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Abstract

Task-oriented Dialog (ToD) systems have to
solve multiple subgoals to accomplish user
goals, whereas feedback is often obtained only
at the end of the dialog. In this work, we pro-
pose SUIT (= SUbgoal-aware ITerative Train-
ing), an iterative training approach for improv-
ing ToD systems. We sample dialogs from the
model we aim to improve and determine sub-
goals that contribute to dialog success using
distant supervision to obtain high quality train-
ing samples. We show how this data improves
supervised fine-tuning or, alternatively, prefer-
ence learning results. Performance improves
when applying these steps over several itera-
tions: SUIT reaches new state-of-the-art perfor-
mance on a popular ToD benchmark.

1 Introduction

Task-oriented Dialog (ToD) systems nowadays con-
verse with users in natural language conversations
and assist them in various tasks, such as booking
restaurants, querying weather forecasts and resolv-
ing customer service issues. Fig. 1 shows a sample
conversation for making a hotel reservation, where
the user’s goal is defined as a set of constraints
(informable slots, e.g. pricerange) and information
needs (requestable slots, e.g. hotel address) that
should be satisfied at the end of the dialog. For
accomplishing such goals, ToD systems must be
able to solve multiple subproblems: (1) dialog state
tracking (DST) – understanding user utterances and
keeping track of the conversation by storing rele-
vant information in a structured representation of
the dialog progress (belief states bi, e.g. area or
price range in Fig. 1), (2) inferring how to react by
selecting some dialog actions like database look-
ups or requesting more information from the user
(actions ai like REQUEST number, INFORM ad-
dress in Fig. 1), (3) formulating a natural language
response based on the dialog state and actions (like
asking about the length of the stay and the number

Figure 1: Successful dialog example.

of people in Fig. 1, ri). Specialized approaches
focus on solving specific problems, e.g., amongst
others, (Lee et al., 2021), AG-DST (Tian et al.,
2021), D3ST (Zhao et al., 2022) focus on DST,
LarL (Zhao et al., 2019), TCUP (Vlastelica et al.,
2023) concentrate on response generation. End-to-
end (E2E) systems try to leverage complex models
to solve all problems jointly. Modern ToD systems
in that category are based on pre-trained Large Lan-
guage Models (LLMs) and cast dialog state, action
and response generation into sequence prediction
problems. SimpleTOD (Hosseini-Asl et al., 2020)
was the first approach which successfully applied
this paradigm, by training a causal language model
using Supervised Fine-tuning (SFT). A challenge
for ToD systems is the fact that ultimate success
with respect to the user’s goal is observed at the end
of the dialog. While Reinforcement Learning (RL)
approaches (Zhao et al., 2019; Lubis et al., 2020;
Vlastelica et al., 2023) optimize for such sparse
rewards, most LLM-based systems neglect these
signals and only optimize next turn predictions.

6236



Contributions. We introduce SUIT (= SUbgoal-
aware ITerative Training), an E2E ToD system
based on LLMs, which contrary to prior work
learns from dialog-level success signals. Due to
the sparseness of these signals, it is unclear which
turns, states, actions and responses contribute to
the overall success of the dialog. For example, the
second turn in Fig. 1 is irrelevant for the success
of the dialog. The user’s goal does not depend
on the availability of sights in close vicinity to
the hotel, contrary to the respective price range,
which will affect the system’s success. We aim to
identify these important subparts, which we call
subgoals, from multiple dialog variants generated
by an LLM. A naive approach would consider all
generations from successful dialogs for SFT, or
pair all generations from successful with unsuc-
cessful dialogs for preference learning algorithms,
such as RLHF (Christiano et al., 2017) or Direct
Preference Optimization (DPO) (Rafailov et al.,
2024). However, these naive approaches cannot
distinguish between subgoals that are relevant for
the final goal from those that are not. We employ
an iterative distant supervision approach to iden-
tify these subgoals that play a major role in dialog
success to obtain relevant training samples. Our
contributions are as follows:

1. We propose a sampling approach for finding
subgoals using distant supervision without re-
lying on external feedback.

2. We introduce an iterative training procedure
for ToD systems.

3. Our simple but effective approach surpasses
state-of-the-art performance on a popular ToD
benchmark.

2 SUIT Training Approach

Fig. 2 provides an overview of the SUIT approach.
As input we rely on a ToD dataset D, where each
dialog is associated with a user goal. This goal
describes the user’s information need and a set of
constraints, that should be fulfilled at the end of the
dialog. First, an initial LLM is trained on D with
Supervised Fine-tuning (SFT), using turn-level su-
pervision (Step 0). Then, we sample from this
model to create dialog variants for each user goal
in the training data (Step 1). Next, we determine
dialog success for the newly created dialogs (Step
2). For each successful dialog, we apply distant su-
pervision to identify subgoals that contribute to the

ultimate success of the dialog, by comparing them
with generations coming from unsuccessful dialogs
(more details in Sec. 2.2). The subgoals considered
relevant comprise further training samples (Step 3).
The SUIT approach can apply SFT or preference
learning based on a dataset which pairs subgoals
with negative examples from unsuccessful dialogs
(Step 4). This procedure is repeatable by sampling
from the newly obtained model once again (Step
5). Using this effective training paradigm, SUIT

improves SOTA performance (see Sec. 3). Com-
pared to prior E2E ToD systems, SUIT is not based
on model customization and does not require feed-
back from reward models or annotators. The fact,
that any off-the-shelf LLM can be plugged into
SUIT, makes it simple to set up and use in large
scale applications. For preference learning we ap-
ply DPO due to its efficiency, low complexity and
stable training.

2.1 Initial LLM-based ToD Model

For each turn index t in a dialog Di, we are given
a dialog context Cit = [Ui0, Si0, . . . , Sit−1, Uit]
consisting of the current Uit, and previous user ut-
terances Uijj<t , as well as system turns Sijj<t . The
goal is to train an initial LLM (SUIT0) for generat-
ing the system turn Sit, which contains belief states
Bit, system actions Ait, and a response Rit. We
split the problem into two prediction tasks:
(1) We predict the belief state Bit = SUIT0(Cit);
(2) Actions and responses are jointly generated
Tit = SUIT0([Cit, Bit]), where Tit = [Ait, Rit];
We prompt the model twice and introduce special
tokens indicating different parts in the generation
(see Appendix A.1). The model is trained to mini-
mize the negative log-likelihood over the training
dataset. We provide ground truth belief for action
and response prediction at training time. During
inference, SUIT generates belief states conditioned
on input dialog contexts. Actions and responses
are then predicted conditioned on the context and
this generated belief.

2.2 Subgoal Candidate Generation

We split each training dialog Di into all possible
dialog contexts Cit and sample a set of k states Bit,
and per state, another k actions Ait and responses
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Figure 2: Overview of training procedure in SUIT. We sample multiple dialogs for one user goal, where each dialog
Ds consists of user turns Ust, and system turns, which are split into dialog states Bst, system actions Ast and
responses Rst. We evaluate dialog success at the end of each generated dialog. For every successful dialog Ds, we
replace parts of system turns (subgoals) with the respective parts coming from wrong dialogs Do,j,u. If the dialog
success flips to unsuccessful, we add the successful subgoal as training data.

Rit from a given SUIT model1:

Bit =
k⋃

B∼SUIT(Cit)

B,Tit =
k⋃

B∈Bit,T∼SUIT(Cit,B)

T

Alg. 1 shows the precise steps of the SUIT training
loop. We obtain k2 candidate dialogs Dc by replac-
ing the turns Sit with samples S′

it (1 in Alg. 1 and
Fig. 2).

Algorithm 1: SUIT Training Approach
Input: dialogs Dx = D, x = 0, user goal partitioning

over dialogs g(D), initial model SUITx,
train ∈ {DPO,SFT}, success criteria succ

repeat
Dc ←

⋃
Di∈D{[Ui0, . . . , S

′
it, . . . , S

′
i|Di|]|

S′
it = [Bit, Tit] ∼ SUITx} (1)

Dx+1 ← ∅
foreach dialog set with same goal DG ∈ g(Dc) do

foreach dialog Ds ∈ DG: succ(Ds) (2) do
Dx+1 ← Dx+1 ∪ {(Cst, S

′
st)| (3)

∃Do ∈ DG, S
′
ot ∈ Do : ¬succ(Do)∧

¬succ([Us0, . . . , S
′
ot, . . . , S

′
s|Ds|])}

SUITx+1 ← train(SUITx,Dx+1) (4)
x← x+ 1

until SUITx does not improve (5)

2.3 Distant Supervision for Subgoal Detection
We only consider successful dialogs as source of
potential training data (2 in Alg. 1 and Fig. 2).
To determine dialog success, we use the evalua-
tion function from (Nekvinda and Dušek, 2021) by

1We enforce that the samples contain greedy generations

checking if both INFORM and SUCCESS metrics
are fulfilled after the last turn. More precisely, a
dialog is considered successful if the last offered
entity satisfies the user’s goal constraints and the
system mentioned all requestable slots defined in
the user’s goal in its response. In Fig. 2 and Alg. 1,
dialog Ds is successful. For each successful dia-
log, we search for unsuccessful dialogs sharing the
same user goal (3 in Alg. 1 and Fig. 2 (j, o, u)). If
found, we go over the successful dialogs turn-wise
and replace state Bst (and action/response, AstRst)
with the respective state (action/response) in the un-
successful one. After each replacement, we once
again evaluate the modified dialog. If the dialog is
now unsuccessful, the replaced subgoal was indeed
crucial for making it successful. If the dialog is
still successful, we cannot make any judgement,
since the replacement from the unsuccessful dialog
might be correct (there can be correct subgoals in
unsuccessful dialogs). Therefore, we sample re-
placements from different unsuccessful dialogs to
see whether the evaluation changes. Please note,
that we only make one replacement at a time, while
the other turns of the successful dialog remain un-
changed. State replacements are done separately,
while actions and responses are replaced jointly.
Replacements for a respective turn t come from
another dialog (with same user goal) at the same
turn level t. This makes sense in our setup, since
samples share the same ground truth dialog context.
Nevertheless, our method is robust to different dia-
log flows. For high variations in dialog flow, one
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could additionally apply a similarity based scor-
ing to find the most suitable turn for replacement
first. In Fig. 2, replacing the state at turn 1, as well
as replacing action/responses at turn 3 and 4 each
change the evaluation of dialog s from success-
ful to unsuccessful, whereas the replacement with
Aj2/Rj2 results in no change. Therefore, Bs1, As3,
Rs3, As3, Rs3 are considered as relevant subgoals
and will be used for training, while As2 and Rs2

are not used as training data, since no replacement
was found that changed the evaluation of the dia-
log. This procedure creates a small, high-quality
training set, Dx+1 (4 in Alg. 1 and Fig. 2), which is
dense in samples that are critical to the final dialog
success. For SFT, we use the selected subgoals,
while for DPO, we take the selected subgoals as
preferred samples (like Bs1) and the replacements,
which made the dialog change from successful to
unsuccessful, as dispreferred samples (like Bo1).
In summary, SUIT’s iterative training approach con-
sists of the following steps:
(1) Given an LLM SUITx, generate more dialog
variations Dc by sampling (see Sec. 2.2);
(2) Evaluate success for all dialogs using the eval-
uation function from (Nekvinda and Dušek, 2021);
(3) Identify relevant subgoals by replacing success-
ful ones using distant supervision (see Sec. 2.3);
(4) Apply SFT or DPO to derive model SUITx+1;
(5) Assess model performance, repeat or stop;

3 Experiments

Dataset. We use MultiWOZ 2.2 (Zang et al., 2020),
which is a popular ToD benchmark. It contains 10k
human-human dialogs over 7 domains.
Metrics. We follow the standardized evaluation
from (Nekvinda and Dušek, 2021) to allow for a
better comparability. A delexicalized BLEU score
measures response coherence, while INFORM and
SUCCESS rates express how much a user’s goal is
fulfilled at the end of the dialog. It is common to
assess the overall performance with a COMBINED
score = BLEU + INFORM+SUCCESS

2 .
Model. We use an encoder-decoder Flan-T5 large
model, which is trained for 1 epoch per iteration.
We verbalize states and actions to be more suitable
for generative models. Examples for this verbaliza-
tion and hyperparameters can be found in App. A.1.
Baselines. We compare with state-of-the-art
E2E systems from the MultiWOZ leaderboard.
MARS (Sun et al., 2023) uses a contrastive loss
to differentiate dialog contexts with the same states

from dissimilar ones. KRLS (Yu et al., 2023) ap-
plies RL with a special reward, sensitive to im-
portant keywords. DIACTTOD (Wu et al., 2023)
uses an action encoder to perform nearest neighbor
search over latent representations of ground truth
actions.

3.1 Main Results

Tab. 1 shows SUIT models, trained for up to two
iterations with SFT/DPO. It compares their perfor-
mances with competitors and baselines, including
models trained for one round with all successful
dialogs instead of using relevant subgoals only.
SUIT improves SOTA performance. Our initial
model reaches the highest BLEU score (19.94).
While further iterations decrease this metric
slightly, they reach the highest INFORM (90.0),
SUCCESS (87.1), and COMBINED (105.02)
scores and surpass all E2E competitors on the Mul-
tiWOZ leaderboard. The decreasing BLEU score
is unavoidable. Due to sampling, the generations
may deviate from the fixed reference responses.
The responses, however, are still accurate and flu-
ent. Both training paradigms (DPO/SFT) show
improvements. In fact, best results are reached
with a combination (DPO-SFT).
SUIT identifies the most helpful training data.
Training with all successful dialogs, even though
comprising a much larger set (31586 vs. 4838 and
2493/2166), performs worse than training with rel-
evant subgoals only. This shows the quality degra-
dation of training data, when not selecting rele-
vant subgoals carefully and confirms the benefits
of SUIT’s approach (Sec. 2.2).
Sampling new dialogs greatly improves the ini-
tial model SUIT0. The INFORM metric improves
from 80.4 to 89.8 and SUCCESS from 72.5 to 84.0
after training for one iteration. A second iteration
further improves SUCCESS from 84.0 up to 87.1.
After the second iteration, the COMBINED score
is not increasing any further, thus we stop.

3.2 Domain-wise Results

Tab. 2 shows the domain-wise results for INFORM
and SUCCESS of our best SUIT models (per itera-
tion). SUIT performs well on all domains. While
results for the train domain are already quite high
for SUIT0, results of the other domains are im-
proved a lot over iterations. Especially, there are
large jumps for the attraction domain (INFORM
from 84.3 to 97 and SUCCESS from 68.9 to 89.4).
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Model BLEU INFORM SUCCESS COMBINED #samples

MARS (Sun et al., 2023) 19.90 88.9 78.0 103.4 -
KRLS (Yu et al., 2023) 19.00 89.2 80.3 103.8 -
DIACTTOD (Wu et al., 2023) 17.50 89.5 84.2 104.4 -

SUIT0 (initial SFT) 19.94 80.4 72.5 96.39 -

+ all subgoals (SFT) 19.50 87.0 79.4 102.70 31586
+ all subgoals (DPO) 17.79 86.9 80.6 101.54 31586

SUIT1 (SFT) 17.75 89.8 84.0 104.65 4838
SUIT1 (DPO) 17.44 88.5 82.7 103.04 4838

SUIT2 (SFT-SFT) 15.11 89.7 85.9 102.91 2493
SUIT2 (SFT-DPO) 17.17 89.5 84.4 104.12 2493
SUIT2 (DPO-SFT) 16.47 90.0 87.1 105.02 2166
SUIT2 (DPO-DPO) 16.92 88.8 84.4 103.52 2166

Table 1: SUIT results compared to other SOTA systems on MultiWOZ 2.2.

INFORM SUCCESS

Model ↓ / Domain → train attr. rest. taxi hotel train attr. rest. taxi hotel

SUIT0 94.5 84.3 88.3 100.0 83.0 78.8 68.9 75.3 72.8 74.9
SUIT1 (SFT) 92.1 97.5 96.3 100.0 89.8 86.7 85.4 87.2 86.7 83.5
SUIT2 (DPO-SFT) 92.3 97.2 96.1 100.0 90.4 86.7 89.4 89.2 89.7 84.0

Table 2: Domain-wise results for INFORM and SUCCESS metrics of best SUIT model per iteration (attr. is short
for attraction and rest. for restaurant domain).

4 Related Work

End-to-end ToD Systems. SimpleTOD (Hosseini-
Asl et al., 2020) optimizes all sub-tasks jointly us-
ing causal language modeling. Prior work uses spe-
cialized losses (MTTOD (Lee, 2021), Mars (Sun
et al., 2023)) or focus on special encoders (Diact-
TOD (Wu et al., 2023)) or learn adapters for the
individual tasks (TOATOD (Bang et al., 2023)).
KRLS (Yu et al., 2023), CASPI (Ramachandran
et al., 2022), CALM (Snell et al., 2022) and Re-
wardNet (Feng et al., 2023) apply RL with special
reward functions. GALAXY (He et al., 2022) ap-
plies semi-supervised learning and in (Steindl et al.,
2024) a data augmentation approach by mixing ex-
isting dialogs is proposed, whereas our sampling-
based approach additionally enriches lexical variety
and carefully selects the most helpful training data
using distant supervision.
Preference Learning. Stiennon et al. (2020) use
RLHF for fine-tuning. Kaufmann et al. (2024)
provide an overview of work applying RLHF.
DPO (Rafailov et al., 2024), PRO (Song et al.,
2024), IPO (Gheshlaghi Azar et al., 2024), and
RRHF (Yuan et al., 2023) optimize for preferences
with supervised learning. Guo et al. (2024) study
these methods in online setups using LLM annota-

tors. Xu et al. (2023) adopt Cringe Loss (Adolphs
et al., 2023) to preference data. Contrary to our
work, these approaches require external feedback.

5 Conclusion

SUIT is an iterative training approach for ToD sys-
tems, which couples sampling to derive new di-
alogs, with distant supervision to determine sub-
goals that impact the final dialog success. This cou-
pling enables SUIT models to improve INFORM
and SUCCESS metrics and advance the SOTA.

6 Limitations

One limitation of the current approach is the fact
that we rely on evaluating dialog success based
on ground truth user goals. We do not consider
generating new goals, for example by simulating
users. By only performing turn-wise replacements,
the newly generated training samples will closely
follow the flow of the ground truth dialogs. How-
ever, for some subgoals order does not matter, e.g.,
in which order to ask for user preferences is most
of the time not crucial for success, and generating
them in arbitrary order may increase the diversity
of the generated dialogs. The experiments in this
paper focus on MultiWOZ, since it is the most
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common dataset of task-oriented human-human
conversations. Due to its adoption and range over
multiple domains, MultiWOZ provides a general
benchmark for ToD systems. However, transfer-
ring the learning and methods to a different dataset
could further strengthen the generalizability aspect
of this work. We consider the aforementioned limi-
tations for future work.

7 Ethical Considerations

There are no negative ethical and societal concerns
arising from this work. The used data is provided
by (Zang et al., 2020) and no further human in-
tervention was required. We train models based
on FlanT5-large (783M parameters), which can be
considered as lightweight compared to much larger
GPT/LAMA models, keeping the environmental
impact comparatively small.
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A Appendix

A.1 Experimental Details
We use a Flan-T5 large model from Hugging Face2

in our experiments.
Input/Output Representations. As described in
Sec. 2.1, we split the generation into two separate
prediction tasks:
(1) Predicting the belief state: Bit = SUIT0(Cit)
(2) Jointly predicting actions and responses:
[Ait, Rit] = SUIT0([Cit, Bit])
Fig. 3 shows an example for these predictions.
Special tokens [C], [U ], [R], [B], [A] are used to
indicate dialog context, user utterances, system re-
sponses, belief states and actions accordingly.
Hyperparameters. After initial model training
(SUIT0), SUIT models are trained for up to two
rounds of SFT/DPO. As stopping criteria we use
the COMBINED score. For efficiency, we sample
half of the user goals in the training data per iter-
ation for creating new dialogs. We use k = 2 for
sampling these new dialogs and additionally take

2https://huggingface.co/google/flan-t5-large
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Figure 3: Example for input/ouput representation in SUIT.

# Goals # Dialogs # Successful Dialogs per Goal
sampled from # suc. # unsuc. 0 1 2 3 4 5

SUIT0 4218 7720 13370 1510 590 599 593 477 449
SUIT1 (SFT) 4218 11983 9107 1212 212 248 407 641 1498
SUIT1 (DPO) 4218 11831 9259 1278 242 236 356 481 1625

Table 3: Sampling statistics for SUIT models.

the greedy generation (resulting in k2 + 1 different
dialogs).

For supervised learning, the batch size was set
to 2 and learning rate to 5e − 5. The maximal
input length of 512 was used, the maximal target
length was 256 and for generation, beam search
with a beam size of 5 was used. We use default
parameters when sampling from the model (top-k
was set to 0).

For DPO training, we set hyperparameters as
follows: β = 0.1, batch size = 2, learning rate
= 1e − 6, warmup steps = 150, maximal input
length = 512, and target length = 256.

A.2 Data Statistics

We use the MultiWoZ version 2.23 and for
pre-processing and evaluation we follow
https://github.com/Tomiinek/MultiWOZ_
Evaluation/tree/master. Tab. 4 shows some
statistics about this dataset.

Tab. 3 shows some statistics on sampling new
dialogs in SUIT. For each iteration, half of the user
goals (4218) in the train set are sampled. Then, 5
new dialogs are created for each sampled user goal,
resulting in 21090 newly generated dialogs in total
(see amount of dialogs evaluated as succ/unsucc

3https://github.com/budzianowski/multiwoz/
tree/master/data/MultiWOZ_2.2

# Goals #Turns avg. #Turns/Dialog

train set 8437 56776 6.70
dev set 1000 7374 7.37
test set 1000 7372 7.37

Table 4: Data statistics for MultiWOZ 2.2.

in the table). The right side in Tab. 3 shows the
number of user goals for which there were 0/5
successful dialogs, 1/5 successful dialog, ..., up to
5 out of 5 successful dialogs. Entries in 1-4, which
contain at least one successful and one unsuccessful
dialog, are the candidates used in SUIT, since our
approach requires comparison between successful
and unsuccessful dialogs for the same user goal.

# Goals # Subgoal Samples
sampled from states actions/responses

SUIT0 2238 836 4002
SUIT1 (SFT) 1461 617 1876
SUIT1 (DPO) 1278 746 1420

Table 5: Subgoal train data statistics for SUIT models.

Tab. 5 shows statistics about the new subgoal-
based training data obtained by our approach. We
show the number of different user goals present in
the new train data as well as the number of subgoals
that were considered relevant, split into subgoals
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representing states and subgoals representing ac-
tion/response generations. Additionally, we found
that the most relevant turns are turn 2-5 and the
top-5 relevant dialog acts are: inform NAME, book
REFERENCE, inform PRICE, inform AREA, in-
form PHONE.

A.3 Example Dialogs
Tab. 6 and 7 show excerpts from sample dialogs,
where relevant subgoals were detected, along with
the negative example used in DPO. Highlighted in
green one can see the relevant information from a
subgoal that contributes in reaching dialog success,
whereas in red the information from the unsuccess-
ful dialog is shown, that changed the evaluation of
the successful dialog when used as a replacement.
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Domain: Hotel
Context: User: Hello! Can you tell me about places to stay in the north area of town? I’ll
be on a business trip, so I do need free wifi. System: I have several options that meet your
needs. I would recommend the Avalon, unless you need free parking.
User: I do not need parking, is the Avalon moderately priced?
Positive Action: booking hotel inform NAME; inform PRICE;
Negative Action: booking hotel inform PRICE; inform AREA; inform COUNT;
Positive Response: NAME is PRICE. would you like me to book it for you?
Negative Response: very good! it is in the AREA and has COUNT stars. would you like me
to book it for you? missing PRICE

Domain: Attraction
Context: User: Hi, I am planning my Cambridge trip and could use some help with a
particular attraction. System: I sure can, what is the name of the attraction you are seeking
information about?
User: I’m looking for tenpin I want the address and entrance fee.
Positive Action: attraction inform ADDRESS; inform PRICE; inform NAME; inform POST;
general
Negative Action: attraction inform AREA; inform PRICE; inform NAME; general
Positive Response: NAME is a nearby attraction, admission is PRICE, and they are located
at ADDRESS, postcode POST. is there anything else?
Negative Response: NAME is in AREA and it’s PRICE to enter. can i help you with
anything else? missing ADDRESS

Table 6: Dialog examples with positive/negative subgoals.
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Domain: Train
Context: ... User: Okay, sounds good. Also I need to get a train from Liverpool street to
Cambridge. System: What day would you like to make this trip? Do you have any other
specifications?
User: The train should leave after 12:45 and should leave on friday. for 2 people please
book.
Positive State: train departure: london liverpool street; destination:
cambridge;
Negative State: train departure: cambridge; destination: london liverpool
street; swapped departure and destination

Domain: Restaurant
Context: []
User: I’m looking for a restaurant with mediterranean food.
Positive Action: booking restaurant inform AREA; inform COUNT; inform FOOD; inform
NAME; inform PRICE;
Negative Action: restaurant inform COUNT;
Positive Response: i have COUNT PRICE FOOD restaurants in the AREA. NAME and
NAME. would you like me to book one for you?
Negative Response: there are COUNT. for booking do you have a preferred information
is there a specific time of the day or time of day you would like to arrive by? noisy/less
concrete

Domain: Taxi
Context: User: I am traveling to Cambridge and excited about seeing location attractions.
Could you help me find a place to go, like a college? System: Certainly. I have many
available. There is corpus christi college, fore example ... User: I’m also looking for a
hotel in the centre. ... System: Your booking at university arms hotel was successful with a
reference number of S1HTVV32. Is there anything else I can do for you today?
User: I need a taxi please between the 2 places. I want to leave the attraction by 2:30.
Positive State: taxi departure: corpus christi; destination: university arms
hotel; leave is 02:30; hotel area: centre; bookday: tuesday; bookstay: 1;
name: university arms hotel; attraction type: college;
Negative State: hotel area: centre; bookday: tuesday; bookstay: 1; name:
university arms hotel; stars: 4; attraction type: college;
Postive Action: taxi inform PHONE; inform TYPE;
Negative Action: taxi request PLACE;
Postive Response: booking completed! booked car type: TYPE contact number: PHONE
Negative Response: sure, i can provide you a car if you like. where are you departing from?
info from context not considered

Table 7: Dialog examples with positive/negative subgoals.

6246


