.1 .10.00 .36.00 .20.00 9.60.0 .22.00 .36.00 .23.00 12.30.0 .17.00
+ Heuristics .35.00 .20.00 17.60.3 .24.00 .17.00 .21.00 16.70.1 .38.00 .33.00 .19.00 10.50.1 .19.00 .36.00 .23.00 12.30.1 .16.00
+ FOCUS .36.00 .20.00 18.90.3 .22.00 .17.00 .20.00 17.30.2 .35.00 .35.00 .20.00 10.40.1 .17.01 .36.00 .21.00 11.60.1 .17.00
+ CLP+ .35.00 .21.00 18.00.3 .22.00 .17.00 .20.00 16.90.1 .37.01 .32.00 .21.00 10.10.1 .21.00 .39.01 .22.00 12.00.2 .18.00

TigerBot-7B
Source .42.00 .22.00 5.40.2 .32.03 .29.00 .28.01 1.90.1 .51.01 .36.00 .20.00 2.40.1 .05.00 .33.00 .22.00 9.00.2 .06.00
LAPT .37.00 .21.01 19.50.3 .20.00 .32.01 .21.00 14.80.2 .50.00 .41.00 .18.01 9.40.1 .12.00 .43.00 .20.01 15.90.1 .15.00
+ Random .35.00 .23.00 9.50.3 .05.00 .17.00 .21.00 16.20.1 .24.00 .35.00 .17.00 3.90.2 .06.00 .33.00 .22.00 6.80.1 .03.00
+ CLP .38.00 .22.00 16.80.1 .20.01 .17.00 .19.00 18.90.1 .40.00 .35.00 .17.00 7.70.1 .11.00 .32.00 .22.00 8.10.2 .03.00
+ Heuristics .35.00 .20.01 18.80.2 .17.00 .17.00 .24.00 17.10.2 .38.00 .34.00 .19.00 6.60.1 .09.00 .31.00 .22.00 8.20.1 .04.00
+ FOCUS .37.00 .19.00 18.90.4 .19.00 .17.00 .23.00 19.00.1 .37.00 .33.00 .21.00 8.10.2 .17.00 .33.00 .18.00 8.30.2 .13.00
+ CLP+ .35.00 .22.00 20.20.1 .19.00 .17.00 .21.00 18.90.1 .40.00 .37.00 .23.00 9.10.2 .16.01 .32.00 .22.00 7.70.1 .05.00

Mistral-7B
Source .36.00 .28.00 8.30.2 .35.00 .21.00 .30.00 8.40.3 .56.00 .41.00 .24.00 2.40.1 .22.00 .34.00 .20.00 5.70.2 .12.00
LAPT .35.01 .25.01 25.20.3 .30.00 .19.00 .21.01 23.10.1 .48.00 .34.00 .18.00 10.90.1 .12.00 .36.00 .22.01 16.50.1 .18.00
+ Random .32.00 .22.00 14.80.2 .12.00 .17.00 .20.00 15.40.1 .25.00 .36.00 .19.00 8.80.1 .11.00 .32.00 .22.00 8.30.2 .04.00
+ CLP .37.00 .27.00 18.80.2 .23.00 .29.00 .24.00 17.80.1 .37.00 .32.00 .18.00 11.30.1 .22.00 .34.00 .21.00 12.40.1 .17.00
+ Heuristics .32.00 .22.00 20.80.3 .21.00 .27.00 .20.00 17.20.2 .37.00 .33.00 .20.00 11.20.2 .17.00 .30.00 .22.00 11.90.2 .12.00
+ FOCUS .35.00 .21.00 21.10.1 .24.00 .23.00 .26.00 17.20.1 .40.01 .39.00 .18.00 9.60.1 .19.00 .30.00 .26.00 12.60.1 .19.00
+ CLP+ .36.00 .22.00 20.20.2 .23.00 .29.00 .23.00 15.90.2 .38.00 .38.00 .20.00 10.80.1 .24.00 .31.01 .21.00 12.60.1 .17.00

BLOOM-1B Few-shot
Source .35.00 .19.00 - .11.00 .28.00 .18.00 - .24.00 .34.00 .18.00 - .21.01 .35.00 .22.00 - .03.00
LAPT .34.01 .18.01 - .14.00 .30.01 .21.01 - .27.00 .32.01 .17.01 - .18.00 .36.00 .20.01 - .02.00
+ Random .35.00 .21.00 - .16.00 .28.00 .19.00 - .24.00 .35.00 .19.01 - .18.00 .34.00 .18.00 - .03.00
+ CLP .36.00 .20.00 - .18.00 .37.00 .19.00 - .33.00 .35.00 .20.01 - .20.00 .35.00 .19.00 - .07.00
+ Heuristics .35.00 .22.00 - .18.01 .34.00 .16.00 - .29.00 .33.00 .21.00 - .19.00 .33.00 .18.00 - .06.00
+ FOCUS .34.00 .19.00 - .19.01 .54.00 .21.00 - .33.00 .34.00 .19.01 - .20.00 .33.01 .20.00 - .07.00
+ CLP+ .34.00 .19.00 - .22.00 .51.00 .20.00 - .34.00 .35.01 .20.01 - .19.00 .35.01 .18.00 - .07.00

BLOOM-7B
Source .42.00 .20.01 - .28.00 .23.00 .18.00 - .33.00 .43.00 .20.01 - .30.00 .38.00 .18.00 - .11.00
LAPT .34.01 .21.01 - .28.00 .34.01 .20.01 - .36.01 .38.01 .18.01 - .28.00 .38.01 .20.01 - .09.00
+ Random .30.00 .19.00 - .26.01 .26.00 .18.00 - .38.00 .35.00 .21.00 - .28.00 .33.00 .20.00 - .07.00
+ CLP .36.00 .21.00 - .30.00 .39.00 .19.00 - .09.01 .39.00 .18.00 - .33.00 .33.00 .20.00 - .16.00
+ Heuristics .36.00 .20.00 - .31.00 .26.00 .21.00 - .43.00 .37.00 .20.00 - .32.00 .33.00 .20.00 - .12.00
+ FOCUS .35.00 .22.00 - .31.00 .51.00 .19.00 - .41.00 .33.00 .21.00 - .30.00 .31.00 .21.00 - .16.00
+ CLP+ .37.00 .22.00 - .29.00 .37.01 .20.00 - .43.00 .32.00 .21.00 - .35.00 .35.00 .20.00 - .13.00

TigerBot-7B
Source .43.00 .38.01 - .38.00 .42.01 .33.00 - .45.00 .39.00 .18.00 - .13.00 .36.00 .23.00 - .04.00
LAPT .46.01 .39.00 - .37.00 .29.00 .31.00 - .47.00 .43.01 .19.01 - .20.01 .44.01 .21.00 - .15.00
+ Random .34.00 .19.00 - .05.00 .39.00 .20.00 - .29.00 .37.00 .15.00 - .09.00 .34.00 .18.00 - .02.00
+ CLP .38.00 .18.00 - .24.00 .30.00 .24.00 - .43.00 .34.00 .18.00 - .17.00 .33.00 .18.00 - .02.00
+ Heuristics .35.00 .27.00 - .24.01 .47.00 .24.00 - .42.00 .33.00 .20.00 - .11.00 .36.00 .22.00 - .02.00
+ FOCUS .39.00 .32.00 - .32.00 .31.00 .24.00 - .44.00 .35.00 .21.00 - .26.00 .31.00 .18.00 - .12.00
+ CLP+ .36.00 .32.00 - .34.00 .32.00 .21.00 - .43.00 .35.00 .20.00 - .25.00 .34.00 .19.00 - .04.00

Mistral-7B
Source .54.00 .55.00 - .45.00 .49.00 .42.00 - .56.00 .46.00 .35.00 - .32.00 .38.00 .21.00 - .20.00
LAPT .51.01 .47.00 - .28.00 .43.01 .37.01 - .55.00 .44.01 .30.01 - .22.00 .47.01 .34.01 - .25.00
+ Random .36.00 .19.00 - .17.00 .32.00 .17.00 - .36.00 .32.00 .19.00 - .23.00 .34.00 .19.00 - .02.00
+ CLP .42.00 .47.00 - .26.00 .38.00 .31.00 - .44.00 .35.00 .17.00 - .30.00 .36.00 .21.00 - .15.00
+ Heuristics .40.00 .40.00 - .24.00 .39.00 .24.00 - .44.00 .35.00 .18.00 - .24.00 .33.00 .17.00 - .13.00
+ FOCUS .44.00 .42.00 - .25.00 .43.00 .22.00 - .45.00 .34.00 .19.00 - .23.00 .34.00 .28.00 - .18.00
+ CLP+ .37.00 .48.00 - .30.00 .31.00 .26.00 - .44.00 .34.00 .23.00 - .33.00 .32.00 .19.00 - .14.00

Table 10: Mean performance over five runs with standard deviations when prompting in English on 500 randomly
selected test samples for each dataset. The baselines are in grey . Bold indicates comparable or better results than
the baselines. Darker blue and red shades indicate higher positive and negative relative performance change over
Source per language and task, respectively.
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Approach German Japanese Arabic Swahili
NLI MC SUM SPAN NLI MC SUM SPAN NLI MC SUM SPAN NLI MC SUM SPAN

BLOOM-1B Zero-shot
Source .35.00 .21.00 17.80.3 .06.00 .29.00 .20.00 18.20.3 .22.00 .31.00 .20.00 12.00.2 .15.01 .35.00 .22.00 12.00.3 .03.00
LAPT .34.01 .22.01 14.30.2 .09.00 .28.00 .20.00 20.70.2 .26.00 .31.00 .19.01 11.40.1 .13.01 .35.00 .18.00 7.70.1 .07.00
+ Random .34.00 .22.00 15.30.2 .14.00 .29.00 .21.00 19.00.0 .32.00 .32.00 .19.00 11.50.0 .14.01 .34.00 .22.00 10.20.1 .08.01
+ CLP .37.00 .18.00 14.60.7 .14.00 .29.00 .25.00 18.80.1 .33.00 .31.00 .21.00 11.20.2 .14.00 .33.00 .22.00 11.50.2 .11.00
+ Heuristics .35.00 .19.00 15.30.2 .13.00 .29.00 .19.00 19.20.0 .31.00 .31.00 .22.02 11.30.1 .13.00 .34.00 .22.00 11.90.2 .11.00
+ FOCUS .38.00 .19.00 16.10.8 .13.01 .29.00 .21.00 19.20.0 .33.00 .32.00 .20.01 11.20.1 .14.00 .34.00 .22.00 11.20.1 .12.00
+ CLP+ .35.00 .15.00 15.80.6 .13.00 .29.00 .19.00 19.40.0 .33.00 .32.00 .17.00 11.30.1 .15.01 .33.00 .20.00 10.40.1 .10.00

BLOOM-7B
Source .32.00 .21.00 23.10.2 .15.01 .28.00 .21.00 19.00.2 .33.00 .32.00 .17.00 11.50.1 .25.00 .34.00 .22.00 14.30.1 .18.00
LAPT .32.01 .21.01 19.40.3 .14.00 .21.00 .21.00 21.60.1 .36.00 .33.00 .16.00 11.50.2 .21.00 .32.01 .20.00 13.00.1 .14.00
+ Random .37.00 .21.00 19.40.3 .18.00 .27.00 .21.00 19.20.1 .39.00 .29.00 .18.00 10.80.1 .18.01 .35.00 .21.00 10.80.1 .15.00
+ CLP .37.00 .19.00 19.90.1 .20.00 .17.00 .21.00 6.80.1 .10.00 .29.00 .19.00 11.00.1 .20.00 .34.00 .22.00 11.50.2 .16.00
+ Heuristics .37.00 .22.00 19.70.3 .21.00 .29.00 .23.00 19.50.1 .38.00 .31.00 .19.00 10.70.2 .21.00 .34.00 .22.00 11.60.1 .16.00
+ FOCUS .37.00 .21.00 18.50.3 .21.01 .29.00 .20.00 19.40.1 .41.00 .32.00 .18.00 10.90.2 .19.00 .33.00 .22.00 11.60.1 .17.00
+ CLP+ .36.00 .21.00 18.70.7 .20.01 .29.00 .21.00 19.50.1 .40.00 .31.00 .21.00 11.00.1 .21.00 .34.00 .23.00 10.90.1 .17.00

TigerBot-7B
Source .38.00 .24.00 23.90.2 .26.01 .17.00 .24.00 19.40.3 .57.01 .33.00 .21.00 9.00.1 .04.00 .34.00 .22.00 12.40.2 .03.00
LAPT .36.01 .21.00 18.50.2 .18.00 .17.00 .21.01 21.60.1 .49.01 .33.00 .18.00 9.80.2 .13.00 .32.01 .21.01 15.90.1 .10.00
+ Random .35.00 .23.00 17.70.1 .09.00 .29.00 .23.00 18.60.1 .29.00 .31.00 .18.00 9.90.2 .08.00 .33.00 .22.00 6.90.1 .03.00
+ CLP .37.00 .22.00 17.30.1 .19.00 .29.00 .19.00 19.70.0 .43.00 .31.00 .17.00 10.80.1 .11.00 .34.00 .23.00 7.30.1 .04.00
+ Heuristics .37.00 .20.00 16.10.3 .18.00 .29.00 .22.00 19.60.1 .40.00 .32.00 .17.00 10.30.3 .08.00 .32.00 .22.00 8.10.1 .05.00
+ FOCUS .36.00 .20.00 17.00.3 .19.00 .29.00 .22.00 19.80.1 .41.00 .37.00 .21.00 11.20.1 .15.00 .34.00 .20.00 8.10.1 .11.00
+ CLP+ .37.00 .20.01 14.10.3 .19.00 .29.00 .20.00 19.80.0 .41.00 .34.00 .22.00 11.20.3 .16.00 .30.00 .22.00 8.60.1 .09.00

Mistral-7B
Source .36.00 .25.00 24.10.2 .35.01 .17.00 .28.00 23.70.1 .60.00 .33.00 .20.00 11.20.1 .21.00 .32.00 .22.00 15.40.1 .07.00
LAPT .37.01 .25.02 24.20.2 .28.01 .17.00 .20.01 23.40.1 .60.00 .33.00 .18.00 10.80.1 .14.01 .33.01 .22.01 16.20.2 .12.00
+ Random .31.00 .23.00 19.30.2 .17.00 .29.00 .19.00 18.70.1 .43.00 .37.00 .18.00 11.60.1 .15.00 .35.00 .22.00 8.70.1 .05.00
+ CLP .38.00 .26.00 19.80.2 .24.00 .28.00 .25.00 19.70.0 .44.00 .34.00 .18.00 11.20.0 .18.00 .41.00 .22.00 11.90.1 .14.00
+ Heuristics .40.00 .26.00 21.20.1 .22.00 .29.00 .20.00 19.70.1 .43.00 .33.00 .19.00 10.70.1 .13.00 .33.00 .22.00 10.60.1 .14.00
+ FOCUS .38.00 .23.00 21.30.2 .28.00 .29.00 .24.00 19.70.1 .41.00 .36.00 .16.00 12.00.1 .23.00 .34.00 .25.00 11.40.0 .17.00
+ CLP+ .39.00 .25.00 20.20.3 .21.00 .28.00 .20.00 19.90.0 .46.00 .31.00 .16.00 11.50.2 .21.00 .33.00 .21.00 10.20.1 .16.00

BLOOM-1B Few-shot
Source .36.00 .20.00 - .10.00 .44.00 .19.00 - .32.00 .34.00 .17.00 - .20.01 .32.00 .23.00 - .02.00
LAPT .34.01 .17.01 - .13.01 .27.00 .21.01 - .34.01 .32.01 .16.00 - .16.00 .34.01 .19.01 - .02.00
+ Random .35.00 .21.00 - .16.00 .29.00 .21.00 - .34.00 .36.00 .22.00 - .16.01 .34.00 .20.00 - .06.00
+ CLP .34.00 .21.00 - .17.01 .30.00 .20.00 - .33.00 .33.00 .21.00 - .15.01 .33.00 .19.00 - .08.00
+ Heuristics .37.00 .23.00 - .17.00 .30.00 .22.00 - .32.00 .34.00 .21.01 - .15.01 .32.00 .19.00 - .07.00
+ FOCUS .34.00 .18.00 - .17.01 .27.00 .20.00 - .36.00 .37.00 .20.00 - .15.00 .33.00 .19.00 - .08.00
+ CLP+ .35.00 .20.00 - .19.00 .30.00 .22.00 - .36.00 .35.00 .20.01 - .15.01 .31.00 .18.00 - .08.00

BLOOM-7B
Source .35.00 .23.00 - .29.00 .40.00 .19.00 - .49.01 .36.00 .18.00 - .29.00 .34.00 .18.00 - .11.00
LAPT .36.00 .24.00 - .23.00 .33.00 .19.01 - .53.01 .36.01 .18.01 - .23.00 .36.00 .18.01 - .07.00
+ Random .37.00 .19.00 - .24.00 .29.00 .19.00 - .44.00 .32.00 .22.00 - .23.00 .35.00 .21.00 - .12.00
+ CLP .36.00 .20.00 - .29.00 .16.00 .18.00 - .08.00 .35.00 .20.00 - .24.00 .34.00 .19.00 - .15.00
+ Heuristics .36.00 .22.00 - .28.00 .28.00 .21.00 - .46.00 .35.00 .21.00 - .24.00 .33.00 .19.00 - .13.00
+ FOCUS .36.00 .22.00 - .28.00 .30.00 .19.00 - .46.00 .37.00 .21.00 - .22.01 .35.00 .21.00 - .15.00
+ CLP+ .36.00 .22.00 - .25.00 .30.00 .20.00 - .46.00 .36.00 .22.00 - .25.00 .34.00 .18.00 - .13.00

TigerBot-7B
Source .33.00 .37.00 - .42.00 .16.00 .34.00 - .65.00 .30.00 .19.00 - .10.00 .32.00 .19.01 - .03.00
LAPT .35.00 .39.01 - .36.02 .16.00 .34.01 - .66.00 .30.00 .20.01 - .17.00 .34.00 .20.00 - .09.00
+ Random .35.00 .21.00 - .07.00 .29.00 .21.00 - .42.00 .35.00 .16.00 - .07.00 .34.00 .18.00 - .02.00
+ CLP .37.00 .19.00 - .20.00 .30.00 .28.00 - .49.00 .37.00 .18.00 - .13.00 .33.00 .19.00 - .03.00
+ Heuristics .35.00 .26.01 - .21.00 .29.00 .24.00 - .49.00 .36.00 .20.00 - .09.00 .35.00 .21.00 - .04.00
+ FOCUS .42.00 .33.00 - .28.01 .30.00 .23.00 - .50.00 .36.00 .21.00 - .19.00 .37.00 .20.00 - .09.00
+ CLP+ .44.00 .31.00 - .31.00 .30.00 .21.00 - .50.00 .39.00 .19.00 - .19.00 .33.00 .18.00 - .06.00

Mistral-7B
Source .47.00 .53.00 - .48.00 .16.00 .42.00 - .69.00 .30.00 .32.00 - .31.00 .33.00 .21.00 - .12.00
LAPT .41.00 .46.00 - .27.00 .16.00 .37.01 - .68.00 .30.00 .30.01 - .26.00 .37.00 .34.00 - .21.00
+ Random .35.00 .22.00 - .19.01 .29.00 .18.00 - .47.00 .35.00 .18.00 - .17.00 .33.00 .20.00 - .03.00
+ CLP .50.00 .47.00 - .23.00 .29.00 .28.00 - .49.00 .35.00 .17.00 - .21.00 .35.00 .21.00 - .14.00
+ Heuristics .45.00 .41.00 - .24.00 .30.00 .24.00 - .49.00 .34.00 .18.00 - .17.00 .33.00 .18.00 - .09.00
+ FOCUS .41.00 .43.00 - .25.00 .30.00 .23.00 - .49.00 .33.00 .20.00 - .23.00 .31.00 .24.00 - .15.00
+ CLP+ .39.00 .47.00 - .25.00 .29.00 .25.00 - .50.00 .38.00 .23.00 - .23.00 .34.00 .20.00 - .14.00

Table 11: Mean performance over five runs with standard deviations when prompting in a target language on 500
randomly selected test samples for each dataset. The baselines are in grey . Bold indicates comparable or better
results than the baselines. Darker blue and red shades indicate higher positive and negative relative performance
change over Source per language and task, respectively.
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Approach NLI MC SUM SPAN
de ja ar sw de ja ar sw de ja ar sw de ja ar sw

BLOOM-1B Zero-shot
Source .34.00 .18.00 11.20.1 .21.01
LAPT .35.01 .33.00 .33.00 .33.00 .21.01 .20.00 .17.01 .18.01 9.70.1 10.40.0 10.60.1 10.10.0 .15.01 .18.00 .17.00 .15.01
+ Heuristics .35.00 .34.00 .35.00 .36.00 .20.00 .20.00 .21.00 .20.00 11.20.1 11.70.1 12.30.1 10.10.2 .10.01 .06.01 .07.00 .09.01
+ CLP+ .35.00 .34.00 .32.00 .37.01 .19.00 .20.00 .20.00 .20.00 10.80.1 12.10.1 12.40.1 10.40.2 .12.00 .11.00 .07.00 .08.00

BLOOM-7B
Source .36.00 .17.00 11.10.1 .31.00
LAPT .34.00 .34.00 .34.00 .36.00 .20.01 .20.01 .20.01 .18.01 10.80.0 11.00.0 10.90.0 10.60.1 .25.00 .27.01 .28.00 .23.00
+ Heuristics .36.00 .34.00 .33.00 .36.00 .20.00 .20.00 .20.00 .19.00 11.20.1 11.10.1 12.20.1 10.50.0 .24.01 .19.00 .17.00 .17.00
+ CLP+ .36.00 .34.00 .33.00 .38.00 .20.00 .20.00 .20.00 .20.00 10.50.1 11.80.1 12.40.0 11.10.1 .21.00 .10.01 .22.00 .19.00

TigerBot-7B
Source .48.00 .29.00 12.70.1 .42.01
LAPT .39.00 .49.01 .45.01 .45.01 .23.00 .25.00 .25.00 .28.01 11.60.1 11.90.1 12.20.1 11.00.1 .31.00 .34.01 .27.00 .35.01
+ Heuristics .37.00 .34.00 .35.00 .31.00 .21.00 .24.00 .20.00 .20.00 10.20.1 12.10.1 9.80.1 4.80.1 .15.00 .24.01 .03.00 .02.00
+ CLP+ .39.00 .36.00 .36.00 .31.00 .24.00 .24.00 .21.00 .20.00 10.40.1 12.50.1 11.30.1 6.30.1 .20.00 .30.00 .20.00 .03.00

Mistral-7B
Source .42.00 .46.00 12.40.2 .44.00
LAPT .36.01 .49.01 .45.01 .42.00 .34.01 .32.01 .28.01 .38.01 11.60.0 11.30.1 8.10.2 10.60.1 .39.00 .40.01 .28.00 .36.00
+ Heuristics .33.00 .39.00 .36.00 .33.00 .21.00 .21.00 .20.00 .20.00 12.50.1 12.90.1 11.50.2 8.50.2 .23.00 .30.00 .19.00 .06.00
+ CLP+ .36.00 .37.00 .34.00 .31.01 .21.00 .25.00 .19.00 .22.00 12.20.1 13.10.1 12.90.1 10.60.1 .26.00 .27.01 .31.00 .18.00

BLOOM-1B Few-shot
Source .33.00 .20.00 - .28.00
LAPT .34.01 .31.00 .32.01 .33.00 .17.01 .18.01 .19.01 .20.01 - - - - .20.01 .23.01 .25.00 .20.01
+ Heuristics .33.00 .34.00 .32.00 .34.00 .19.00 .20.00 .21.00 .19.00 - - - - .16.00 .11.00 .14.00 .17.01
+ CLP+ .37.00 .34.00 .35.00 .35.00 .19.00 .21.00 .22.00 .20.00 - - - - .17.00 .10.01 .13.00 .18.00

BLOOM-7B
Source .43.00 .21.00 - .39.00
LAPT .36.01 .38.01 .40.00 .39.01 .20.01 .21.01 .21.00 .19.00 - - - - .36.00 .38.00 .38.00 .37.00
+ Heuristics .36.00 .35.00 .31.00 .32.00 .20.00 .19.00 .22.00 .21.00 - - - - .37.00 .33.00 .36.00 .34.00
+ CLP+ .36.00 .33.00 .33.00 .34.00 .18.00 .21.00 .20.00 .20.00 - - - - .35.00 .34.00 .36.03 .36.00

TigerBot-7B
Source .49.00 .58.00 - .47.00
LAPT .47.01 .56.01 .45.00 .56.01 .57.00 .58.00 .52.00 .52.01 - - - - .47.00 .46.00 .44.00 .47.00
+ Heuristics .36.00 .35.00 .37.00 .34.00 .20.00 .31.00 .23.00 .19.00 - - - - .24.00 .41.01 .03.00 .01.00
+ CLP+ .42.00 .34.00 .37.00 .36.00 .32.00 .24.00 .19.00 .19.00 - - - - .37.00 .43.00 .29.00 .02.00

Mistral-7B
Source .60.00 .66.00 - .51.00
LAPT .55.00 .53.01 .49.01 .56.01 .62.00 .59.01 .57.01 .63.01 - - - - .38.00 .49.00 .31.00 .49.00
+ Heuristics .43.00 .35.00 .36.00 .33.00 .33.00 .31.00 .20.00 .19.00 - - - - .27.00 .47.00 .32.00 .05.00
+ CLP+ .38.00 .34.00 .38.00 .37.00 .45.00 .31.00 .26.00 .21.00 - - - - .34.00 .45.00 .44.00 .28.01

Table 12: Mean performance over five runs with standard deviations on 500 randomly selected test samples for each
English dataset. The baselines are in grey . Bold indicates comparable or better results than the baselines. Darker
blue and red shades indicate higher positive and negative relative performance change over Source per language and
task, respectively.
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Figure 7: LAPT loss curves for BLOOM-1B
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Figure 8: LAPT loss curves for BLOOM-7B
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Figure 9: LAPT loss curves for TigerBot-7B

6784



0 1000 2000 3000 4000 5000 6000 7000
Step

101

Va
lu

e

German

Approach
LAPT
+ Random
+ CLP
+ Heuristics
+ FOCUS
+ CLP+

0 1000 2000 3000 4000 5000 6000 7000
Step

101

3 × 100

4 × 100

6 × 100

Va
lu

e

Japanese

Approach
LAPT
+ Random
+ CLP
+ Heuristics
+ FOCUS
+ CLP+

0 1000 2000 3000 4000 5000 6000 7000
Step

101

Va
lu

e

Arabic

Approach
LAPT
+ Random
+ CLP
+ Heuristics
+ FOCUS
+ CLP+

0 1000 2000 3000 4000 5000
Step

101

Va
lu

e

Swahili

Approach
LAPT
+ Random
+ CLP
+ Heuristics
+ FOCUS
+ CLP+

Figure 10: LAPT loss curves for Mistral-7B
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