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Abstract

Unsupervised multimodal machine translation
(UMMT) aims to leverage vision information
as a pivot between two languages to achieve
better performance on low-resource language
pairs. However, there is presently a challenge:
how to handle alignment between distant lan-
guage pairs (DLPs) in UMMT. To this end,
this paper proposes a visual pivoting UMMT
method for DLPs. Specifically, we first con-
struct a dataset containing two DLPs, includ-
ing English-Uyghur and Chinese-Uyghur. We
then apply the visual pivoting method for both
to pre-training and fine-tuning, and we ob-
serve that the images on the encoder and de-
coder of UMMT have noticeable effects on
DLPs. Finally, we introduce informative multi-
granularity image features to facilitate further
alignment of the latent space between the two
languages. Experimental results show that the
proposed method significantly outperforms sev-
eral baselines on DLPs and close language
pairs (CLPs). Our dataset Multi30k-Distant
and code are available at: https://github.
com/WUT-IDEA/VP-UMMT.

1 Introduction

Neural machine translation (MT) (Sutskever et al.,
2014; Cho et al., 2014; Vaswani et al., 2017) has be-
come a promising method for MT, which depends
on the availability of large-scale parallel corpora.
However, the preparation of such corpora in the
low-resource language is extremely challenging,
and existing studies (Zoph et al., 2016) have shown
that neural MT achieves much worse translation
quality than statistical MT with a small number of
corpora. Therefore, developing methods to allevi-
ate the need for annotation of large parallel corpora
has attracted increasing attention from researchers.

To alleviate this problem, unsupervised
MT (Lample et al., 2018; Artetxe et al., 2018)
has been proposed, which relies on monolingual
corpora and trains MT model in an unsupervised

manner. Since the alignment of the source-target
sentence of the unsupervised MT is uncertain,
it is highly subject to initialization. Therefore,
researches (Su et al., 2019; Huang et al., 2020; Li
et al., 2023b) have found that exploiting visual
content for unsupervised MT while leveraging
a language model pre-trained on large-scale
monolingual data is a feasible way to improve
translation quality. Visual content is qualified to
improve alignment in the latent space of language
because the physical visual perception of people
who speak different languages is similar. However,
previous works (Su et al., 2019; Huang et al.,
2020; Li et al., 2023b,a; Huang et al., 2021)
mainly consider high-resource CLPs, such as
English-German and English-France. Because
unsupervised MT aims to achieve high-quality
translation results with low-resource language. The
study of unsupervised MT solely on high-resource
CLPs makes it challenging to assess its effective-
ness in low-resource languages, diminishing its
applicability and hindering the advancement of
UMMT efficiency. In DLPs, even initialization
with a monolingual pre-trained model does not
yield significant improvements, as unsupervised
MT performs well when the monolingual data
in both languages belong to the same language
family (Marchisio et al., 2020). Therefore, the
UMMT task needs to be extended to translation
between low-resource DLPs, which is beneficial
for a more comprehensive exploration of the
influence of linguistic distance and the contribution
of visual content.

To address these challenges, we propose a visual
pivoting UMMT method for DLPs. Specifically,
we first manually translate the mainstream multi-
modal MT dataset Multi30k (Elliott et al., 2016),
which primarily contains high-resource CLPs, into
Chinese and Uyghur. Both Chinese and Uyghur
belong to different language families from the lan-
guages of the Multi30k. Even their scripts and
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  Close language pairs (En-De):

En: A baseball player is fielding a ball.

De: Ein Baseballspieler spielt den Ball.

  Distant language pairs (En-Uy, Zh-Uy):

En: A baseball player is fielding a ball.

Uy:  تۇتۇۋاتىدۇ توپ كالتھك توپ تھنھھرىكھتچىسى.

Zh: 

Image Captions in four languages

Figure 1: Simple examples of CLPs from Multi30k and
DLPs from our dataset. It consists of an image and its
descriptions in four languages, English (En), German
(De), Uyghur (Uy), and Chinese (Zh). Words with the
same color have the same meaning in different language.

grammar structures are different, as shown in Fig-
ure 1; for example, Uyghur is a subject-object-
verb language, while English and Chinese are
subject-verb-object languages. Moreover, Uyghur
is a low-resource language, hence the main data
studied in this paper are the low-resource DLPs
composed of English-Uyghur and Chinese-Uyghur
sentences. We then extend MLM (Conneau and
Lample, 2019) by leveraging visual information to
generate a visual pre-training language modeling
(VPLM) model, which is subsequently applied to
initialize a UMMT model. Finally, we use images
as a pivot to semantically align source-target lan-
guages into a shared latent space. Specifically, the
image is introduced into the encoder to correct the
pseudo-sentence, while the input image in the de-
coder is treated as a pivot between the source and
target languages. We conducted experiments on
DLPs and CLPs and the results show tha proposed
method consistently outperforms several baselines.

Overall, we make the following contributions: (i)
We construct a dataset with DLPs and the UMMT
is implemented on this dataset. It provides a bench-
mark for further research on this challenging task.
(ii) We find that visual content is more qualified to
improve the alignment of DLPs latent space. (iii)
The experimental results show that in unsupervised
MT between gender and gender-neutral language,
images contribute to improving gender accuracy.

2 Related Work

2.1 Multimodal Machine Translation Datastes

Existing commonly employed multimodal MT
datasets include Multi30k (Elliott et al., 2016),
IKEA (Grubinger et al., 2006), IAPR TC-12 (El-
liott et al., 2016) and MS-COCO (Lin et al., 2014),
and these datasets are all focused on high-resource
DLPs such as English and German. Datasets IKEA

and IAPR TC-12 contain fewer images and de-
scription sentences. Multi30K dataset is not only
immediately applicable to research on a wide range
of tasks, it is collected from a wider range of fields.
Moreover, Multi30k is the most commonly used
dataset, and it contains 31k high-quality practical
events. Therefore, we have manually translated
it into Chinese and Uyghur and generated a low-
resource DLPs dataset. MS-COCO dataset con-
tains 164k images, each with five different English
descriptive sentences. We automatically translate
English sentences of MS-COCO into Chinese and
Uyghur for the pre-training dataset.

2.2 Unsupervised Multimodal Machine
Translation

While supervised MT relies on bilingual parallel
corpora (Cho et al., 2014; Bahdanau et al., 2015),
this approach often fails to effectively utilize mono-
lingual corpora. To address this limitation, some
recent studies (Lample et al., 2018; Artetxe et al.,
2018) have proposed unsupervised MT that lever-
ages monolingual corpora. However, the lack of
target language supervision information poses a
challenge, making it difficult for unsupervised MT
to achieve the same high-quality translation as su-
pervised MT. Therefore, improving model perfor-
mance by incorporating visual information into
unsupervised MT has gained significant attention
from researchers (Su et al., 2019; Wang et al., 2021;
Huang et al., 2021; Li et al., 2023a, 2022b).

UMMT investigates the possibility of using im-
age disambiguation and improving unsupervised
MT. Its core assumption, intuitively based on the
immutability of images, suggests that descriptions
of the same visual content in different languages
should remain largely similar. However, existing
research has primarily focused on high-resource
CLPs, limiting the practical application of UMMT.
To address this limitation and investigate UMMT
in the context of DLPs, we construct a dataset con-
taining DLPs. Furthermore, we incorporate image
information into both pre-training and fine-tuning
to improve translation performance.

3 Our Dataset

3.1 Distant Language Pairs

Language pairs are generally divided into CLPs
and DLPs (Sun et al., 2021). Language similarity
is determined by whether two languages belong
to the same language family, whether they share
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Table 1: Corpus-level statistics about Multi30k-Distant.

Splits Sentences
Uyghur Chinese English

Tokens Avg-length Tokens Avg-length Tokens Avg-length
Train 29,000 343,342 11.83 391,903 13.51 357,172 11.9
Validation 1,014 12,077 11.91 13,855 13.66 13,308 13.1
Test(Test2016) 1,000 11,834 11.83 13,566 13.57 12,968 13.0

words and sentences with the same word order, and
so on. Most languages belong to different language
families, and many of them suffer from a lack of
resources. As shown in Figure 1, there are some
gaps in the DLPs, such as English and Uyghur,
they are written from different directions, and their
scripts and word order are not the same, which also
exists in Chinese-Uyghur. Moreover, Uyghur is an
low-resource language, thus, English-Uyghur and
Chinese-Uyghur are creating low-resource DLPs.

3.2 Data Collection

Multimodal MT mainstream corpus Multi30k (El-
liott et al., 2016) contains 31k images and their
descriptions in CLPs, e.g. English-German. To
study UMMT on DLPs, we manually translate En-
glish sentences from Multi30k into Chinese and
Uyghur. For Chinese, three native Chinese speak-
ers with good English skills on our team, who are
master students, are involved in the translation. For
Uyghur, three native speakers with good English
skills, all with bachelor’s degrees, participate in the
translation. During the translation, the translator
can access both the image and the English sentence,
which facilitates the correct translation according
to the image. To ensure the quality of translation,
each translation sentence is further reviewed by
another translator. It took about three months to
complete the translation work. Statistics about our
dataset Multi30k-Distant are shown in Table 1.

4 Method

In this section, we first detail the visual pivoting for
UMMT and multimodal alignment, and then intro-
duce the UMMT model and the training strategy.

4.1 Visual Pivoting for UMMT

Unsupervised MT assumes the availability of a
monolingual corpus during training. It defines the
input T = [t1, ..., tl] as a l-length sentence. Our
model extends unsupervised MT by adding visual
features Z = [z1, ..., zj ], where j is the number of
the most confident regions of an image. As shown

in Figure 2, the image is input in two forms, which
are input and output to the encoder.

4.1.1 Encoder Input
We assume the availability of the sentence and im-
age binary and redefine the input as:

M = [t1, ..., tl, z1, ..., zj ] (1)

As shown in Figure 2, each input to the encoder
consists of a sentence and its corresponding image
features. Specifically, for the source, the input is
a concatenation of the source language sentence
and its corresponding image features, denoted as
Mx = [x1, ..., xn, zx1, ..., zxj ]. Similarly, for the
target, the input is a concatenation of the target
language sentence and its corresponding image fea-
tures, denoted as My = [y1, ..., ym, zy1, ..., zyj ].
Where, x and y ({x} ∩ {y} = ϕ) represent source
and target sentences, and zx and zy ({zx}∩{zy} =
ϕ) represent their corresponding image features.

In this method, images not only improve the
alignment of language latent spaces but also en-
hance the quality of incomplete pseudo-sentences
through correction.

4.1.2 Encoder Output
This method employs an attention-gate structure
(AGS) to fuse text and image features. The encoded
sequence E and image features Z are integrated
through an attention mechanism. Subsequently, a
gate structure further combines E with the attention
output H . This process can be represented as:

H = Softmax

(
EZT

√
d

)
Z (2)

g = Sigmoid (WeE +WhH) (3)

Hf = (1− g) · E + g ·H (4)

where We and Wh are trainable matrices. In this
approach, images enable the model to avoid los-
ing information during the encoding process, thus
improving the prediction of the VPLM. Whereas
in translation, the images serve as an approximate
pivot point that connects the non-parallel sentences
and thus improves the quality of the translation.
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Figure 2: The framework of our multimodal fusion model.

4.2 Multimodal Alignment
We employ contrastive learning (Sohn, 2016) in
cross-modal retrieval to align inputs in shared
multilingual semantic space, where inputs are
close when they are semantically related or paired.
Specifically, we first generalize the encoding out-
put E and the attention (Eq(2)) output H . The fine-
grained alignment is then obtained by the cosine
similarity s(ek, hk) between the k-th token-level of
E and H , where ek, hk ∈ Rd. Finally, to bring the
visual and textual modalities closer, we use noise
contrastive estimation (van den Oord et al., 2018).

Le→h
CL = − 1

K

K∑

k=1

log
exp (s(ek, hk))∑K
l=1 exp (s(ek, hl))

Lh→e
CL = − 1

K

K∑

k=1

log
exp (s(hk, ek))∑K
l=1 exp (s(hk, el))

LCL =
1

2

(
Le→h

CL + Lh→e
CL

)

(5)

where K is the sum of the sentence length and the
number of regions in an image. We also utilize
mean square error (MSE) losses to further mini-
mize the distance between ek and hk.

LMSE =
1

2K

K∑

k=1

∥ek − hk∥22 (6)

Finally, the multimodal alignment loss function is:

LMA = LCL + λ1LMSE (7)

where the hyper-parameter λ1 is set to 1.

4.3 Unsupervised Multimodal Machine
Translation

Our UMMT model consists of a multimodal de-
noising auto-encoding (MDA) and a multimodal
back-translation (MBT) model.

4.3.1 Multimodal Denoising Auto-encoding
MDA is extended by incorporating image features
into denoising auto-encoding (Vincent et al., 2008).
MDA is constructed by connecting the Transformer
decoder to the output of Figure 2. It aims to im-
prove the model learning ability by reconstructing
noisy sentences in the same language. We create it
separately for the unpaired source sentence x and
target sentence y. The process in x is:

Decx(Encx(N(x), zx), zx)→ x̂ (8)

where N (·) is the artificial noise function, which
includes random deletion, swapping, and blanking.
Firstly, the noisy source sentence N(x) and its cor-
responding image feature zx are introduced into the
source language encoder Encx(·). The encoded out-
put and image are then introduced into the source
language decoder Decx(·), and the reconstructed
sentence x̂ of N(x) is obtained. Finally, supervised
training is performed between x and x̂. The recon-
struction process on the target is similar to that on
the source. The total MDA loss in x and y is:

LMDA = CE(x̂, x) + CE(ŷ, y) (9)

where CE(·, ·) represents cross-entropy loss.

4.3.2 Multimodal Back-Translation
MDA’s training inputs and outputs still involve only
one language, even though MT goal is to map input
sentences from the source/target language to the
target/source language. For cross-language train-
ing, we use MBT which is extended by adding
image features to back-translation (Sennrich et al.,
2016a). It explicitly guarantees that the model has
translation ability without paired sentences. The
MBT is carried out on the source sentence x and
target sentence y respectively, and we analyze the
source in detail here. As shown in Figure 3, first
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Figure 3: MBT framework in the source sentence x, since the framework in the target language is similar, we show
only on the source language. Its encoder and decoder are from Transformer. AGS represents the fusion of text and
image through the attention-gate structure, as shown in Figure 2.

given x and its corresponding image zx, we apply
the source language encoder Encx(·) and target lan-
guage decoder Decy(·) trained in MDA to translate
x into target sentence ỹx. Encx(·) and Decy(·) are
frozen, and they are involved in inferring:

Decy(Encx(x, zx), zx)→ ỹx (10)

x is the high-quality input, and zx supplements
the information lost during encoding and decoding,
thereby improving the ỹx. ỹx and zx are then fed to
the target language encoder Ency(·) and the source
language decoder Decx(·) translates ỹx into x̃:

Decx(Ency(ỹx, zx), zx)→ x̃ (11)

The total process (x, zx)→ (ỹx, zx)→ x̃:

Decx(Ency([Decy(Encx(x, zx), zx)], zx), zx)→ x̃
(12)

Pseudo-input ỹx is a corrupted version of unknown
yx, and the noisy inputs result in degraded transla-
tion performance. Therefore, zx is introduced into
Ency(·) to correct the pseudo-sentence and elim-
inate the noise. Whereas, the input zx in Decx(·)
is treated as a pivot between yx and x. This is the
process of translating two language sentences into
each other, so they correspond to one image.

Training on the target side is similar to the
source, the training process in target side:

Decy(Encx([Decx(Ency(y, zy), zy)], zy), zy)→ ỹ
(13)

The total MBT loss in x and y is:

LMBT = CE(x̃, x) + CE(ỹ, y) (14)

4.4 Training Strategy
4.4.1 Pre-training
VPLM extends MLM (Conneau and Lample, 2019)
by adding image features Z = [z1, ..., zj ] in do-
main Z . The framework of VPLM is built by
adding a prediction layer to the output of Figure 2.

Similar to MLM, 15% of the text and image region
are randomly selected for masking. The objective
function of VPLM is a combination of MLM loss
and masked region classification loss. It is the
masking text t̄ and region z̄ against ground truth
text target ť and region label ž:

LVPLM =
1

|T |
∑

t∈T
−logp(ť|t̄; θp)

+
1

|Z|
∑

z∈V
−logp(ž|z̄; θp)

(15)

where θp is the model parameter. VPLM is trained
with multimodal alignment:

LPre = LVPLM + λ2LMA (16)

where the hyper-parameter λ2 is set to 1.

4.4.2 Fine-tuning
MDA and MBT are initialized with VPLM and
then fine-tuned, and they are also trained with mul-
timodal alignment:

LFin = LMDA + λ3LMBT + λ4LMA (17)

where the hyper-parameter λ3 and λ4 are set to
1. MDA and MBT are cycle-trained, and their
parameters are fully shared between them.

5 Experiments

5.1 Experimental Setup
For pre-training, we use the training and valida-
tion set of the MS-COCO (Lin et al., 2014) dataset.
To construct the monolingual data, this dataset is
randomly split into two disjoint subsets. Each
set contains 64,542 images and five English de-
scriptive sentences for each image. Then we ap-
ply Lingvanex1 translator to translate English sen-
tences into German, Chinese, and Uyghur.

For fine-tuning, we performed experiments on
both the Multi30k and Multi30k-Distant. To ensure

1https://lingvanex.com/translate
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Table 2: Results for DLPs translation. Uyghur and Chinese are not supported by METEOR.

En→Uy Uy→En Zh→Uy Uy→ Zh

RIBES↑ BLEU↑ TER↓ RIBES↑ BLEU↑ TER↓ RIBES↑ BLEU↑ TER↓ RIBES↑ BLEU↑ TER↓
XLM(Text-only) 53.2 2.6 96.4 54.4 3.1 87.1 51.9 2.6 92.3 58.8 3.9 89.4
UMNMT 65.1 7.4 83.2 65.9 8.0 74.9 67.4 10.6 75.8 71.0 14.1 74.7
M-Transformer 70.4 11.5 76.1 70.2 11.3 75.6 70.7 17.2 71.0 73.7 21.2 68.8
IVTA 69.8 13.2 74.9 71.0 13.7 69.8 76.9 22.4 63.1 77.5 24.5 61.3
VUMMT 73.3 15.7 72.3 75.1 16.0 75.5 81.9 28.7 53.1 79.8 33.2 52.4
Ours 76.4 20.9 66.1 81.1 20.6 64.8 86.5 32.2 50.4 85.9 37.0 46.7

that the model avoids learning from parallel sen-
tences, as with the pre-training data, the training
set of a language is randomly divided into two, and
two non-parallel corpora with 14,500 samples of
training set are produced.

For Chinese, we use the tokenizer of Chang et al.
(2008). For all other languages, Moses (Koehn
et al., 2007) toolkit is used to tokenize all sentences.
We use byte pair encoding (BPE) (Sennrich et al.,
2016b) and use fastBPE2 to learn the BPE code
and split words into sub-word units.

Model dimension and feedforward dimension
are set to 512 and 2,048. The Adam (Kingma and
Ba, 2015) optimizer with a learning rate of 1×10−4

is used for optimization. Experiments are imple-
mented on a machine with a single 12GB TITAN
Xp GPU. For image features, we follow (Caglayan
et al., 2021), using Faster R-CNN (Ren et al., 2015)
models to extract features [z1, ..., zj ], where the
number of regions j is set at 36 and zi ∈ R1536.

5.2 Baselines and Evaluation Metrics
Baselines To verify the performance of our model,
We mainly compare with the existing models: (1)
XLM (Conneau and Lample, 2019) is a monolin-
gual text-only unsupervised MT based on MLM.
(2) UMNMT (Su et al., 2019) is established on
multimodal monolingual data by two training paths,
such as auto-encoding loss and cycle-consistency
loss. (3) M-Transformer (Huang et al., 2021) uses
additional visual modalities to recover sentences
that have previously masked some words. (4)
IVTA (Li et al., 2023a) is semi-supervised MT and
includes both unsupervised and supervised training
components. (5) VUMMT (Tayir and Li, 2024)
studies the effect of practice measures for UMMT.
(6) Game-MMT (Chen et al., 2018) is a reinforce-
ment learning-based UMMT. (7) Knwl. (Huang
et al., 2023) introduces knowledge entities as an
additional modality to enhance the representation.

2https://github.com/glample/fastBPE

Since Game-MMT, Progressive, and Knwl. are
only translated between English, German, and
French, they also take advantage of pre-trained
models and knowledge entities that exist only in
those languages. Therefore, they cannot be repro-
duced using our dataset.

Evaluation metrics We apply MT metrics such
as RIBES (Isozaki et al., 2010), BLEU (Papineni
et al., 2002), METEOR (Lavie and Agarwal, 2007)
and TER (Snover et al., 2006) to evaluate transla-
tion quality. RIBES is mainly utilized to evaluate
the translation quality between DLPs, while ME-
TEOR is not supported for Uyghur and Chinese.

Moreover, Uyghur is a gender-neutral language
(e.g. “he”, “she” and “it” are all translated into
“u”), whereas others are gendered languages. Al-
most 14% of the sentences in the fine-tuned data
contain gender pronouns, which affects the trans-
lation between Uyghur and other languages. This
paper argues that the image provides information
to correct the gender accuracy of the translation.
We scored the correctness of the gender pronoun
by examining the gender pronoun in the translation
and its reference sentence (wrong: 0, correct: 1).
Then, the gender accuracy is obtained by dividing
the whole test set score by the number of gender
pronouns in the reference set.

5.3 Overall Performance

5.3.1 Results on Distant Language Pairs
In Table 2, the baselines are reproduced using our
datasets. IVTA is semi-supervised model with 300
parallel corpora, it is trained from scratch.

Text-only models The results of XLM show that
the translation quality of the model deteriorates sig-
nificantly when using text-only data. Although
XLM is initialized with a pre-trained model trained
on 322,710 monolingual sentences, it fails to trans-
late complete sentences. Compared to this, XLM
on CLPs provides quite satisfactory experimental
results, as shown in Table 4.

5601



Table 3: Experimental results (BLEU) of different multimodal inputs and alignments. Gender Accuracy (introduced
in Section 5.2) is the average of the accuracy in both Uy→En and Uy→Zh. Eq(1): text and image concat inputs,
Eq(2): text and image inputs via AGS and LMA: multimodal alignment.

Eq(1) Eq(2) LMA
En-Uy Zh-Uy En-De

Gender Accuracy
→ ← → ← → ←
2.6 3.1 2.6 3.9 26.4 29.8 18.2

✓ 15.7 16.0 28.7 33.2 29.4 33.2 59.8
✓ 15.3 15.6 28.1 32.9 28.0 32.6 58.2

✓ ✓ 19.3 19.2 31.4 35.5 28.1 32.3 65.5
✓ ✓ 16.5 16.3 29.0 34.2 28.7 32.9 60.4

✓ ✓ ✓ 20.4 19.9 31.8 36.7 28.4 32.5 67.2

Table 4: Results for CLP translation.

En→De De→En

BLEU METEOR BLEU METEOR

XLM(Text-only) 26.4 45.2 29.8 29.9
Game-MMT 16.6 − 19.6 −
UMNMT 23.5 26.1 26.4 29.7
M-Transformer 26.7 − 29.8 −
Knwl. 28.9 − 31.8 −
IVTA 22.9 39.7 25.5 29.2
VUMMT 29.4 48.8 33.2 32.5
Ours 30.7 50.1 34.4 33.4

Table 5: Human evaluations on DLPs. Com., Amb., and
Flu. stand for Completeness, Ambiguity, and Fluency.
Results are averaged on En→Uy and Zh→Uy.

Avg.
Human evaluations

BLEU Com.↑ Amb.↓ Flu.↑
M-Transformer 15.6 4.3 7.2 4.6
IVTA 17.1 4.5 7.1 4.9
GPT-4 17.8 5.1 6.8 5.1
Ours 25.5 5.6 6.1 5.7

Multimodal models The performance of the
model is significantly improved when images are
introduced for fine-tuning (XLM Vs. UMNMT,
M-Transformer). For example, for En→ Uy, the
BELU of UMNMT is 7.4, which is larger than that
of XLM, i.e., 2.6. Meanwhile, for Uy→ Zh, their
BLEU gap is 10.2. IVTA achieves comparatively
better results, which indicates that a small number
of parallel corpora can significantly improve the
translation. Among the baseline models, VUMMT
yields the best results, while our model benefits
from the outstanding image introduction method.

5.3.2 Results on Close Language Pairs
Table 4 shows the original paper and our experi-
mental results. Our model yielded superior per-

formance, which outperformed the text-only and
multimodal baselines. Notably, our model has a
BLEU score of 1.3 and 1.2 higher than VUMMT.
Compared to DLPs, XLM results on CLP yield
better results because the relationship between the
two languages can be learned without images.

5.4 Human Evaluation

For each model, we randomly sampled 100 sen-
tences from its test translations and rated each sen-
tence on a scale from 0 to 10 according to their
quality. As listed in Table 5, our model shows the
highest BLEU among the three manually evaluated
models. We also compare ours with the translation
results of GPT-43. Our model BLEU reaches 25.5
with 43.2% to 63.4% improvements over GPT-4
and M-Transformer. In terms of FLu. to measure
the translation cohesion and fluency, our model still
shows best among three human evaluations.

5.5 Effects of Image Pivoting

5.5.1 Multimodal Inputs and Alignment
Compared to the text-only model (the first row),
the model with connected image features (Eq (1))
has a significant improvement, and the score on
BLEU increases by 3.0 to 29.3, as shown in Table
3. Whether it is the concatenated image introduc-
tion (Eq(1)) or the AGS image introduction (Eq(2))
method, they all bring great improvement to DLPs,
and CLP achieves the best result in Eq(1). When
these two methods are used together, the transla-
tion quality of DLPs continues to improve, while
that of CLP decreases significantly. This means
that, to some extent, richer images serve to bridge
the gap between DLPs, thus improving translation
performance. Moreover, the translation of both lan-
guages pairs has been improved with the addition

3https://openai.com/gpt-4
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Table 6: Experimental results (BLEU) of images on different branch models. VPLM: visual pre-training language
modeling, MDA: multimodal denoising auto-encodin model and MBT: multimodal back-translation model.

VPLM MDA MBT
En-Uy Zh-Uy En-De

→ ← → ← → ←

Image

2.6 3.1 2.6 3.9 26.4 29.8
✓ ✓ 7.4 8.3 9.2 12.7 28.6 32.8

✓ 9.3 10.8 26.6 30.9 28.2 31.6
✓ ✓ 8.6 9.5 16.9 18.7 17.6 25.4
✓ ✓ 15.4 16.2 28.4 33.4 28.8 32.9
✓ ✓ ✓ 15.7 16.0 28.7 33.2 29.4 33.2

of multimodal alignment (LMA) methods.
In terms of gender accuracy, two image introduc-

tion methods and multimodal alignment gradually
improved gender recognition, which validated our
hypothesis that image fusion is conducive to the
correct translation of gender pronouns.

5.5.2 Images on Different Branch Models

As described in Section 4, our model consists of
three modules, VMLM, MDA, and MBT. As shown
in Table 6, compared to the text-only model (the
first row), the performance of the fine-tuned transla-
tion model containing images is improved on both
language pairs. Images from pre-trained models
provide a significant reinforcement to DLPs. Im-
ages have a positive effect on all branches, and the
best translation results are achieved when they all
are fused with the image. However, the introduc-
tion of images to the MDA without the inclusion of
images for MBT impairs the model performance
and the image in the MDA effect is not significant.

5.6 Experimental Results on Image Features
with Different Granularity

We argue that regional features are extracted based
on object confidence, which may ignore the rela-
tionships between objects and their background
information. Therefore, we also discuss the grid
features G ∈ R49×2,048 extracted by using Resnet-
101 (He et al., 2016). As shown in Table 7, we
conducted experiments on the region and grid fea-
tures individually and together. Two image features
are combined in a concatenated manner. The ex-
perimental results show that DLPs are significantly
improved in both features, while CLP is in grid
features. This validates our hypothesis that DLPs
require richer image features.

Table 7: Experimental results (BLEU) of image features
with different granularity. The experiments are based on the
best model of Table 3 and 6. Reg. and Gri. represent region
and grid features, and Reg.&Gri. indicates the both features.

En-Uy Zh-Uy En-De

→ ← → ← → ←
Reg. 20.4 19.9 31.8 36.7 29.4 33.2
Gri. 20.2 20.3 29.9 33.5 30.7 34.4

Reg&Gri. 20.9 20.6 32.2 37.0 29.0 32.3

6 Analyses

6.1 Case Study

To further demonstrate the validity of our model,
we show the translation results generated by dif-
ferent models, as shown in Table 8. We can see
that our added image information is more helpful
when the translated object encounters ambiguity.
XLM translates the source word “blue” to “sëriq
renglik” (yellow), and the model with the added
image translates correctly. It is interesting to ob-
serve that our model, as defined in Eq(1), extracts
more information from images in complex scenes
and translates information that is not present in the
reference sentence but is present in the image, e.g.,
“öz’ara paranglishiwatidu” (talking to each other).

Moreover, we also compare ours with GPT-4.
The translation result indicates that although the
objects in the input sentence are correctly trans-
lated, the relations between them are not.

6.2 Bucketed Analysis

To find significant differences between translated
sentences, we used the compare-mt toolkit (Neu-
big et al., 2019) for analysis. We provide an ex-
ample of sentence hierarchy analysis, as shown in
Figure 4. In the number of translated sentences
with different BLEU values, it can be found that
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Table 8: Case study. Eq(1) represents the model in the second row of Table 3
SRC(En): a group of men in blue uniforms are standing together.
REF(Uy): bir top kök renglik forma kiygen erler bille turidu.
XLM(Text-only): bir top sëriq renglik kiyim kiygen.
Eq(1): bir top kök renglik kiyim kiygen erler öz’ara paranglishiwatidu.
Ours: bir top kök renglik forma kiygen erler bille turdi.
GPT-4: kök uniformadiki bir gurup er adamlar birge turdu.

Figure 4: An example of translation accuracy analysis
in the En→Uy task.

when the BLEU value is less than 20, the relation-
ship between the number of sentences from small
to large is inversely related to the output quality of
our model for the whole test set. However, when
the BLEU value is greater than 20, the relationship
between the number of sentences is consistent with
the model’s score on the whole test set. XLM has
no more than 60 BLEU sentences in translation.

6.3 Supervised Case

While this paper primarily focuses on unsupervised
MT with images as pivots, we are also interested
in exploring supervised translation on our dataset.
As shown in Table 9, we conducted supervised MT
experiments by switching from back-translation
to a transformer-based framework with additional
image features. We benchmarked recent super-
vised MT models, including Transformer(text-
only) (Vaswani et al., 2017), Selective-attn (Li
et al., 2022a), RG-MMT-EDC (Tayir et al., 2024),
and VTLM (Caglayan et al., 2021). VTLM and
our model are both pre-trained and fine-tuned on
our dataset Multi30k-Distant.

It can be seen from the experimental results that
our method shows the best than other baselines.
Compared with VTLM, our fusion method is more
effective for supervised MT. It is noteworthy that
images provide marginal improvements in super-
vised DLPs translation.

Table 9: Supervised results (BLEU) on Multi30K-Distant.

En-Uy Zh-Uy

→ ← → ←
Transformer 40.4 36.0 61.9 61.2
Selective-attn 41.2 36.6 62.1 61.2
RG-MMT-EDC 41.7 36.5 62.4 62.1
VTLM 42.5 38.2 64.5 64.1
Ours 44.8 39.8 65.3 64.9

7 Conclusions

In this work, we first create a dataset containing
two DLPs to investigate UMMT on low-resource
DLPs. We then found that cross-language align-
ment in shared latent spaces can be improved by
incorporating visual content in both pre-trained
and fine-tuned models. Compared to the baseline
model, our model has 5.2 and 4.6 BLEU score
improvements in English-Uyghur translation, and
3.5 and 3.8 BLEU score improvements in Chinese-
Uyghur translation. Moreover, the experimental
results show that images contribute to improving
gender accuracy in translation between gender and
gender-neutral languages.

8 Limitations

Although our method achieves good results, it also
has some limitations in dealing with DLPs. As
can be seen from Figure 4, incorporating more
image features may hurt the accuracy of a high-
score translated sentence. More persons are needed
to join our human evaluations since translation is
subjective to some degree. The differences among
different persons could be analyzed in detail.
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