Llamipa: An Incremental Discourse Parser
Kate Thompson, Akshay Chaturvedi, Julie Hunter, Nicholas Asher
Abstract
This paper provides the first discourse parsing experiments with a large language model (LLM) finetuned on corpora annotated in the style of SDRT (Segmented Discourse Representation Theory, Asher (1993), Asher and Lascarides (2003)). The result is a discourse parser, Llamipa (Llama Incremental Parser), that leverages discourse context, leading to substantial performance gains over approaches that use encoder-only models to provide local, context-sensitive representations of discourse units. Furthermore, it is able to process discourse data incrementally, which is essential for the eventual use of discourse information in downstream tasks.- Anthology ID:
- 2024.findings-emnlp.373
- Volume:
- Findings of the Association for Computational Linguistics: EMNLP 2024
- Month:
- November
- Year:
- 2024
- Address:
- Miami, Florida, USA
- Editors:
- Yaser Al-Onaizan, Mohit Bansal, Yun-Nung Chen
- Venue:
- Findings
- SIG:
- Publisher:
- Association for Computational Linguistics
- Note:
- Pages:
- 6418–6430
- Language:
- URL:
- https://preview.aclanthology.org/fix-sig-urls/2024.findings-emnlp.373/
- DOI:
- 10.18653/v1/2024.findings-emnlp.373
- Cite (ACL):
- Kate Thompson, Akshay Chaturvedi, Julie Hunter, and Nicholas Asher. 2024. Llamipa: An Incremental Discourse Parser. In Findings of the Association for Computational Linguistics: EMNLP 2024, pages 6418–6430, Miami, Florida, USA. Association for Computational Linguistics.
- Cite (Informal):
- Llamipa: An Incremental Discourse Parser (Thompson et al., Findings 2024)
- PDF:
- https://preview.aclanthology.org/fix-sig-urls/2024.findings-emnlp.373.pdf