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Abstract

Code generation models are not robust to small
perturbations, which often lead to incorrect gen-
erations and significantly degrade the perfor-
mance of these models. Although improving
the robustness of code generation models is cru-
cial to enhancing user experience in real-world
applications, existing research efforts do not
address this issue. To fill this gap, we propose
CodeFort, a framework to improve the robust-
ness of code generation models, generalizing
a large variety of code perturbations to enrich
the training data and enabling various robust
training strategies, mixing data augmentation,
batch augmentation, adversarial logits pairing,
and contrastive learning, all carefully designed
to support high-throughput training. Extensive
evaluations show that we increase the average
robust pass rates of baseline CodeGen models
from 14.79 to 21.74. Notably, we decrease the
robustness drop rate from 95.02% to 54.95%
against code-syntax perturbations.

1 Introduction

Code generation models (Li et al., 2023; Nijkamp
et al., 2023a; Fried et al., 2023; Luo et al., 2023;
Rozière et al., 2023) have demonstrated impres-
sive performance in generating code from natu-
ral language descriptions, completing sections of
code, and even tackling complex coding contest
challenges. These models can potentially assist
software engineers and increase their productivity.

However, code generation models are not robust
to minor perturbations in the input prompts (e.g.,
inserting whitespaces/typos in docstrings or substi-
tuting variable names in code), i.e., they often gen-
erate incorrect outputs, thus significantly degrading
their impressive performance on nominal prompts
and hurting user experience when deployed in real-
world applications (Wang et al., 2023b). Figure 1
shows that the performance of the state-of-the-art

*Work done when the author was an intern at Amazon.

Figure 1: Performance drop of the state-of-the-art public
code models on four classes of code perturbations. (See
Table 4 in the Appendix for details.)

public code models (Nijkamp et al., 2023b; Li et al.,
2023; Luo et al., 2023) significantly declines un-
der semantic-preserving program transformations,
particularly under code-syntax perturbations. Thus,
it is crucial to improve the robustness of models
before they are universally deployed.

Despite extensive research efforts to improve
the robustness of code-related tasks, beyond code
generation, such as vulnerability prediction, clone
detection, and code summarization, existing work
has not tackled two unique challenges of improving
the robustness of code generation models, primarily
trained using casual language modeling (CLM).

Challenge 1: Distinct Robustness Definition
Unlike traditional classification tasks like vulner-
ability detection, where models produce a single
classification, code generation models generate se-
quences, leading to a shift in the definition of ro-
bustness for certain perturbations. In code genera-
tion, model robustness is defined by generating a
coherent output given an input perturbation. In con-
trast, in classification tasks, models are expected
to maintain the same classification before and af-
ter perturbation. For instance, if a variable i is
renamed to b in the input prompt (as illustrated in
Figure 2d), a robust code generation model should
generate completions with the variable b instead of
the original variable i. This shift necessitates a new

5262

yhzhangh@amazon.com


category of perturbations for code generation mod-
els and corresponding robust training approaches
to tackle this new category.

Challenge 2: Designing Robust Training Ap-
proaches As code perturbations can insert dead
code or typos into training data, directly train-
ing using data augmentation could adversely af-
fect the model performance, leading to issues like
generating dead code or typos. Furthermore, ap-
plying more deliberate robust training approaches
such as adversarial logits pairing (ALP) (Kannan
et al., 2018) and contrastive learning (CL) to CLM
presents unique challenges. ALP, designed for
single-class classification, requires careful align-
ment between original and perturbed sequences,
complicated by potential differences in sequence
lengths. Although CL has demonstrated efficacy in
improving the robustness of code representations in
masked language modeling (MLM) (Devlin et al.,
2019), its applicability to improving the robustness
of code generation models remains unexplored.

To tackle the above two challenges and improve
the robustness of code generation models, we in-
troduce a structured definition of code perturba-
tions (Section 3) and design a novel robust training
framework named CodeFort (Section 4).

To address Challenge 1, we classify existing
code perturbations into two categories: context-free
and context-sensitive, based on the formal defini-
tion of code perturbations provided in Section 3.
Context-free perturbations, such as the docstring
perturbation in Figure 2b, follow the traditional
notions of robustness, whereas context-sensitive
perturbations, such as the code-syntax perturbation
in Figure 2d, specific the distinct robustness defi-
nition highlighted in Challenge 1. The distinction
of these two categories allows CodeFort to employ
different robust training methods according to each
category.

To address Challenge 2, CodeFort employs
example-level and sequence-level pairing to enrich
the training set. These two pairing levels allow 1)
a masking mechanism to mask unnatural perturbed
tokens and 2) a careful alignment between the orig-
inal and perturbed token sequences, addressing the
crucial challenge of applying ALP and CL to CLM.

We utilize CodeFort to extensively evaluate var-
ious strategies, mixing data augmentation, batch
augmentation, ALP, and CL. Our approach, com-
bining batch augmentation with the masking mech-
anism, ALP, and ALPD, significantly enhances the

model robustness and surpasses the sub-optimal re-
sults of data augmentation. Notably, our approach
significantly improves the robustness under code-
syntax perturbations, the type of perturbation that
hurts the model robustness the most, as shown in
Figure 1. Our ablation studies show that ContraSeq,
the CL objective used in previous work for MLM,
has negligible robustness improvements on CLM.

We summarize our contributions: 1) a frame-
work, CodeFort, for improving the robustness of
code generation models trained by CLM, 2) de-
signs of robust training approaches, data augmenta-
tion, batch augmentation, ALP, and CL tailored to
CLM, 3) an extensive evaluation of different robust
training approaches, 4) a perturbed training set for
future studies on the robustness of code generation
models, and 5) a surprising finding that the Con-
traSeq CL objective, which is known to be benefi-
cial for improving robustness of other code related
tasks, has negligible robustness improvements on
CLM.

2 Related Work

Adversarial Attacks on Code-Related Tasks
Numerous adversarial attacks (Henkel et al., 2022;
Zhang et al., 2020; Yefet et al., 2020; Jha and
Reddy, 2023; Srikant et al., 2021; Anand et al.,
2021; Gao et al., 2023) have targeted encoder-
decoder models in code-related tasks, including
classification (e.g., vulnerability prediction) and
generation (e.g., code summarization). Key meth-
ods include CODA (Tian et al., 2023), which ex-
ploits syntactic differences for adversarial example
generation; CARROT (Zhang et al., 2022), employ-
ing a lightweight hill climbing for optimization in
attacks; and ALERT (Yang et al., 2022), which
creates naturalness-aware attacks using pre-trained
models. Unlike these approaches, we focus on im-
proving the robustness of code generation models
trained using casual language modeling (CLM).
We assess our approaches’ effectiveness in code
generation through ReCode (Wang et al., 2023b), a
benchmark for evaluating robustness via semantic-
preserving program transformations.

Robust Training on Code-Related Tasks Ex-
isting work typically enhances model robustness
through data augmentation and adversarial train-
ing (Madry et al., 2018). Bielik and Vechev (2020)
refine model representations by feeding only per-
tinent program parts to the model; Suneja et al.
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def largest_divisor(n: int) -> int:
""" For a given number n, find the largest number that

↪→divides n evenly , smaller than n
>>> largest_divisor (15)
5
"""

===
for i in reversed(range(n)):

if n % i == 0:
return i

(a) An original problem in HumanEval. === separates the
prompt and the ground-truth completion.

def largestDivisor(n: int) -> int:
""" For a given number n, find the largest number that

↪→separate n evenly , modest than n
>>> largestDivisor (15)
5
"""

===
for i in reversed(range(n)):

if n % i == 0:
return i

(b) A perturbed version of Figure 2a by a function-name and
docstring perturbation.

def largest_divisor(n: int) -> int:
""" For a given number n, find the largest number that

↪→divides n evenly , smaller than n
>>> largest_divisor (15)
5
"""
for i in reversed(range(n)):

===
if n % i == 0:

return i

(c) A HumanEval problem includes the first half of the origi-
nal completion.

def largest_divisor(n: int) -> int:
""" For a given number n, find the largest number that

↪→divides n evenly , smaller than n
>>> largest_divisor (15)
5
"""
for b \

in reversed(range(n)):
===

if n % b == 0:
return b

(d) A perturbed version of Figure 2c by a code-syntax and
code-format perturbation.

Figure 2: HumanEval problems under different code perturbations. To achieve a more compact illustration, we
merge two code perturbations in one example.

(2023) use curriculum learning and data augmen-
tation with simplified programs. They all tend to
improve robustness in classification tasks. Unlike
these, our focus is on code generation robustness.

While Zhou et al. (2022) propose random input
token masking to lessen dependence on non-robust
features, our method selectively masks perturbed
tokens during loss calculation to avoid the model
generating unnatural perturbations.

In contrast to ContraCode (Jain et al., 2021)
and ContraBERT (Liu et al., 2023), which ap-
ply contrastive learning (CL) to classification and
code translation tasks by improving robustness in
masked language modeling, we focus on the effi-
cacy of CL in decoder-only code generation models.
Furthermore, directly applying the CL objective of
ContraBERT and ContraCode on sequence repre-
sentations may not cater to CLM, which involves
discriminating representations at a finer level than
sequence representations. Notably, this adoption
shows negligible robustness improvement on CLM
code models (Section 5.3). Thus, we need to design
novel CL objectives tailored to finer granularities.

Although ContraCLM (Jain et al., 2023) en-
hances the discrimination of CLM’s representa-
tions, it does not target robustness improvement.

3 Problem Definition

We address the robustness challenge in a code gen-
eration model f trained using Causal Language
Modeling (CLM). CLM predicts the next token
in a sequence, and the model can only attend to
tokens on the left. Formally, given a sequence of

tokens x = x1, . . . , xn, the generation model f
captures pf (· | x:i), representing the conditional
probabilities of the i-th token given the preceding
tokens x:i = x1, . . . , xi−1. The model is trained
on a dataset D = {xj}mj=1 using cross-entropy loss
LCLM(x) = −∑n

i=1 log pf (xi | x:i).
Utilizing a given decoding strategy, such as

greedy or temperature sampling (Holtzman et al.,
2020), the generation model f produces a sequence
of tokens by iteratively predicting the next tokens
until a specified stop criterion is reached. We de-
note f(x:i) = x̂i: as the generated token sequence
by f . The terms prompt, completion, and ground
truth refer to the input x:i, the output x̂i:, and the
original completion xi: = xi, . . . , xn, respectively.

In code generation, the token sequence x repre-
sents a code snippet. Figure 2a shows a problem in
HumanEval (Chen et al., 2021). Each prompt x:i in
a problem contains a function signature and a cor-
responding docstring description, and each ground-
truth completion xi: is the correct function imple-
mentation. Given a completion x̂i: generated by a
model f , if the completed function x:i + x̂i: passes
all the hidden test cases, the completion is deemed
correct, denoted as Cor(x:i + x̂i:) = true. Other-
wise, if any of the tests fail, Cor(x:i+ x̂i:) = false.

3.1 Code Perturbations

ReCode (Wang et al., 2023b) is a comprehensive ro-
bustness evaluation benchmark for code generation
models containing semantic-preserving code per-
turbations across four classes: docstring, function-
name, code-syntax, and code-format perturbations.

5264



We present examples from these four classes and
we encourage readers to refer to the original pa-
per for more detailed descriptions. Table 5 in the
Appendix presents a complete list of code pertur-
bations used in this paper.

Docstring Perturbations rewrite natural lan-
guage in docstrings and comments, including edits
like substituting synonyms (Figure 2b). Function-
Name Perturbations refactor some function names,
e.g., changing from snake_case to camelCase (Fig-
ure 2b). Code-Syntax Perturbations apply perturba-
tions related to code syntax, involving changes like
renaming variables (Figure 2d). Code-Format Per-
turbations change the code snippets’ format, e.g.,
splitting a line into two (Figure 2d).

A code perturbation is a collection of string trans-
formations, denoted as π = {T1, T2, . . .}. Each
transformation T : X 7→ X operates on a token
sequence from the input domain X , altering them
to produce a perturbed sequence. Within π, each
transformation specifies different positions and re-
placements for perturbation.

Example 3.1. The VarRenamer perturbation,
shown in Figure 2c, is a code perturbation π. It
contains an infinite set of string transformations
that specify 1) which variable name to change and
2) the new variable name. The former contains two
choices: n and i. And the latter contains infinite
choices of valid variable names.

We introduce two categories, context-free and
context-sensitive perturbations, which serve as a
high-level interface for robust training. We for-
malize the distinctive characteristics of these two
categories in the following sections.

3.1.1 Context-Free Perturbations
A code perturbation π is a context-free perturbation
if all perturbed prompts generated by π should
not affect the ground-truth completion. Formally,
for all T ∈ π, the concatenation of the prompt
perturbed by T and the ground-truth completion
remains a correct function:

∀T ∈ π,Cor(T (x:i) + xi:) (1)

Example 3.2. In Figure 2b, the SynonymSubstitu-
tion perturbation in the docstring will not affect the
ground-truth completion.

3.1.2 Context-Sensitive Perturbations
A code perturbation π is a context-sensitive per-
turbation if any perturbed prompt generated by π

results in coherent changes to the ground-truth com-
pletion. Formally, for all T ∈ π, the concatenation
of the prompt perturbed by T and its ground-truth
completion perturbed correspondingly is a correct
function, while the concatenation of the perturbed
prompt and the original completion is not.

∀T ∈ π,Cor(T (x:i) + T (xi:)) ∧ ¬Cor(T (x:i) + xi:)
(2)

Example 3.3. In Figure 2d, the VarRenamer per-
turbation requires the ground-truth completion
to change coherently because all the variable i
should be renamed to b.

3.2 Robustness of Code Generation Models
To define model robustness, we say a model f is
robust to a perturbation π, if

∀T ∈ π,Cor(T (x:i) + f(T (x:i))) (3)
The robustness against context-free perturba-

tions is similar to the traditional robustness defi-
nition, in which the perturbation should not change
the model results (Eq 1). However, the robustness
against context-sensitive perturbations differs from
the traditional definition, as the context-sensitive
robustness requires the model output to change co-
herently with the perturbed prompt (Eq 2).

4 CodeFort

CodeFort enhances the training set with a paired
dataset generation method (Section 4.1). Sec-
tion 4.2 outlines our robust training strategies.

4.1 Paired Dataset Generation Method
The paired dataset generation method offers two
levels of pairings: example-level and sequence-
level. Example-level pairing matches each orig-
inal training example with its perturbed counter-
part. Sequence-level pairing provides more detail
by matching each token segment from the original
example to its equivalent in the perturbed exam-
ple. These pairing mechanisms are essential for the
robust training strategies discussed in Section 4.2.

Example-level Pairing Given a training set D =
{xj}mj=1, where each training example is a code
snippet, the paired dataset generation method re-
turns a set of paired of training samples {(xj , x̃j)},
where x̃j is the code snippet perturbed by some
code perturbations. To obtain x̃j , we first randomly
choose t code perturbations {π1, . . . , πt} in Re-
Code. Then, we randomly choose one string trans-
formation from each code perturbation and apply
it to the original code snippet x,
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x̃ = Tt(Tt−1(. . . T1(x) . . .)), Ti ∈ πi,∀1 ≤ i ≤ t. (4)

Sequence-level Pairing Given a pair of code
snippets, (x, x̃), CodeFort further provides finer-
granularity paring for this pair.

Example 4.1. Consider following pairs of tokens,

Index: 0 1 2 3 4 5 6 7 8 9
Original: A C D E F G H C I
Perturbed: A B X D E F Y X Z Z

In this example, the code perturbations perform
two context-free perturbations, insert “B” and sub-
stitute “G H” with “Y”, and two context-sensitive
perturbations, substitute all “C” with “X” and
substitute all “I” with “Z Z”.

To create sequence-level pairing, we introduce a
mask sequence m (m̃) for the original sequence x
(and the perturbed one x̃, respectively). Each mask
value indicates which kind of perturbation is ap-
plied to the corresponding token, U for unperturbed,
F for context-free, and S for context-sensitive.

Example 4.2. We show two masks of Example 4.1.

Index: 0 1 2 3 4 5 6 7 8 9
Original Mask: U S U U U F F S S
Perturbed Mask: U F S U U U F S S S

This two-level pairing design is the key to en-
abling some of the robust training approaches,
which will be introduced subsequently.

4.2 Designing Robust Training Approaches

This section introduces four robust training ap-
proaches in CodeFort.

4.2.1 Data Augmentation
Data augmentation is a widely used approach to
improve the robustness of machine learning mod-
els. A common practice is replacing a certain por-
tion, denoted as p, of the original training examples
with their perturbed counterparts in each training
batch. Formally, for a training batch {xj}bj=1 and
its paired perturbed batch {x̃j}bj=1, the objective
function is expressed as follows,

LDA =
b∑

j=1

ajLCLM(x̃j) + (1− aj)LCLM(xj), (5)

where aj
i.i.d∼ Bernoulli(p) is a Bernoulli variable

indicating whether the j-th training example will
be perturbed or not.

Masking Unnatural Perturbed Tokens Some
context-free perturbations introduce unnatural to-
kens, such as DeadCode Insertion adding an arti-
ficial code segment and ButterFingers introducing
typos. Referring back to the robustness property
in Eq 3, our goal is for the model to learn to re-
spond to these perturbations rather than to generate
them. Learning to generate these unnatural per-
turbed tokens could adversely affect the original
model performance, leading to issues like gener-
ating dead code or typos. We propose masking
the CLM loss of these unnatural perturbed tokens
to address these issues. We define the CLM loss
for the example x after masking out the unnatural
perturbed tokens

LCLM(x,m) = −
|x|∑

i=1

1{mi ̸=F} log pf (xi | x:i),

where mi ̸= F means that the i-th token is not per-
turbed by a context-free perturbation (see Exam-
ple 4.2). We design the masked data augmentation
loss LMDA by replacing the term LCLM(x̃) in Eq 5
with the masked loss LCLM(x̃,m).

4.2.2 Batch Augmentation
Batch augmentation (Hoffer et al., 2019) duplicates
a portion of training examples within the same
batch with different perturbations. It differs slightly
from data augmentation, where a batch contains
p perturbed and 1 − p original data. In contrast,
batch augmentation augments the entire batch with
p perturbed rather than replacing p original data
with perturbed data as in data augmentation. Given
a training batch and its paired perturbed batch, the
objective of batch augmentation is defined as fol-
lows,

LMBA =
b∑

j=1

ajLCLM(x̃j , m̃j) + LCLM(xj)

When batch augmentation was originally proposed,
its goal was not to improve the model robustness.
We hypothesize that batch augmentation can further
improve the robustness over data augmentation, as
indicated in some multilingual cases (Ahmed and
Devanbu, 2022; Wang et al., 2023a).

4.2.3 Adversarial Logits Pairing
Adversarial Logits Pairing (ALP) (Kannan et al.,
2018) improves the robustness of classification
models by minimizing the KL divergence between
the original input’s prediction distribution and the
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perturbed input’s prediction distribution. However,
adapting ALP from classification models to gener-
ation models trained by CLM is challenging. One
straightforward approach is decomposing the gener-
ation task into multiple next-token prediction tasks.
However, the original and the perturbed token se-
quences can have different lengths due to some
transformations adding or removing tokens. This
length discrepancy creates mismatches of each to-
ken’s prediction between the two sequences.

To address this challenge, we leverage the
sequence-level pairing provided by our paired
dataset generation method. We apply ALP only
to the unperturbed segments of the two sequences,
marked by U in Example 4.2. All unperturbed seg-
ments have the same length, allowing us to apply
ALP to the predictions of these unperturbed tokens.
We use u and ũ to denote the ordered indices for all
unperturbed tokens in the original and perturbed se-
quences. The ALP objective is defined as follows,

LALP =

b∑

j=1

|uj |∑

i=1

DKL

(
pf (· | x̃j

:ũj
i

) ∥ pf (· | xj

:uj
i

)

)

Example 4.3. In Example 4.1, u = (0, 2, 3, 4) and
ũ = (0, 3, 4, 5).

ALP with name-Dropout (ALPD) We design
another ALP objective (ALPD) specifically tailored
to variable and function renaming among context-
sensitive perturbations. ALPD reduces the model’s
reliance on specific variable and function names
by setting the attention masks of a portion of these
names to zero. It can be seen as a dropout mecha-
nism specific to entity names.

We use Dp(x) to denote the input sequence after
name-specific dropout.

LALPD =
b∑

j=1

|uj |∑

i=1

DKL

(
pf (· | Dp(xj)

:u
j
i
) ∥ pf (· | xj

:u
j
i

)

)

+DKL

(
pf (· | Dp(x̃j)

:ũ
j
i
) ∥ pf (· | x̃j

:ũ
j
i

)

)

LALPD sums two KL divergence losses: the first
over the original sequence after and before dropout,
and the second over the perturbed sequence.

4.2.4 Contrastive Learning
Contrastive learning (CL) maximizes the cosine
similarity between positive (similar) pairs and min-
imizes the distance between negative (dissimilar)
pairs. The granularity of pairs leads to different
designs of CL objectives. This section introduces

three designs of CL objectives tailored to CLM.
ContraSeq and ContraToken, inspired by Contra-
CLM (Jain et al., 2023), focus on sequences and
tokens, respectively. A novel ContraName objec-
tive focuses on variable and function names.

ContraSeq The ContraSeq objective operates at
the sequence level, where each pair consists of sum-
marizations of two input sequences. We note that
ContraSeq is also adopted in ContraBERT (Liu
et al., 2023) and ContraCode (Jain et al., 2021) for
improving the robustness of the encoder model
trained on masked language modeling (MLM).
Since CLM does not have the [CLS] token used in
MLM, we compute the average of the hidden states
in the last layer as the summarization.

Given a batch B = {h1, . . . ,hb, h̃1, . . . , h̃b}
with 2b summarizations of original and perturbed
sequences, ContraSeq treats the b corresponding
original and perturb pairs, i.e., (hi, h̃i), as positive
pairs and other pairs in the batch as negatives.

Denoting the temperature hyper-parameter as τ
and cosine similarity as ⋄, we define the ContraSeq
objective as follows,

LCSeq =
b∑

j=1

g(hj , h̃j , B) + g(h̃j ,hj , B),

where g(x, y,B) is defined as

g(x, y,B) = − log
exp(x ⋄ y/τ)∑

h∈B exp(x ⋄ h/τ)− exp(1/τ)
.

ContraSeq represents the coarsest granularity
among the three objectives. While ContraSeq is
shown to be effective for MLM, it may not fully
cater to CLM, which predicts the next token for
each prefix and involves discriminating representa-
tions at finer levels, e.g., tokens and names. Addi-
tionally, ContraSeq poses scalability challenges, as
it demands a large batch size to compute a mean-
ingful InfoNCE loss. This challenge restricts Con-
traSeq’s feasibility to large language models.

ContraToken The ContraToken objective oper-
ates at the token level, providing a finer granularity
than ContraSeq. ContraToken aims to discrimi-
nate the representation of each prefix. However,
as we mentioned in Section 4.2.3, directly treating
x:i and x̃:i as a positive pair does not work due to
the potential sequence length difference between
original and perturbed sequences. To address this,
ContraToken considers two prefixes ending at the
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same unperturbed token as a positive pair, with
other prefix pairs designated as negatives.

For the j-th training example, let hj
i denote the

representation of the prefix up to the i-th token, and
uji denote the index of the i-th unperturbed token.
We define ContraToken objective as:

LCTok =
b∑

j=1

|uj |∑

i=1

g(hj

u
j
i

, h̃j

ũ
j
i

, Hj) + g(h̃j

ũ
j
i

,hj

u
j
i

, Hj)

where Hj contains all the representa-
tions of prefixes ending at unperturbed
tokens for the j-th training example, i.e.,
Hj = {hj

uj
1

, . . . ,hj

uj

|uj |
, h̃j

ũj
1

, . . . , h̃j

ũj

|ũj |
}.

ContraName We design a novel name-level CL
objective, ContraName, to address variable and
function renaming in context-sensitive perturba-
tions. It aims to enhance the discrimination of
representations of variable and function names.

In ContraName, we group representations of
variables or functions according to their names.
For a name spanning multiple tokens, we use the
average of these tokens as its representation. Con-
traName treats representations within the same
group as positive pairs and those across different
groups as negative pairs. Notice that the negative
pairs in ContraName have explicit semantic differ-
ences, i.e., different names should yield different
representations. This explicit semantic difference
of negative pairs has been shown to improve the
effectiveness of CL (Ding et al., 2023).

Suppose in the sequence x, we identify g groups
of name representations G1, G2, . . . , Gg, with G =⋃g

i=1Gi being their union. We define the Con-
traName objective on the input x as follows,

LCName(x) = − log

(∑g
i=1

∑
h,h′∈Gi

exp(h ⋄ h′/τ)
∑

h,h′∈G exp(h ⋄ h′/τ)

)

Example 4.4. Consider the original example in
Example 4.1 with G1 = {h1,h7} and G2 = {h8}.
The perturbed example contains G̃1 = {h̃2, h̃7}
and G̃2 = { h̃8+h̃9

2 }.

The final ContraName objective is the sum of
losses over the original sequences and their per-
turbed counterparts.

LCName =
m∑

j=1

LCName(x
j) + LCName(x̃

j) (6)

5 Evaluation

5.1 General Experimental Setup

Models We use different robust training ap-
proaches to fine-tune different sizes of mono-
lingual CodeGen models (Nijkamp et al., 2023b)
targeting at Python: CodeGen-6B, 2B, and 350M.
We provide fine-tuning settings in Appendix A.

Datasets and Benchmarks We use the Stack
dataset v1.2 (Kocetkov et al., 2022) as our orig-
inal training dataset. We uses ReCode (Wang et al.,
2023b) to augment the dataset by introducing differ-
ent code perturbations. For all experiments, we set
p = 25% and t = 2 (Eq 4), i.e., we apply at most
two perturbations to each original code snippet.

To evaluate the model robustness, we use
the ReCode benchmark, which is based on Hu-
manEval (Chen et al., 2021) and MBPP (Austin
et al., 2021) with a total of 1138 (164 + 974) prob-
lems. The docstring and function-name classes are
perturbed based on the original prompt. The code-
syntax and code-format classes are perturbed based
on modified prompts, which are appended with half
of the ground truth completion.

Metrics We use the following three metrics to
assess the model performance.

NP@1. We use Pass@k following Chen et al.
(2021) to assess the nominal code generation per-
formance. We name the Pass@k on unperturbed
data as Nominal Pass@k (NP@k). This metric ap-
proximates the probability of any k samples passes
all the test case, if we randomly choose k samples
out of n samples generated by the model for each
problem. We use n = 5 because the difference
between n = 10 and n = 100 is already small as
demonstrated in Recode (Wang et al., 2023b).

RP10@1. To evaluate the robustness of models,
we use the Robust Passs@k (RPs@k). It measures
the worst-case Pass@k on s perturbed variance
for each perturbation type and each sample. Here,
we use s = 10 to harden the robustness gain for
training and differentiate performance gaps.

Drop%. We report Robust Drop%. It measures
the percentage drop from Robustness Pass@k
(RPs@k) from Nominal Pass@k (NP@k), indi-
cating the relative robustness changes given pertur-
bations. Lower Drop% means better robustness.
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Model & Methods Docstring Function Syntax Format Overall Average

NP@1 RP10@1 NP@1 RP10@1 NP@1 RP10@1 NP@1 RP10@1 NP@1 RP10@1 Drop%

CodeGen-6B

Ori 35.96 12.83 35.96 14.36 52.72 2.20 52.72 25.47 44.34 13.71 69.08
LCLM 40.07 20.21 40.07 22.18 54.91 2.58 54.91 35.80 47.27 20.19 57.29
LDA 37.61 20.51 37.61 21.88 52.99 27.66 52.99 42.18 45.30 28.06 38.06
Ours 37.91 ∗∗23.13 37.91 22.53 53.16 27.70 53.16 ∗∗44.87 45.54 29.56 35.09

CodeGen-2B

Ori 31.27 11.04 31.27 9.75 44.82 1.63 44.82 24.45 38.05 11.72 69.20
LCLM 32.99 15.78 32.99 16.41 46.22 2.43 46.22 32.00 39.61 16.66 57.94
LDA 31.62 17.62 31.62 16.61 45.96 ∗22.86 45.96 34.50 38.79 22.90 40.96
Ours 31.56 ∗∗19.21 31.56 17.12 45.04 21.92 45.04 34.36 38.30 23.15 39.56

CodeGen-350M

Ori 17.10 3.57 17.10 3.06 26.75 1.11 26.75 9.54 21.93 4.32 80.30
LCLM 18.10 6.19 18.10 6.47 29.24 1.46 29.24 15.96 23.67 7.52 68.23
LDA 18.10 7.45 18.10 7.94 30.11 8.59 30.11 18.58 24.10 10.64 55.85
Ours 18.33 ∗∗9.72 18.33 8.05 31.04 ∗∗10.67 31.04 ∗∗21.58 24.69 12.51 49.33

Table 1: Robust evaluation of CodeGen-6B, 2B, 350M on the ReCode benchmark. Our approach combines LMBA,
LALP, and LALPD. We show the statistical significance between our approach and LDA using the paired-t test with
∗ denoting p < 0.05 and ∗∗ denoting p < 0.01. NP@1 and RP10@1 are higher the better. Drop% is lower the better.

5.2 Effectiveness of Proposed Approaches

Summary of Results: Our approach signif-
icantly enhances the robustness of code gen-
eration models, surpassing the results of data
augmentation. Notably, our approach exhibits
the most substantial improvement in robustness
against Syntax perturbations.

Table 1 summarizes the robust evaluation results
for CodeGen models. We use LCLM to denote the
baseline method fine-tuning on the original stack
dataset (unseen by CodeGen models) without any
robust training approaches. Comparing LCLM and
the original model (Ori), we find that fine-tuning on
unseen data can already improve model robustness
on the Docstring, Function, and Format perturba-
tions, except the Syntax perturbation.

When averaging across four perturbation classes,
our approach demonstrates significant improve-
ments in RP10@1 —9.37, 6.49, and 4.99 for
CodeGen-6B, CodeGen-2B, and CodeGen-350M,
respectively, compared to the baseline LCLM. In
contrast, data augmentation achieves sub-optimal
results with improvements of 7.87, 6.24, and 3.12.

Averaging over all three models, our approach
enhances RP10@1 by 3.29, 0.88, 17.94, and 5.68
for Docstring, Function, Syntax, and Format per-
turbations, respectively, compared to the baseline
LCLM. Surprisingly, our approach exhibits the
most substantial improvement in robustness against
Syntax perturbations. This emphasis on strengthen-
ing robustness to Syntax perturbations is crucial for
ensuring the reliability of code models in handling
diverse syntactic variations.

We conducted statistical analyses using paired-t
tests to compare our approach with baseline LCLM

and data augmentation LDA across four perturba-
tion classes. Our approach significantly outper-
forms the baseline LCLM with p < 0.05 on all
perturbation classes and all models with excep-
tions of function-name perturbations on CodeGen-
6B and CodeGen-2B. We hypothesize that the
less pronounced results on function-name pertur-
bations are due to the imbalanced perturbed data,
as the percentages of function-name perturbations
are much smaller compared to other perturbation
types. When comparing our approach with data
augmentation LDA (shown in Table 1), we found
that our approach significantly outperforms LDA

with p < 0.01 on six cases, while LDA outperforms
our approach with p < 0.05 on one case.

5.3 Ablation Studies
Summary of Results: The ablation studies con-
firm the effectiveness of masked batch augmen-
tation, ALP, and ALPD. ContraSeq provides neg-
ligible improvements compared to the baseline
(LCLM). ContraToken and ContraName yield
mixed results in different settings.

This section presents the ablation results of dif-
ferent approaches outlined in Section 4.2 applied to
the CodeGen-350M model. We conduct our exper-
iments in two settings. The first setting (Table 2)
focuses on context-free perturbations, applying the
original data augmentation (LDA) loss to context-
sensitive perturbations while varying different ap-
proaches for the context-free perturbations. In the
second setting (Table 3), we vary approaches for
context-sensitive perturbations while maintaining
the LDA loss for context-free perturbations. We
report the overall average of NP@1, RP10@1, and
Drop% across four perturbation classes, with more
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Methods Overall Average

NP@1 RP10@1 Drop%

[0] : LCLM 23.67 7.52 68.23
[1] : LDA 24.10 10.64 55.85
[2] : LMDA 23.77 11.10 53.30
[3] : LMDA(p = 20%) 24.60 10.48 57.40
[4] : LMBA 24.90 11.01 55.78
[5] : LMBA + LALP 24.67 11.48 53.47
[6] : LCLM + LCSeq 23.80 7.79 67.27
[7] : [5] + LCTok 23.52 11.18 52.47
[8] : [5] + LCSeq 24.64 11.51 53.29

Table 2: Ablation results on context-free perturbations.

Methods Overall Average

NP@1 RP10@1 Drop%

[0] : LCLM 23.67 7.52 68.23
[1] : LMBA 24.83 10.75 56.71
[2] : LMBA + LALPD 24.82 10.94 55.92
[3] : LMBA + LCName 24.60 10.87 55.81
[4] : [2] + LCName 24.66 10.80 56.20
[5] : [4] + LCTok 24.42 10.42 57.33

Table 3: Ablation results on context-sensitive perturba-
tions.

details reported in Appendix E.

Effectiveness on Masked Batch Augmentation
The masked batch augmentation loss LMBA con-
sists of two components: (1) a masking mechanism
that masks unnatural perturbed tokens and (2) batch
augmentation. Comparing the results of masked
data augmentation (LMDA) and data augmentation
(LDA) in Table 2 validates the effectiveness of the
masking mechanism because LMDA achieves bet-
ter RP10@1 and Drop% than LDA. To assess the
effectiveness of batch augmentation, we cannot di-
rectly compare the results of LMDA ([2], Table 2)
and LMBA ([4], Table 2) because LMDA is trained
on p = 25% perturbed data, while LMBA is trained
on p

1+p = 20% perturbed data. For a fair com-
parison, we train LDA with p = 20% perturbed
data and report the result at [3] in Table 2. Com-
paring the results of LMDA(p = 20%) and LMBA

confirms the effectiveness of batch augmentation
because LMBA achieves better NP@1, RP10@1,
and Drop% than LMDA(p = 20%).

Effectiveness of ALP and ALPD ALP and
ALPD are shown to be effective because LALP

and LALPD both improve the RP10@1 and Drop%
([5] vs [4] in Table 2 and [1] vs [2] in Table 3). We
further investigate different designs of ALP and
ALPD in Appendix E.

Discussion on Contrastive Learning Objectives
ContraSeq only provides negligible improvements,

as evidenced by [6] vs [0], and [8] vs [5] in Table 2.
ContraToken behaves differently in two ablation
experiment settings. In the context-free perturba-
tion experiment (Table 2), ContraToken improves
the Drop% but negatively impacts the NP@1 and
RP10@1 ([7] vs [5]). Conversely, ContraToken
hurts all metrics ([5] vs [4]) in the context-sensitive
perturbation experiment (Table 3). Adding Con-
traName to the masked batch augmentation loss
improves the Drop% and RP10@1 ([3] vs [1]).

6 Conclusion

We propose CodeFort, a framework to improve the
robustness of code generation models, generalizing
a large variety of code perturbations to enrich the
training data and enabling various robust training
strategies. Our approach significantly enhances the
model robustness and surpasses the sub-optimal re-
sults of data augmentation. Notably, our approach
significantly improves the robustness under code-
syntax perturbations, the type of perturbation that
hurts the model robustness the most. Our ablation
studies show that ContraSeq, the CL objective used
in previous work for MLM, has negligible robust-
ness improvements on CLM.

7 Limitations and Future Work

We foresee many future improvements to this pa-
per. First, ALPD and ContraName primarily tar-
get function and variable rename perturbations but
are not general enough to handle arbitrary context-
sensitive perturbations. However, these approaches
can be applied to name-entities in general NLP
tasks. Second, the robustness improvement of
function-name perturbation on CodeGen-6B and
CodeGen-2B is insignificant compared to the base-
line, necessitating unique strategies to overcome
this limitation. Thirdly, our evaluation is limited to
the CodeGen model architecture and primarily uses
popular benchmarks like HumanEval and MBPP.
However, we have assessed our approach across
three different sizes of CodeGen models to illus-
trate its generalizability. Furthermore, it is impor-
tant to note that our perturbed training dataset is
generated based on real-world programs from the
Stack v1.2 dataset. By training our models on a
dataset that follows a real-world program distri-
bution, we hypothesize that models trained using
our approach can generalize effectively to other
real-world coding benchmarks.
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Transformation StarCoder WizardCoder CodeGen16B

Docstring
NP@1 41.27 53.29 39.23
RP5@1 11.60 20.43 15.81
Drop% 71.89 61.66 69.70

Function
NP@1 41.27 53.29 39.23
RP5@1 15.30 29.06 26.95
Robust% 62.93 45.47 31.30

Syntax
NP@1 59.34 61.09 56.78
RP5@1 4.21 9.86 5.54
Robust% 92.91 83.86 90.24

Format
NP@1 59.34 61.09 56.78
RP5@1 23.61 28.13 39.59
Robust% 60.21 53.95 30.27

Table 4: The ReCode (Wang et al., 2023b) robustness
evaluation for SOTA public code models. NP@1 shows
the nominal pass@1 without perturbation; RP5@1
shows the robust pass@1 under perturbation. The sig-
nificant drop of Drop% indicates unsatisfied robustness
performance of these models.

A Experiment Setups

Experiment Environment All fine-tuning exper-
iments run on a cluster of Amazon EC2 P4 In-
stances. All evaluation experiments on ReCode
run on a cluster of Amazon EC2 P4 Instances and
Amazon EC2 P3 Instances.

Fine-tuning Settings We train with p = 25%
perturbed data as CodeGen models has not been
fine-tuned on the stack dataset. For CodeGen-2B
and CodeGen-6B, we set batch size to 256 and fine-
tune them for 10K and 5K steps, respectively, using
the AdamW optimizer and a linear schedule with
500 warmup steps and a learning rate 2×10−5. For
CodeGen-350M, we set batch size to 512 and fine-
tune the model on half of the stack dataset (about
266K steps) using the FusedAdam optimizer and
a linear schedule with 500 warmup steps and a
learning rate 2× 10−5.

We treat all the objective functions proposed in
this paper equally, i.e., summing them up with-
out reweighing. For the temperature hyperparam-
eter τ in contrastive learning, we set τ = 0.05 for
all experiments following ContraCLM. We set the
dropout rate to 0.1 for LALPD.

Training Cost of Proposed Approaches We ap-
ply our approach to a subset of the training data,
specifically 25% of the examples. For this subset,
our approach requires twice as much memory as
standard data augmentation because it needs to see
both the perturbed and the original examples simul-
taneously. The rest of the training costs are the
same as data augmentation.

It is important to note that for the remaining

5273

https://doi.org/10.1145/3511887
https://doi.org/10.1145/3511887
https://doi.org/10.1145/3511887
https://ojs.aaai.org/index.php/AAAI/article/view/5469
https://ojs.aaai.org/index.php/AAAI/article/view/5469
https://ojs.aaai.org/index.php/AAAI/article/view/5469
https://doi.org/10.1145/3501256
https://doi.org/10.1145/3501256
https://doi.org/10.1145/3501256


1− 25% = 75% of the training data, our approach
has the same training cost as standard data aug-
mentation. Considering the benefits of improved
model robustness, the overall increase in training
cost is relatively modest. Further, users can trade
off the training cost and targeted robustness gain
by adjusting p.

Discussion of the Licenses of Datasets In our pa-
per, we employed 1) the HumanEval dataset which
is distributed under the MIT license, 2) the MBPP
dataset, which is under the Apache-2.0 license,
3) the CodeGen model, which is governed by the
BSD-3-Clause license, and 4) the stack v1.2 dataset
comprised of a collection of permissively-licensed
source code.

B Discussion on Adversarial Attacks and
Adversarial Training

Numerous adversarial attacks have targeted
encoder-decoder models in code-related tasks, in-
cluding classification (e.g., vulnerability predic-
tion) and generation (e.g., code summarization).
Key methods include CODA (Tian et al., 2023),
which exploits syntactic differences for adversar-
ial example generation; CARROT (Zhang et al.,
2022), employing a lightweight hill climbing for
optimization in attacks; and ALERT (Yang et al.,
2022), which creates naturalness-aware attacks us-
ing pre-trained models.

Existing work typically enhances model robust-
ness through data augmentation and adversarial
training (Madry et al., 2018). Bielik and Vechev
(2020) refine model representations by feeding only
pertinent program parts to the model; Suneja et al.
(2023) use curriculum learning and data augmenta-
tion with simplified programs.

Our experiments did not include adversarial
training due to its significant computational over-
head. For example, consider CodeAttack (Jha and
Reddy, 2023), an adversarial attack method for pre-
trained code models. Given an input with length
n and each token having l possible substitutions,
CodeAttack requires O(nl) forward evaluations of
the model in the worst-case scenario (O(n) in the
best-case) for each input to generate an adversarial
example. Code generation models typically use a
context-window size of n = 4096, which means
that adversarial training using CodeAttack would
introduce a training overhead of at least 4096 for-
ward evaluations for each input. This overhead is

prohibitively expensive for fine-tuning large lan-
guage models with billions of parameters.

C Detailed Results for Each Perturbation
Type

Table 5 shows a detailed breakdown of robustness
gain by finetuning with our approach for each per-
turbation type evaluated on 350M, 2B, and 6B
CodeGen models.

D Qualitative Examples

In this section, we present qualitative examples to
demonstrate the robustness improvements of our
robust trained models. On these MBPP examples,
6B CodeGen baseline model fails to generate cor-
rect completions after applying the perturbations.
Our robust trained model, on the other hand, can
still successfully complete these problems. Here,
we list examples for the top four perturbation types
that we have achieved the most improvements (de-
tailed numbers for each perturbation type can be
found in Table 5).

DeadCode Insertion. For this perturbation type,
ReCode perturbation will insert a redundant code
block including an if condition, a for loop,
or a while loop. The models will usually be dis-
tracted by the inserted blocks, causing failure of
completions. Here, in Listing 1, ReCode pertur-
bation inserts a redundant if condition block
at line 12-13. Even though the semantic meaning
barely changes after this insertion, the 6B baseline
model fails to generate the correct answer.

1 def test_distinct(data):
2 """
3 Write a python function to

determine whether all the numbers
are different from each other are
not.

4 >>> test_distinct ([1,5,7,9])
5 True
6 >>> test_distinct ([2,4,5,5,7,9])
7 False
8 >>> test_distinct ([1 ,2,3])
9 True

10 """
11 if len(data) == len(set(data)):
12 if False:
13 return True
14

15 # === completion by baseline model ===
16 return False
17

18 # === completion by our model ===
19 return True
20 else:
21 return False

Listing 1: DeadCoderInsertion (6B CodeGen)
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Categories Transformations
CodeGen 350M CodeGen 2B CodeGen 6B

LCLM LDA Ours LCLM LDA Ours LCLM LDA Ours

Nominal
Regular 18.10 18.10 18.33 32.99 31.62 31.56 40.07 37.61 37.91
Partial 29.24 30.11 31.04 46.22 45.96 45.04 54.46 52.99 53.16

Docstring

BackTranslation 17.35 17.66 17.79 31.6 29.86 30.53 38.91 36.75 37.45
EnglishInflectionalVariation 10.98 10.98 12.50 23.95 22.93 23.99 28.35 27.21 29.02
SynonymSubstitution 7.03 8.98 11.20 17.35 18.95 21.18 22.11 22.78 25.06
TenseTransformationFuture 17.49 17.72 18.33 32.07 31.34 31.35 39.79 37.38 37.63
TenseTransformationPast 18.12 18.51 18.63 32.55 31.21 31.55 39.40 37.28 37.70
WorstCase 6.19 7.45 9.72 15.78 17.07 19.21 20.21 20.51 23.13

Function

RenameButterFinger 11.56 11.79 11.90 23.88 23.15 23.34 29.86 28.95 28.82
RenameCamelCase 17.70 17.72 18.15 34.08 32.06 32.37 40.47 37.91 38.59
RenameChangeChar 8.54 10.39 10.33 20.14 20.91 20.88 27.03 26.63 26.84
RenameInflectionalVariation 14.11 14.76 15.20 28.56 27.87 28.19 33.36 32.48 33.66
RenameSwapChar 11.92 11.86 12.20 24.69 24.17 24.25 31.44 29.81 29.49
RenameSynonymSub 12.07 12.95 13.04 24.97 24.50 24.82 30.14 29.95 30.47
WorstCase 6.47 7.94 8.05 16.41 16.61 17.12 22.18 21.88 22.53

Syntax

DeadCodeInsertion 1.92 15.83 20.77 3.87 33.25 32.93 3.32 38.86 41.16
DeadCodeInsertionLast 9.24 31.55 32.69 13.90 48.26 49.47 14.39 55.13 55.15
ForWhileTransformer 27.08 26.99 29.16 43.78 42.76 41.90 50.35 50.49 50.81
OperandSwap 27.80 26.91 29.12 44.50 43.32 43.15 51.53 51.46 51.60
VarRenamerCB 26.52 25.85 27.72 44.60 42.85 42.04 49.12 48.17 49.35
VarRenamerNaive 24.99 26.31 26.22 42.53 41.20 41.09 49.28 49.05 48.14
VarRenamerRN 14.75 15.41 15.78 31.65 31.48 30.56 37.07 37.07 36.03
WorstCase 1.46 8.59 10.67 2.43 22.86 21.92 2.58 27.66 27.70

Format

Doc2Comments 25.48 27.66 28.75 45.36 44.29 42.67 50.28 51.27 51.30
NewLineInsertion 20.44 22.32 25.54 35.52 37.86 37.91 39.74 46.19 48.58
SplitLine 27.07 28.42 30.04 44.60 45.18 43.44 52.07 52.16 51.83
WorstCase 15.96 18.58 21.58 32.00 34.50 34.36 35.80 42.18 44.87

Table 5: Robustness evaluation for each category of perturbations on combined HumanEval and MBPP datasets.
We highlight in gray the top four perturbation types that we have achieved the most improvements over the baseline
LCLM.

NewLine Insertion. For newline insertions, Re-
Code will randomly insert empty lines within
prompts, and code models commonly perform
poor robustness on newline insertions as reported
in (Wang et al., 2023b). In Listing 2, 6B baseline
model will generate low quality outputs if we sim-
ply insert two single empty lines at line 12 and line
15. Our models remain correct under the perturba-
tion.

1 def count_first_elements(test_tup):
2 """
3 Write a function to find the element

count that occurs before the
record in the given tuple.

4 >>> count_first_elements ((1, 5, 7,
(4, 6), 10) )

5 3
6 >>> count_first_elements ((2, 9, (5,

7), 11) )
7 2
8 >>> count_first_elements ((11, 15, 5,

8, (2, 3), 8) )
9 4

10 """
11

12

13 for count , ele in enumerate(test_tup
):

14

15

16 # === completion by baseline model ===
17 if isinstance(ele , tuple):
18 return count_first_elements(ele)
19

20 else:
21 return count
22

23 # === completion by our model ===
24 if isinstance(ele , tuple):
25 return count
26 return len(test_tup)

Listing 2: NewlineInsertion (6B CodeGen)

Synonym Substitution. To perform synonym
substitution on docstrings, ReCode will randomly
select words within docstrings or comments. It
then replaces the selected words to their synonyms
according to WordNet (Miller, 1992). In Listing 3,
“have" is replaced to be “induce" and “given" to
“yield". With only these two-word changes, 6B
baseline model fails. In contrast, our model is
much more robust to these changes.

1 def find_tuples(test_list , K):
2 """
3 Write a function to find tuples

which induce all element divisible
by k from the yield list of

tuples.
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4 >>> find_tuples ([(6, 24, 12), (7, 9,
6), (12, 18, 21)], 6)

5 ’[(6, 24, 12)]’
6 >>> find_tuples ([(5, 25, 30), (4, 2,

3), (7, 8, 9)], 5)
7 ’[(5, 25, 30)]’
8 >>> find_tuples ([(7, 9, 16), (8, 16,

4), (19, 17, 18)], 4)
9 ’[(8, 16, 4)]’

10 """
11

12 # === completion by baseline model
===

13 return ’[’ + ’,’.join(map(str ,
filter(lambda x: x[0] % K == 0,
test_list))) + ’]’

14

15 # === completion by our model ===
16 return str(list(filter(lambda x: all

(x[i] % K == 0 for i in range(len(
x))), test_list)))

Listing 3: SynonymSubstitution (6B CodeGen)

CharCase Change for Function Name. For
function name perturbation, ReCode CharCase
change is to randomly replace characters in
function name to their upper cases. In List-
ing 4, “remove_dirty_chars"" are replaced with
“remOve_dIrty_cHarS". With only four charac-
ters changed to their upper cases, 6B baseline
model will fail under such perturbation. Our model
demonstrates better robustness performance.

1 def remOve_dIrty_cHarS(string ,
second_string):

2 """
3 Write a function to remove

characters from the first string
which are present in the second
string.

4 >>> remOve_dIrty_cHarS ("
probasscurve", "pros")

5 ’bacuve ’
6 >>> remOve_dIrty_cHarS ("

digitalindia", "talent ")
7 ’digiidi ’
8 >>> remOve_dIrty_cHarS ("

exoticmiles", "toxic")
9 ’emles’

10 """
11

12 # === completion by baseline model ===
13 return string.replace(

second_string , "")
14

15 # === completion by our model ===
16 for char in second_string:
17 if char in string:
18 string =

string.replace(char , "")
19 return string

Listing 4: CharCase change for function name (6B
CodeGen)

E Detailed Results for Ablations

Tables 6 and 7 shows detailed comparison among
different approaches across four perturbation
classes.

E.1 Different Designs of ALP

This section compares different designs of ALP. In
terms of the KL divergence loss, two approaches
are considered: (1) optimizing both original and
perturbed token prefixes simultaneously, i.e., bring-
ing their output distributions closer at the same
time, denoted as Bo (both sides), and (2) optimizing
only the perturbed token prefix, i.e., only bringing
the output distribution of the perturbed token prefix
closer to the original one, denoted as On (one side).
Another aspect involves whether to optimize all
prefixes or just the ones that are correctly predicted.
The instance that optimizes all prefixes is named
Al (all), while the one optimizing only correctly
predicted prefixes is named CO (correct only). In
summary, there are four different ALP designs (two
by two). Lines [9]-[12] in Table 6 show that On+Al
achieves the best overall RP10@1 among the four
design. Therefore, we use this design throughout
our experiments.

E.2 Different Designs of ALPD

This section compares three different designs of
ALP. We conduct two additional experiments: (1)
dropout of 10% arbitrary tokens, denoted as All,
and (2) dropout of arbitrary tokens while follow-
ing the same percentage as 10% of variable and
function names, denoted as AllS (all stratified).
Comparing line [2] with lines [6] and [7] in Ta-
ble 7, we observe that LALPD with 10% dropout
on names achieves the best overall NP@1 and
RP10@1. Therefore, we use this design throughout
our experiments.

E.3 Effectiveness of Combining Context-Free
and Context-Sensitive Perturbations

Based on the ablation results, we choose to use
LMBA +LALP +LALPD for all the models in Sec-
tion 5.2. Our approach involves training on the
combination of context-free and context-sensitive
perturbations. Comparing the results of our com-
bined approach on CodeGen-350M in Table 1 with
those in Table 6 line [5] and in Table 7 line [2],
we observe an improvement in model robustness.
Specifically, our combined approach outperforms
the other two approaches that focus solely on either
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Methods
Docstring Function Syntax Format Overall Average

NP@1 RP10@1 NP@1 RP10@1 NP@1 RP10@1 NP@1 RP10@1 NP@1 RP10@1 Drop%

[0]LCLM 18.10 6.19 18.10 6.47 29.24 1.46 29.24 15.96 23.67 7.52 68.23
[1]LDA 18.10 7.45 18.10 7.94 30.11 8.59 30.11 18.58 24.10 10.64 55.85
[2]LMDA 17.57 8.12 17.57 7.91 29.96 9.31 29.96 19.07 23.77 11.10 53.30
[3]LMDA(p = 0.2) 17.91 7.36 17.91 7.84 31.30 8.88 31.30 17.86 24.60 10.48 57.40
[4]LMBA 18.24 7.17 18.24 8.21 31.56 10.02 31.56 18.65 24.90 11.01 55.78
[5]LMBA + LALP 18.03 7.38 18.03 8.19 31.30 11.92 31.30 18.44 24.67 11.48 53.47
[6]LCLM + LCSeq 17.52 7.17 17.52 7.56 30.07 1.37 30.07 15.06 23.80 7.79 62.27
[7]LMBA + LALP + LCTok 17.33 7.12 17.33 8.03 29.72 11.46 29.72 18.10 23.52 11.18 52.47
[8]LMBA + LALP + LCSeq 17.98 7.38 17.98 8.15 31.30 11.81 31.30 18.70 24.64 11.51 53.29
[9]LMBA + LALP(On + Co) + LCTok + LCSeq 17.36 7.35 17.36 7.91 29.42 11.12 29.42 18.09 23.39 11.12 52.46
[10]LMBA + LALP(On + Al) + LCTok + LCSeq 17.31 7.33 17.31 7.80 29.77 11.48 29.77 18.12 23.54 11.18 52.51
[11]LMBA + LALP(Bo + Co) + LCTok + LCSeq 16.87 7.19 16.87 7.72 29.40 11.07 29.40 17.82 23.14 10.95 52.68
[12]LMBA + LALP(Bo + Al) + LCTok + LCSeq 16.70 7.15 16.70 7.77 29.54 11.41 29.54 17.62 23.12 10.99 52.47

Table 6: Ablation results of CodeGen-350M focusing on context-free perturbations, i.e., we apply LDA loss to the
context-sensitive perturbations except for the baseline LCLM.

Methods
Docstring Function Syntax Format Overall Average

NP@1 RP10@1 NP@1 RP10@1 NP@1 RP10@1 NP@1 RP10@1 NP@1 RP10@1 Robust%

[0]LCLM 18.10 6.19 18.10 6.47 29.24 1.46 29.24 15.96 23.67 7.52 31.77
[1]LMBA 18.68 8.19 18.68 8.56 30.98 7.72 30.98 18.54 24.83 10.75 43.29
[2]LMBA + LALPD 18.80 8.44 18.80 8.37 30.84 8.00 30.84 18.98 24.82 10.94 44.08
[3]LMBA + LCName 18.65 8.14 18.65 8.49 30.54 7.94 30.54 18.91 24.60 10.87 44.19
[4]LMBA + LALPD + LCName 18.63 8.12 18.63 8.26 30.69 7.82 30.69 18.98 24.66 10.80 43.80
[5]LMBA + LALPD + LCName + LCTok 18.31 7.79 18.31 7.80 30.53 8.17 30.53 17.93 24.42 10.42 42.67
[6]LMBA + LALPD(All) 18.07 8.66 18.07 8.12 30.33 7.56 30.33 18.88 24.20 10.80 44.63
[7]LMBA + LALPD(AllS) 18.37 8.12 18.37 8.73 30.51 7.49 30.51 18.08 24.44 10.61 43.42

Table 7: Ablation results of CodeGen-350M focusing on context-sensitive perturbations, i.e., we apply LDA loss to
the context-free perturbations except for the baseline LCLM.

context-free or context-sensitive perturbations in
Docstring and Format.
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