
Findings of the Association for Computational Linguistics: EMNLP 2024, pages 5187–5192
November 12-16, 2024 ©2024 Association for Computational Linguistics

Normalized Narrow Jump To Conclusions: Normalized Narrow Shortcuts
for Parameter Efficient Early Exit Transformer Prediction

Amrit Diggavi Seshadri
Sudarshantech Software

amrit@sudarshantechsoftware.com

Abstract

With the size and cost of large transformer-based
language models growing, recently, there has been
interest in shortcut casting of early transformer
hidden-representations to final-representations for
cheaper model inference. In particular, shortcut-
ting pre-trained transformers with linear transfor-
mations over early layers has been shown to im-
prove precision in early inference. However, for
large language models, even this becomes compu-
tationally expensive. In this work, we propose Nar-
row Jump to Conclusions (NJTC) and Normalized
Narrow Jump to Conclusions (N-NJTC) - param-
eter efficient alternatives to standard linear short-
cutting that reduces shortcut parameter count by
over 97%. We show that N-NJTC reliably outper-
forms Identity shortcuts at early stages and offers
stable precision from all transformer block levels
for GPT-2-XL, Phi3-Mini and Llama2-7B trans-
former models, demonstrating the viability of more
parameter efficient short-cutting approaches.

1 Introduction

Transformer based large language models
(Vaswani et al., 2017) stack blocks made up of
multi-headed self-attention and feed forward
layers sequentially. Modern sophisticated language
models stack upwards of 30 such blocks. For
example, Phi3-Mini (Abdin et al., 2024) stacks
32 transformer blocks, GPT2-XL (Radford et al.,
2019) stacks 48 blocks, and deeper models like
Llama-2 70B (Touvron et al., 2023) and GPT-3
(Brown et al., 2020) stack as many as 80 and 96
sequential blocks. However while such stacking
typically improves model performance, it also
increases the computational costs of inference.
More GPU memory is required to store the
additional stacked transformer blocks and more
time is required to forward-pass inputs sequentially.

Figure 1: Illustration of our N-NJTC short-cut ap-
proache in comparison to previous methods.

There have been attempts to reduce the compu-
tational costs of such large language models by
short-cutting transformers during inference. In
short-cutting, one makes intermediate-predictions
from an approximation of the final transformer
output - that can be cheaply inferred from interme-
diate transformer-block outputs at each stage in the
forward pass. A decision to ‘early-exit’ from the
forward pass is made once the confidence of these
intermediate-predictions reaches a certain pre-set
confidence level λ.

5187

Initial methods to short-cutting (Schwartz et al.,
2020; Geva et al., 2022) approximated the final
transformer output directly by intermediate repre-
sentations (Identity shortcuts (id) : Figure 1). More
recently, (Din et al., 2023) proposed Jump-To-
Conclusions (JTC) shortcuts that demonstrate that
significant gains in this early-exit inference can be
achieved by using a simple linear transformation
over token representations to approximate the final
transformer output.

However, the JTC linear transformation pro-
posed by (Din et al., 2023) adds an additional
H x H parameters for each short-cut inference
(for a transformer hidden dimension of H).
For deep language models with large hidden
dimensions, this too becomes very computationally
expensive. For example, if we are to shortcut a
Phi3-Mini model, we use a transformer hidden
dimension of 3072. So each JTC shortcut roughly
requires 9.43 Million new parameters. With 32
transformer-blocks, having a shortcut inference
option from each block requires that we train and
store 9.43 * 31 > 292 Million new parameters.
For larger and deeper models like Llama 2 70B,
this number grows to over 5 Billion new shortcut
parameters. Clearly, with the size and depth
of large transformer models increasing, there
is a need to develop more parameter efficient
alternatives for short-cutting than the JTC method.

Independent of short-cutting methods, there
has also been interest in matrix-decomposition for
pre-trained model compression (Lan, 2019; Noach
and Goldberg, 2020) and success in low-rank
fine-tuning of transformer weights (Hu et al.,
2021). LoRA (Hu et al., 2021) in particular
has gained traction as a reliable method for
parameter efficient fine-tuning - demonstrating
that the weight update matrix can be decomposed
into low-rank representations to reduce the total
number of traninable parameters and reduce costs.
However, these prior works focus on increasing
efficiency within individual transformer blocks
without skipping any block-computations. They
do not consider any applications to transformer
short-cutting - that skips multiple transformer
block computations at a time, and is in itself a
method for extreme efficiency.

Taking inspiration from (Noach and Gold-
berg, 2020) and (Hu et al., 2021), in this work we

address the parameter inefficiency of JTC shortcuts
(Din et al., 2023).

• We propose Narrow Jump to Conclusions
(NJTC) and Normalized Narrow Jump to con-
clusions (N-NJTC) for shortcutting of trans-
formers - showing that linear shortcuts from
early stages can themselves be approximated
by low rank representations to achieve over a
97% parameter reduction from JTC shortcuts.

• We show that N-NJTC reliably outperforms
Identity shortcuts at early stages and offers sta-
ble precision from all transformer block lev-
els for GPT-2-XL, Phi3-Mini and Llama2-7B,
demonstrating the viability of more parameter
efficient short-cutting approaches.

2 Related Work

As mentioned in Section 1, (Schwartz et al., 2020)
was the first to propose shortcuts for early exit trans-
former prediction. However they make the assump-
tion that all transformer block outputs operate in
the same space and use direct identity shortcuts for
prediction. (Din et al., 2023) consider the output of
different transformer blocks to operate in different
representational spaces and recently demonstrated
that linear transformation shortcuts significantly
improve the performance of early-exit prediction.
However, as discussed, they use full H ×H linear
matrices and are not very parameter efficient. In-
dependent of these works (Lan, 2019; Noach and
Goldberg, 2020) considered matrix-decomposition
for pre-trained model compression and (Hu et al.,
2021) demonstrated that training low rank matrix
decompositions of a weight update matrix approxi-
mate good fine-tuning results for transformers with
parameter-efficiency. However as mentioned ear-
lier these methods focus on efficiency within fixed
transformer-blocks and do not consider any applica-
tions to transformer short-cutting - that skips com-
putations of entire blocks at a time, and is itself a
method for extreme efficiency.

3 Method

3.1 Narrow Jump To Conclusions (NJTC)
Given a transformer model with hidden dimen-
sion H , to approximate a short-cut between its
block-outputs at any two levels l and m, given a
set of N input sentences S, we forward pass each
sentence si ∈ S through the transformer to obtain
intermediate representation pairs {(hli, hmi)}Ni=1

5188

after blocks l and m at randomly selected token
positions in each si. We then fit a simple 2
layer linear neural network made up of matrices
A : H × H

100 and B : H
100 ×H that takes as input

hli and approximates ĥmi .

ĥmi = (hli)AB (1)

We note in particular that while other model
informed-choices for low-rank short-cutting
dimensions may be possible, in Eq.1 to standardize
our approach to diverse transformers with poten-
tially different hidden dimensions, we consider a
fixed low-rank reduction to 1% of the transformer
hidden dimension size (H

100).

We fit the two matrices A and B jointly us-
ing gradient descent to minimize the mean
squared error loss Llm between the approximated
representations ĥmi and the transformer block
outputs hmi .

Llm =
1

N

N∑

i=1

||ĥmi − hmi ||2 (2)

The hidden representation of each token in a sen-
tence at level l is passed through A and B to
obtain approximations of the hidden representa-
tions at level m. As a result of this low rank
matrix decomposition, each NJTC shortcut uses
2 ∗ (H × H

100) = 0.02H2 parameters: Only 2% the
number of parameters of a JTC shortcut.

3.2 Normalized Narrow Jump To Conclusions
(N-NJTC)

We note that our NJTC method can be viewed as
a special form of a linear denoising auto-encoder -
where, the ‘corrupted input’ is a transformer’s early
block hidden representation hli and the restoration
target is a block’s output hmi further down the for-
ward pass. Linear autoencoders usually learn la-
tent dimensions that maximize feature variance and
are preceeded by normalization along the batch-
dimension to avoid any bias towards naturally high-
variance features. Motivated by this comparison,
we propose a normalized version of NJTC where
we add a batch normalization layer before AB (Fig.
1). Batch Normalization adds an additional 4H pa-
rameters for each shortcut. For hidden dimension
H > 400, this is less than 0.01H2. As all trans-
former models use a hidden dimension larger than
400, we find that N-NJTC uses less than 3% the

number of parameters of a JTC shortcut - offering
over a 97% parameter reduction.

4 Experiments

We test our shortcuts on GPT2-XL (Radford et al.,
2019) which consists of 48 transformer blocks,
hidden dimension of 1600, and a total of 1.5
Billion model parameters; on the larger Phi3-Mini
(Abdin et al., 2024) which uses 32 transformer
blocks, has hidden dimension 3072, and has a
total of 3.8 Billion parameters; and on the even
larger Llama2-7B (Touvron et al., 2023) that uses
32 transformer blocks, has hidden dimension
4096 and uses a total of 7 Billion parameters.
The low-rank dimensions ⌊ H

100⌋ that we use for
our NJTC and N-NJTC shortcuts for GPT2-XL,
Phi3-Mini and Llama2-7B are 16 and 30 and 40
respectively.

Data: Following the approach taken by (Din
et al., 2023), we sample random sentences from
Wikipedia, collecting 9,000 train sentences and
3000 validation sentences - each of which are
highly diverse, written by different authors on
varied topics. As explained in Section 3.1, each
sentence is forward passed through a given
transformer model and random token position
representations are selected across all hidden
representations to train and evaluate shortcuts.

4.1 Quality of Shortcut Approximations

We first examine the degree of correlation between
true transformer block outputs and their shortcut
approximations for each shortcut type. For this
purpose, we compute the coordinate averaged r2
scores between true transformer Block M outputs
and corresponding shortcut jump approximations
made from Block N outputs to Block M. Figure
2 shows heatmaps of these scores across all
transformer block levels for id, JTC, NJTC and
N-NJTC shortcuts for GP2-XL, Phi3-Mini and
Llama2-7B models respectively.

For id and JTC shortcuts, as one would ex-
pect, correlation of approximations seems to
worsen as jump distance increases. That is, we
always achieve better correlated approximations
by making a shortcut jump from Block N to Block
(N + 1) than we could achieve by making a jump
to a later Block (N + 2). Interestingly, for NJTC
and N-NJTC shortcuts, that is not the case. As

5189

Figure 2: Coordinate-averaged r2-scores (↑) between real outputs from transformer Block M and shortcut jump
approximations to M from N for different shortcuts types for (a) GPT2-XL, (b) Phi3-Mini and (c) Llama2-7B.

shown in Figure 2, with some exceptions, we
typically achieve better correlated approximations
by jumping from any intermediate block N
directly to the final few blocks output than we
could achieve by making a smaller jump from
block N to (N + 1) at earlier stages. This is an
important finding as making jumps to the final
block output is all that we really care about for
early exit transformer prediction. We are happy
to sacrifice intermediate jump quality to improve
parameter efficiency of our shortcuts, provided
that jumps to the final block outputs are still well
correlated with the true final outputs. In this
context, we note that N-NJTC shortcuts usually
provide better correlated approximation in the final
blocks than NJTC shortcuts can.

4.2 Quality of Shortcut Predictions

We next consider the quality of shortcut approx-
imations for next token predictions obtained by
shortcut jumping to the final transformer block
output from each intermediate block. Following
the approach taken by (Din et al., 2023), we
compute Precision by assigning a score of 1 if
the most-likely token from the shortcut predicted
distribution matches the most-likely token from the
true final block output distribution and 0 otherwise;
and compute Surprisal by measuring the negative
log-likelihood of the true block most likely
output token according to the shortcut predicted
distribution. Figure 3 shows these Precision and
Surprisal scores achieved by id, JTC, NJTC and
N-NJTC shortcuts when making an early exit from
each transformer block for GPT-2XL, Phi3-Mini
and Llama2-7B models respectively.

As expected, reducing parameter count by 97%,
NJTC and N-NJTC shortcuts record lower preci-
sion and higher surprisal scores than JTC shortcuts
for all models. However, their behaviour is still
unexpected and interesting. Our main contribution
is the finding that despite the drastic 97% reduction
in parameter count from JTC shortcuts, N-NJTC is
still able to reliably outperform Identity shortcuts
(id) at early transformer model stages. As
shown in Figure 3, N-NJTC acheives steady and
non-fluctuating scores, recording higher precision
and lower surprisal than Identity shortcuts (id)
upto at least 50% of a model’s total block depth
for all three GPT-2XL, Phi3-Mini and Llama2-7B
models. This is not a guaranteed finding. With
such a large reduction in paramter count, an
intutive expectation is that precision and surprisal
would record very poor values or fluctuate greatly
and collapse quickly. This does infact happen for
NJTC in GPT2-XL prediction (Figure 3). However
N-NJTC solves this problem and remains steady.

To further highlight the surprising nature of
trends being observed in a concrete example,
consider the Phi3Mini model and a jump from
layer 4 to 32. That shortcut jump skips 87.5% of
transformer block computations, i.e > 3 Billion
parameter computations. We would expect an
id shortcut that uses hidden dimension of size
3072 to perform badly for the missed computation.
Intuitively, we would not expect any improvements
to result from compressing that early latent vector
down from hidden dimension 3072 to 30 and then
decompressing it. We would expect a collapse
in performance - resulting from a loss of the

5190

Figure 3: Precision (↑) and Surprisal (↓) achieved by
different shortcut types for early exit prediction for (a)
GPT-2-XL, (b) Phi3-Mini and (c) Llama2-7B.

information that the early transformer output had.
However, contrary to that intuition, we find that for
our N-NJTC method, not only is there no collapse
in performance, but a significant improvement
in early transformer block stages - (Figure 3.b).
Further, this surprising trend of improvement holds
steady up to at least 50% of model-depth across
diverse transformer models – GPT2-XL, Phi3Mini,
Llama2-7B that vary in size, vary in structure,
vary in creators, and vary in training data. The
main contribution of our paper is the surprising
finding that the drastic parameter efficiency of our
N-NJTC method is indeed viable for transformer
short-cutting – given that short-cutting is already a
method for extreme computational efficiency itself.

5 Practicality and Future Work

In terms of immediate practically, we highlight that
our N-NJTC method can offer immediate cost sav-
ings in settings where one exits the transformer
stack early (before executing 50% of the model’s
total block depth) and when computation overhead
from a full JTC shortcut is substantial, while the
performance from Identity shortcuts is unaccept-
able. In terms of future work on the other hand, we
highlight that to our knowledge, we are the first to
examine the problem of parameter inefficiency in
JTC shortcuts, and the first to consider parameter
efficient shortcutting alternatives – we register our
surprise that such drastic improvements up to 97%
less costly are indeed viable in early stages, and
expect that this observation will spur future inter-
est in building more variants of parameter efficient
transformer shortcutting approaches.

6 Conclusion

In this work, we proposed the Narrow Jump to
Conclusions (NJTC) and Normalized Narrow Jump
to Conclusions (N-NJTC) methods for parameter
efficient shortcutting of transformer models. We
showed that linear shortcuts from early stages can
themselves be approximated by low rank represen-
tations to achieve over a 97% parameter reduction
from JTC shortcuts. We applied our NJTC and
N-NJTC methods to GPT-2-XL, Phi3-Mini and
Llama2-7B transformer models and showed that
N-NJTC reliably outperforms Identity shortcuts at
early transformer model stages while also offering
stable precision and surprisal from all transformer
block levels, demonstrating the viability of more
parameter efficient short-cutting methods than JTC.

7 Limitations

Notably, as mentioned in Section 4.2, our NJTC
method collapses for GPT2-XL and while N-NJTC
solves this problem, NJTC and N-NJTC both
achieve worse precision and surprisal scores than
JTC shortcuts for all models, and are outperformed
by Identity shorotcuts in late-block shortcutting
(Figure 3). We note however that these limita-
tions are acceptable in exchange for the 97% re-
duction in parameter count our N-NJTC method
offers while outperforming Identity shortcuts at
early transformer model stages. We note that short-
cutting of transformers in general can cause un-
expected model behaviour and caution that any
shortcut approximations be tested for safety.

5191

References
Marah Abdin, Sam Ade Jacobs, Ammar Ahmad Awan,

Jyoti Aneja, Ahmed Awadallah, Hany Awadalla,
Nguyen Bach, Amit Bahree, Arash Bakhtiari, Harki-
rat Behl, et al. 2024. Phi-3 technical report: A highly
capable language model locally on your phone. arXiv
preprint arXiv:2404.14219.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Alexander Yom Din, Taelin Karidi, Leshem Choshen,
and Mor Geva. 2023. Jump to conclusions: Short-
cutting transformers with linear transformations.
arXiv preprint arXiv:2303.09435.

Mor Geva, Avi Caciularu, Kevin Ro Wang, and Yoav
Goldberg. 2022. Transformer feed-forward layers
build predictions by promoting concepts in the vo-
cabulary space. arXiv preprint arXiv:2203.14680.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

Z Lan. 2019. Albert: A lite bert for self-supervised
learning of language representations. arXiv preprint
arXiv:1909.11942.

Matan Ben Noach and Yoav Goldberg. 2020. Compress-
ing pre-trained language models by matrix decompo-
sition. In Proceedings of the 1st Conference of the
Asia-Pacific Chapter of the Association for Compu-
tational Linguistics and the 10th International Joint
Conference on Natural Language Processing, pages
884–889.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Roy Schwartz, Gabriel Stanovsky, Swabha
Swayamdipta, Jesse Dodge, and Noah A Smith.
2020. The right tool for the job: Matching
model and instance complexities. arXiv preprint
arXiv:2004.07453.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

5192

