
Findings of the Association for Computational Linguistics: EMNLP 2024, pages 3369–3382
November 12-16, 2024 ©2024 Association for Computational Linguistics

HoneyComb: A Flexible LLM-Based Agent System for Materials
Science

Huan Zhang1,2, Yu Song1,2, Ziyu Hou4, Santiago Miret3*, Bang Liu1,2,5*†

1 DIRO & Institut Courtois, Université de Montréal
2Mila - Quebec AI Institute, 3Intel Labs

4University of Waterloo, 5Canada CIFAR AI Chair
{huan.zhang, yu.song, bang.liu}@umontreal.ca

{z26hou}@uwaterloo.ca, {santiago.miret}@intel.com

Abstract
The emergence of specialized large language
models (LLMs) has shown promise in address-
ing complex tasks in materials science. Many
LLMs, however, often struggle with the distinct
complexities of materials science tasks, such as
computational challenges, and rely heavily on
outdated implicit knowledge, leading to inac-
curacies and hallucinations. To address these
challenges, we introduce HoneyComb, the first
LLM-based agent system specifically designed
for materials science. HoneyComb leverages a
reliable, high-quality materials science knowl-
edge base (MatSciKB) and a sophisticated tool
hub (ToolHub) tailored specifically for materi-
als science to enhance its reasoning and com-
putational capabilities. MatSciKB is a curated,
structured knowledge collection based on reli-
able literature, while ToolHub employs an In-
ductive Tool Construction method to generate,
decompose, and refine API tools for materials
science. Additionally, HoneyComb leverages a
retriever module that adaptively selects the ap-
propriate knowledge source or tools for specific
tasks, thereby ensuring accuracy and relevance.
Our results demonstrate that HoneyComb sig-
nificantly outperforms baseline models across
various tasks in materials science, effectively
bridging the gap between current LLM capa-
bilities and the specialized needs of this do-
main. Furthermore, our adaptable framework
can be easily extended to other scientific do-
mains, highlighting its potential for broad ap-
plicability in advancing scientific research and
applications. The code is available. 1

1 Introduction

The emergence of large language models (LLMs)
(OpenAI, 2024; Anthropic, 2024; Touvron et al.,
2023b,a) in recent years has brought about the ap-
plication of LLMs across a wide range of fields

*Equal advising.
†Corresponding author.
1https://github.com/BangLab-UdeM-Mila/NLP4MatSci-

HoneyComb

related to science and engineering (AI4Science and
Quantum, 2023). This has resulted in a number
of new benchmarks measuring the capabilities of
language models to perform scientific tasks (Wang
et al., 2023; Sun et al., 2024; Mirza et al., 2024;
Song et al., 2023a) along with the development
of custom LLMs and LLM-based systems for sci-
entific domains, including chemistry (Bran et al.,
2023; Boiko et al., 2023), biology (Madani et al.,
2023) and materials science (Song et al., 2023b;
Gupta et al., 2022; Walker et al., 2021).

While much progress has been made in adapt-
ing LLMs to common tasks in natural language
processing (Song et al., 2023a,b), many more chal-
lenges remain in having LLMs be effective agents
for real-world materials science tasks (Miret and
Krishnan, 2024; Miret et al., 2024). As highlighted
by Zaki et al. (2023), LLMs often fail in perform-
ing advanced tasks for materials science. Com-
mon mistakes by most LLMs include conceptual
errors where models fail to retrieve correct con-
cepts, equations, or facts relevant to the questions,
and factual hallucinations where incorrect infor-
mation is generated. An analysis by Miret and
Krishnan (2024) also revealed that LLMs by them-
selves struggle to generate relevant and correct in-
formation pertaining to specialized materials sci-
ence tasks. While Song et al. (2023b) showed
that instruction fine-tuning can help in improving
performance, the high costs of continuous model
training and fine-tuning make retraining-based ap-
proaches challenging to scale. Moreover, this chal-
lenge is further compounded by the fact that rele-
vant knowledge is continuously updated from di-
verse sources—including pre-print servers (e.g.,
arXiv and ChemRxiv), peer-reviewed literature,
open encyclopedias like Wikipedia, and various
relevant websites.

Furthermore, prior work has shown that utilizing
external tools may be a more promising approach
to solve complex scientific tasks rather instead of

3369

relying entirely on an LLM’s internal knowledge
(Zheng et al., 2024; Buehler, 2024a). To jointly
address these challenges, we propose transform-
ing LLMs into LLM-based agents that access ex-
ternal knowledge and tools to boost their perfor-
mance. This approach has already shown promise
in adjacent domains, such as chemistry (Bran et al.,
2023; Boiko et al., 2023), by enabling models to
access real-time data and utilize both general and
domain-specific tools. Altogether, the LLM-based
agents showcase greater capabilities and perfor-
mance compared to their native LLM counterparts.

In this paper, we present HoneyComb, the first,
to the best of our knowledge, LLM-based agent
system specifically designed for materials science.
While there has been emerging research in LLMs
for scientific domains, few studies have focused on
developing comprehensive agent systems for mate-
rials science. Our work addresses two critical chal-
lenges: First, MatSciKB alleviates the challenge of
obtaining reliable and relevant professional knowl-
edge for materials science. As such, MatSciKB
ensures the agent has access to the most current and
accurate information, which is essential for effec-
tive performance. Second, ToolHub provides ma-
terials science-specific tools to augment the agent’s
capabilities. These tools enable the agent to per-
form specialized computational tasks and enhance
its overall functionality. As detailed in Section 4,
we observe that with the aid of MatSciKB and
ToolHub, HoneyComb outperforms its native LLM
counterparts in a more reliable way, given its ability
to utilize up-to-date knowledge and tools.

2 Background

2.1 LLMs for Material Science

Advancements in text mining and information ex-
traction from scientific publications have signifi-
cantly benefited the application of LLMs for materi-
als science (Kononova et al., 2021; Swain and Cole,
2016). Early work includes the development of spe-
cialized BERT models (Devlin et al., 2018), such
as MatSciBERT (Gupta et al., 2022) and MatBERT
(Walker et al., 2021). Song et al. (2023b) and Xie
et al. (2023) leveraged instruction fine-tuning to
develop a LLaMA-based model (Touvron et al.,
2023a) tailored to materials science that matched
the capabilities of commercial LLMs at the time
of publication. The emergence of powerful com-
mercial LLMs (OpenAI, 2024; Anthropic, 2024)
has further expanded the possibility of applying

LLMs to materials science. Yet, commercial LLMs
remain expensive and opaque in their methodology,
with consistent errors and shortcomings (Zaki et al.,
2023; Miret and Krishnan, 2024), and open-source
LLMs for materials science remain sparse. This
motivates the need for a practical LLM-based sys-
tem that is useful for real-world materials science
tasks.

Given this need, we propose HoneyComb as an
open-source system to augment the capabilities
of diverse LLMs. HoneyComb integrates special-
ized tools as well as a dynamic retrieval system
to enhance the functionality of any LLMs specifi-
cally for materials science. By leveraging relevant
knowledge sources through MatSciKB and auxil-
iary tools through ToolHub, HoneyComb manages
to improve the accuracy and relevance of the out-
puts of LLMs for materials science, while also ad-
dressing common challenges associated with static
LLM applications in dynamic research fields.

2.2 Tool-Based LLM Agents for Scientific
Applications

Prior work has shown success in expanding the
capabilities of LLMs by augmenting them with
diverse sets of tools (Qin et al., 2023b,a; Chern
et al., 2023; Wang et al., 2024). Many works
rely on pre-built integration frameworks, such as
LangChain (Topsakal and Akinci, 2023), to build
the relevant interfaces between the LLMs and the
desired capabilities, such as search engine APIs.
Wang et al. (2024) provides a recent survey of com-
mon approaches, challenges, and applications of
tool-based LLMs in various technological and sci-
entific fields.

One major application of tool-based LLMs is in
query processing and optimization, where agents
evaluate initial search results and iteratively re-
fine queries to increase relevance and accuracy
(Buehler, 2024a,b). This approach addresses the
limitations of isolated LLMs, which may strug-
gle to handle ambiguous query contexts. When
generating structured datasets for solar cell ma-
terials, agents gather pertinent information from
a vast array of scientific papers to automate data
input and synthesis (Xie et al., 2024; Liu et al.,
2024b). Furthermore, agents can utilize various
tools to answer specific questions by tapping into
external resources (Cheng et al., 2024). For exam-
ple, ChemCrow, by Bran et al. (2023), integrates
18 expert-designed tools—such as literature search,
molecule modification, and reaction execution—to

3370

autonomously execute chemical syntheses. Tool
augmentation has also been successful in other re-
search within the chemistry domain, enabling real-
world experiments using LLMs (Yoshikawa et al.,
2023; Jablonka et al., 2023; Boiko et al., 2023).
Coscientist, by Boiko et al. (2023), for example,
relies on specialized tools to extend the capabilities
of GPT-4, invoking domain-specific functionali-
ties that are not inherently present within the LLM
alone. The success of agent-based approaches in
adjacent domains motivates the creation of Hon-
eyComb, which extends the capabilities of LLMs
specifically for materials science.

3 HoneyComb

In this work, we introduce HoneyComb, a special-
ized agent system designed to advance materials
science research, as shown in Figure 1. It integrates
three key components: 1) MatSciKB, a comprehen-
sive knowledge base; 2) ToolHub, which includes
general tools for broadly accessing up-to-date infor-
mation and specialized tools developed through the
Inductive Tool Construction method for targeted
materials science queries; and 3) Retriever, which
utilizes a hybrid approach for efficient and precise
information retrieval.

3.1 MatSciKB

Our MatSciKB knowledge base integrates a diverse
array of sources, as detailed in Table 1. This collec-
tion is meticulously curated to include materials sci-
ence papers from arXiv, relevant Wikipedia entries,
textbooks, comprehensive datasets, pertinent math-
ematical formulas, and concrete GPT-generated
examples tailored to materials science. Each infor-
mation source is thoroughly described in Appendix
A.

MatSciKB is structured into 16 distinct cate-
gories relevant to materials science, as detailed in
Appendix C and organized in a tree-like structure.
MatSciKB supports efficient searching and CRUD
(Create, Read, Update, Delete) operations (Gian-
naros et al., 2023), which are vital for both appli-
cation and ongoing database maintenance. Given
the continuously evolving and expanding body of
knowledge in the materials science domain, effi-
cient update and search capabilities based on real-
time information are crucial for research and engi-
neering applications. Additionally, our structured
data approach enhances the integration of diverse
data sources commonly encountered in materials

science (Miret and Krishnan, 2024). This structure
not only facilitates easy access and management
but also allows for seamless extension to include
additional data modalities.

MatSciKB
Total Number of Data Entries 38,469

Materials Science Papers on Arxiv 20,384
Wikipedia for Material Science 3,620
Materials Science Textbook 1,930
Materials Science Dataset 10,473
Materials Science Formula 57
GPT-generated Examples 2,005

Table 1: Summary of MatSciKB Data Sources and Entry
Counts

3.2 ToolHub

The ToolHub in HoneyComb is bifurcated into Gen-
eral Tools and Material Science Tools. Both cat-
egories are organized through a unified interface
that allows HoneyComb to make effective use of all
available tools. General Tools provide researchers
with access to the latest information, filling gaps
not covered by the static entries in MatSciKB. Ma-
terial Science Tools are specifically designed to
handle complex calculations and in-depth analy-
ses. The details of the unified interface are further
elucidated in Appendix D.

General Tools Construction
In materials science, one of the persistent chal-

lenges is keeping research outputs aligned with
the diverse and ever-evolving data modalities that
describe complex material systems (Miret and Kr-
ishnan, 2024). The diversity of data sources and
measurements leads to a rapid evolution of knowl-
edge in this field, necessitating tools that can effec-
tively access and integrate recent findings. Tradi-
tional static databases, while useful, often lag in
capturing the newest research, creating gaps that
can impede the currency and relevance of scientific
analysis in real time (Brayne and Moffitt, 2022).
Furthermore, the need to efficiently process com-
plex and dynamic computational tasks within the
research workflow remains inadequately addressed,
often requiring manual intervention, which can in-
troduce errors and inefficiencies. Thus, construct-
ing tools that can handle varying data modalities
and complexities, and that can adapt to the contin-
ual advancements in materials science, is essential
for advancing the field.

3371

Figure 1: The overall architecture of HoneyComb. The model begins with a query input that activates the knowledge
retrieval phase, where pertinent data entries and tools are extracted from the MatSciKB and ToolHub respectively.
The Executor iteratively calls the relevant tools from the ToolHub, evaluating and refining these calls until a solution
that adequately solves the query emerges. The preliminary solution generated by these tools is combined with
relevant data entries and then undergoes further processing by the Retriever. Finally, the Retriever consolidates and
filters this input, ultimately feeding it into the LLM for final answer generation.

To address these challenges, HoneyComb has
been designed with innovative solutions that
markedly enhance research capabilities in materi-
als science. First, we integrated General Tools that
provide direct access to current publications and
facilitate dynamic discussions, as shown in Table
2, effectively complementing the static MatSciKB.
Second, recognizing the limitations of large lan-
guage models (LLMs) in performing computational
tasks, we implemented a Python REPL environ-
ment within HoneyComb. This environment is
strategically utilized by the system when the agent,
interacting with the ToolHub, identifies a need for
basic numerical computations. The agent dynam-
ically generates Python code for these tasks and
executes it through the Python REPL, bypassing
the LLM’s computational limitations. This automa-
tion not only streamlines data processing but also
enhances the precision and reliability of numerical
analyses in research activities.

Materials Science Tools Construction

Constructing domain-specific tool APIs presents
significant challenges, requiring domain expert
knowledge, and existing resources are limited. Ad-
ditionally, many valuable data and tools are not
open source, limiting their accessibility. Develop-
ing these tools is essential for effectively addressing
the unique and complex queries inherent to mate-
rials science. The scarcity of pre-existing, special-

General Tools

Google Search
Google Scholar Search
Arxiv Search
Wikipedia Search
YouTube Search
Python REPL

Table 2: ToolHub - General Tools

ized computational tools necessitates a methodical
approach to tool construction and refinement.

We propose the Inductive Tool Construction
method, delineated in Algorithm 1, for constructing
domain-specific tool APIs. It adopts a systematic
approach to create and refine computational tools
specifically designed for materials science queries.
The process initiates by selecting a random subset
of computational questions from dataset D, des-
ignated as Dtrain for training, with the remain-
ing questions forming Dtest. For each question
qi ∈ Dtrain, a designated LLM, M (such as GPT-
4), is tasked with generating a Python function fi
that addresses qi. After creation, each function fi
undergoes rigorous human verification to confirm
its correctness.

However, the above procedures cannot ensure

3372

Algorithm 1 Inductive Tool Construction
Require: Train Set Dtrain, LLM M
Ensure: Set of atom tools A

1: A← ∅ {Initialize the set of atom functions}
2: for each question qi in Dtrain do
3: fi ←M(qi) {Generate specific function for

qi}
4: Human verifies fi
5: Decompose fi into atom functions aj , j ∈

{1, 2, . . . }
6: A← A∪{aj | j ∈ {1, 2, . . . }} {Add atom

functions to the set}
7: end for
8: return A

the generalizability of the constructed tool APIs.
Thus, in the post-validation stage, we further use M
to decompose each fi into fundamental, reusable
components known as atom functions aj , which
are crafted for extensive applicability across di-
verse queries. A detailed example is illustrated in
Appendix E.

3.3 Agent-ToolHub Interactions
In HoneyComb, interactions between the agent and
ToolHub are governed by a structured two-phase
decision-making protocol. Our protocol empha-
sizes the critical selection and processing of data to
ensure that only pertinent information influences
the LLM’s decisions. This approach is vital to pre-
vent the degradation of model performance due to
irrelevant or low-quality inputs (Liu et al., 2024a).

1. Tool Assessor: During the initial phase, the
Assessor evaluates both the incoming query
and the extensive suite of tools within the Tool-
Hub. This evaluation aims to identify a man-
ageable subset of the most relevant tools that
are best suited to address the specific require-
ments of the query. By filtering out irrelevant
tools at this stage, we ensure that the Execu-
tor is provided only with pertinent informa-
tion, thereby optimizing the model’s focus and
enhancing its capacity to solve the problem
accurately.

2. Tool Executor: As illustrated in Figure 2,
the Executor receives the original query along
with the subset of tools selected by the As-
sessor. Upon evaluating the selected tools
and query, the Executor engages in a thought
process to determine the most suitable tool

for addressing the query. If the query’s com-
plexity exceeds the capacity of a single tool,
the Executor recognizes the challenge and de-
composes the query into smaller subquestions.
This strategy allows for the sequential tackling
of each part, starting with the selection of the
optimal tool for the initial subquestion. It then
initiates the action of executing the selected
tool while inputting parameter values, termed
an action input, derived from the query or sub-
question. Upon execution, the tool generates
a result termed an observation. Subsequently,
the Executor engages in a reflective process
to assess whether the observation adequately
addresses the query. If the observation is ad-
equate, it is finalized as the answer; if not,
the process either reiterates with adjustments
or progresses to the next subquestion, if the
original query was segmented into multiple
parts.

3.4 Retriever

In this section, we present the retriever in Honey-
Comb, which returns relevant texts or tools from
MatSciKB and ToolHub when specific contexts are
provided. The retriever integrates both the BM25
model (Trotman et al., 2014) and the Contriever
model (Izacard et al., 2022), leveraging their re-
spective strengths to achieve optimal information
retrieval performance.

Specifically, the retriever employs a two-step
strategy. Initially, BM25 utilizes efficient calcu-
lations of term frequency and inverse document
frequency to rapidly process short text queries and
keyword searches within long documents. The pri-
mary advantage of BM25 lies in its computational
simplicity and rapid response time, allowing Hon-
eyComb to extract the top k most relevant knowl-
edge points from an extensive materials science
knowledge base, ensuring exceptional speed and
efficiency. This approach provides basic relevance
matching results within a minimal timeframe.

Subsequently, we employ a pre-trained deep
learning model (i.e., Contriever) to generate em-
bedding vectors and compute their similarity, en-
abling a deeper understanding of complex linguis-
tic structures and semantic information. The k
data entries from BM25, along with the final an-
swer computed by the Executor—which employs
the necessary materials science tools and general
tools—are passed into Contriever for further re-

3373

Final Answer

Yes

...
ToolHub

Query

Query

Top n Most

Useful Tools

ExecutorAssessor Thought: Which
tool to use?

Action: Execute
the selected tool

Thought: Is observation
sufficient to answer query?

Observation

No

Executor

Figure 2: Interaction Workflow Between Tool Assessor and Executor in HoneyComb.

finement. Contriever retrieves the most relevant m
results, where m < k + 1. Although Contriever
operates at a slower pace compared to BM25, its
ability to deeply analyze semantic and contextual
relationships ensures high precision and relevance
for complex queries.

By combining BM25 and Contriever, our model
adeptly responds to simple queries with speed
while offering enhanced accuracy and relevance
for complex queries. This hybrid approach ensures
that the model is both efficient and capable of ad-
dressing sophisticated query requirements, thereby
providing comprehensive, and precise information
retrieval services.

4 Experiments

We conduct experiments on two question-
answering datasets, namely MaScQA (Zaki et al.,
2023) and SciQA (Johannes Welbl, 2017), to in-
vestigate the ability of HoneyComb in materials
science tasks.

MaScQA, derived from the Graduate Aptitude
Test in Engineering (GATE) in India, is tailored
to reflect the real-world complexity and variety
of issues encountered in materials science. This
highly competitive examination assesses a com-
prehensive understanding of various undergraduate
subjects (Indian Institute of Technology Kanpur,
2023; Zaki et al., 2023). With its 650 questions cov-
ering 14 domains, such as thermodynamics, atomic
structure, and mechanical behavior, the dataset
includes a wide range of question types: Mul-
tiple Choice Questions (MCQs), Numerical An-
swer Type (NUM), Matching Type (MATCH), and
MCQs with numerical options (MCQN). Specifi-
cally designed for advanced problem-solving, this
dataset is crucial for ensuring that our ToolHub
functions effectively in real-world materials sci-
ence research and applications. It demonstrates the

efficacy and adaptability of the HoneyComb frame-
work in tackling complex materials science issues
within realistic scenarios.

The second dataset, SciQA, comprises 11,679
multiple-choice questions spanning the core disci-
plines of fundamental sciences from various crowd-
sourced science exams (Johannes Welbl, 2017).
This compilation not only emphasizes the dataset’s
comprehensive and interdisciplinary nature but also
focuses on fostering a nuanced conceptual under-
standing. SciQA serves as a critical testbed to as-
certain whether the HoneyComb framework can
augment the LLM’s capabilities beyond its initial
programming. By integrating supplementary infor-
mation, it aids in addressing intricate queries and
unraveling complex scientific concepts that may
have been overlooked during the initial training
phase of the LLM. By bridging real-world com-
plexities with rigorous academic standards, these
datasets ensure that our MatSciKB and ToolHub
are not only versatile but also remain at the fore-
front of technological and scientific application.

The choice of models for our experiments was
driven by the need to evaluate the HoneyComb
framework’s enhancement capabilities across a
spectrum of large language models known for their
robust performance in diverse applications. We se-
lected GPT-3.5, GPT-4 (OpenAI, 2024), LLaMA-2
(Touvron et al., 2023b), and LLaMA-3 (AI@Meta,
2024) due to their widespread use and proven ef-
fectiveness in handling complex language tasks.
These models, with LLaMA-2 and LLaMA-3 hav-
ing parameter sizes of 7 billion and 8 billion, re-
spectively, represent the current state-of-the-art in
generalized language understanding and provide
a solid baseline for benchmarking. Additionally,
we included HoneyBee (Song et al., 2023b), a spe-
cialized model with a parameter size of 7 billion,
tailored specifically for materials science. The in-

3374

clusion of both general-purpose and specialized
models allows us to showcase how domain-specific
adaptations through HoneyComb can elevate a
model’s functional scope beyond its original con-
figuration, thus highlighting the adaptability and
effectiveness of our framework.

4.1 HoneyComb Evaluation
We evaluated the performance of various models on
MaScQA and SciQA, including HoneyBee, GPT-
3.5, GPT-4, LLaMA-2, and LLaMA-3, and demon-
strated the effects of using HoneyComb. The re-
sults are illustrated in Table 3.

The experimental results show that all mod-
els based on HoneyComb achieved significant im-
provements in accuracy on both MaScQA and
SciQA. Specifically, on the MaScQA dataset, mod-
els such as HoneyBee and GPT-4 experienced sub-
stantial enhancements, with HoneyBee’s accuracy
increasing from 16.62% to 33.38%, and GPT-4
achieving an improvement from 58.46% to 79.07%.
Other models also exhibited notable gains, with
accuracy improvements ranging from 4.92% to
14.16%.

On the SciQA dataset, HoneyComb-based mod-
els showed even more dramatic performance gains.
The HoneyBee model’s accuracy rose significantly,
from 33.96% to 79.69%, marking an improvement
of 45.73%. For models based on GPT-3.5 and
LLaMA-3, HoneyComb integration led to more
modest increases, ranging between approximately
0.14% to 0.32%. In contrast, HoneyComb’s inte-
gration with GPT-4 and LLaMA-2 brought consid-
erable improvements of about 5.70% and 2.87%,
respectively.

4.2 HoneyComb Evaluation Across the
Material Categories of MaScQA

We assess the performance improvements when in-
tegrating the HoneyComb framework with various
large language models (LLMs) across predefined
topics within the MaScQA dataset, as shown in
Table 4. The overall trend indicates that Honey-
Comb substantially enhances model performance
across nearly all models and tasks. LLaMA-3 and
HoneyBee exhibit particularly impressive gains,
especially in Material Testing, where LLaMA-3
sees an improvement of 33.34%. These results
demonstrate HoneyComb’s capability to effectively
augment models with its advanced ToolHub and
extensive MatSciKB.

Despite having a higher baseline accuracy than

LLaMA-3, LLaMA-2, and HoneyBee, GPT-3.5
exhibits a mixed response when integrated with
HoneyComb. While some tasks show dips in per-
formance, others benefit from the enhancements
provided by HoneyComb, indicating that its perfor-
mance does not uniformly decline across all top-
ics. This variability could be due to the scope and
depth of GPT-3.5’s training data, which, although
extensive, may not always align seamlessly with
HoneyComb’s highly specialized materials science
knowledge. The sophisticated computational de-
mands and dynamic nature of materials science
queries might pose challenges in fully adapting
GPT-3.5’s pre-existing knowledge to the specific
enhancements that HoneyComb offers.

4.3 Ablation Study

To understand the contribution of each component
of HoneyComb, we conducted ablation studies by
testing its performance when retrieving from only
MatSciKB, only ToolHub, or both, as well as by
evaluating the effect of excluding the retriever com-
ponent.

The best performance for both MaScQA and
SciQA is achieved when MatSciKB and ToolHub
are combined with the retriever. For MaScQA,
this combination leads to an accuracy of 79.07%,
representing a substantial improvement of 17.69%.
When used individually, MatSciKB contributes an
increase of 16.93%, while ToolHub alone boosts
accuracy by 11.85%. In SciQA, ToolHub alone im-
proves accuracy by 5.5%, while the full integration
of MatSciKB, ToolHub, and the retriever achieves
the highest accuracy of 96.56%, a 5.72% improve-
ment over the baseline. The results are summarized
in Table 5.

5 Conclusion

In this work, we introduced HoneyComb, a pi-
oneering LLM-based agent system tailored for
materials science, consisting of three key compo-
nents: a curated materials science knowledge base
(MatSciKB), a dual-layered ToolHub encompass-
ing both general and specialized computational
tools, and a precision-focused Retriever module.
These components are integrated to deliver accu-
rate, real-time information and ensure reliable per-
formance in advanced materials science tasks.

Experimental results demonstrate that Honey-
Comb outperforms contemporary general-purpose
models (e.g., GPT and LLaMA series) and special-

3375

Dataset HoneyBee HoneyBee + GPT-3.5 GPT-3.5 + GPT-4 GPT-4 + LLaMA2 LLaMA2 + LLaMA3 LLaMA3 +

MaScQA 16.62 33.38 33.54 38.46 58.46 79.07 22.15 36.31 24.62 47.23

SciQA 33.96 79.69 90.69 90.83 90.84 96.54 75.79 78.66 93.00 93.32

Table 3: HoneyComb evaluation with diverse LLMs including open-source LLMs (HoneyBee (Song et al., 2023b),
LLaMA2 (Touvron et al., 2023b), LLaMA3 (AI@Meta, 2024)) and commercial LLMs (GPT3.5, GPT4 (OpenAI,
2024)). The results show that HoneyComb consistently improves the performance of all LLMs for SciQA and
MaScQA.

Category HoneyBee HoneyBee + GPT-3.5 GPT-3.5 + GPT-4 GPT-4 + LLaMA2 LLaMA2 + LLaMA3 LLaMA3 +

Atomic structure 12.0 34.00 35.00 32.00 55.00 70.00 22.00 38.00 22.00 48.00

Electrical 20.0 38.89 30.56 41.67 41.67 75.00 25.00 36.11 30.56 44.44

Fluid 28.57 28.57 42.86 28.57 64.29 71.43 28.57 35.71 42.86 35.71

Magnetism 6.67 20.00 33.33 20.00 73.33 66.67 33.33 33.33 26.67 46.67

Material Applications 15.09 30.19 49.06 52.83 86.79 94.34 26.42 37.74 24.53 50.94

Material characterization 35.71 35.71 50.00 64.29 85.71 100.00 28.57 42.86 64.29 64.29

Material manufacturing 18.68 32.97 35.16 38.46 69.23 90.11 26.37 39.56 27.47 51.65

Material processing 11.43 28.57 42.86 40.00 68.57 94.29 14.29 45.71 40.00 57.14

Material testing 44.44 77.78 66.67 55.56 100.00 100.00 44.44 55.56 44.44 77.78

Mechanical 17.71 35.42 30.21 30.21 48.96 78.12 17.71 30.21 15.62 40.62

Miscellaneous 37.5 25.00 12.50 12.50 75.00 87.50 12.50 25.00 25.00 37.50

Phase transition 14.63 31.71 26.83 48.78 60.98 87.80 19.51 43.90 29.27 51.22

Thermodynamics 14.29 32.46 25.44 40.35 41.23 64.91 19.30 28.07 14.91 42.11

Transport phenomena 16.67 33.33 20.83 37.50 45.83 70.83 20.83 45.83 25.00 41.67

Table 4: Improvements of various LLMs integrated with HoneyComb compared to relevant baseline LLMs for
different materials science tasks. With few exceptions, HoneyComb improves the performance of all LLMs across
all tasks showing the utility of tool augmentation.

Benchmark MatSciKB ToolHub Retriever Accuracy

MaScQA

61.38
✓ ✓ 73.23

✓ ✓ 78.31
✓ ✓ ✓ 79.07

SciQA

90.84
✓ ✓ 96.34

✓ ✓ 85.57
✓ ✓ ✓ 96.56

Table 5: Ablation Study Results for MaScQA and SciQA based
on GPT-4

ized models (e.g., HoneyBee) in materials science
QA tasks. HoneyComb effectively bridges the gap
between advanced large language models and the
specific needs of materials science research, ex-
emplifying how specialized agent systems can ad-
vance scientific research and serve as a blueprint for
future developments in other knowledge-intensive
fields.

Limitations

While HoneyComb significantly enhances the per-
formance of current state-of-the-art models across
various materials science QA tasks, its generaliz-
ability and applicability may be limited beyond

the specific datasets and tasks it was trained on.
Given the diversity and complexity of materials sci-
ence, it is uncertain how effectively HoneyComb
would perform on tasks outside of the MaScQA and
SciQA benchmarks, especially when facing more
complex and novel challenges, such as designing
synthesis recipes for new materials or predicting
material properties.

Moreover, HoneyComb’s reliance on high-
quality LLMs for its knowledge base, tool con-
struction, and retrieval processes introduces an ad-
ditional limitation. The performance of these com-
ponents is dependent on the availability and capa-
bility of the underlying LLMs, which may have
their own constraints. Additionally, as our work
has been primarily focused on the materials sci-
ence domain, further studies are needed to assess
the applicability and effectiveness of HoneyComb
in other scientific fields.

Broader Impacts

By expanding the HoneyComb agent system, there
is potential to accelerate scientific discovery and
innovation, deepening our understanding of com-
plex material systems. Such expansion could lead

3376

to significant advancements in materials design, de-
velopment, and application, while also promoting
the discovery and optimization of new materials,
which would benefit a wide range of industries. Ad-
ditionally, the versatility and adaptability of Honey-
Comb allow it to address challenges across various
scientific domains, broadening its potential scope
and impact.

Our research does not present any major ethical
concerns.

Acknowlegments

This work is supported by the Mila internal funding
- Program P2-V1: Industry Sponsored Academic
Labs (project number: 10379), the Canada CIFAR
AI Chair Program, and the Canada NSERC Discov-
ery Grant (RGPIN-2021-03115).

References
Microsoft Research AI4Science and Microsoft Azure

Quantum. 2023. The Impact of Large Language
Models on Scientific Discovery: a Preliminary Study
using GPT-4. arXiv preprint arXiv:2311.07361.

AI@Meta. 2024. Llama 3 model card.

Anthropic. 2024. Calude3.

Daniil A Boiko, Robert MacKnight, Ben Kline, and
Gabe Gomes. 2023. Autonomous chemical research
with large language models. Nature, 624(7992):570–
578.

Andres M Bran, Sam Cox, Oliver Schilter, Carlo Baldas-
sari, Andrew D White, and Philippe Schwaller. 2023.
Chemcrow: Augmenting large-language models with
chemistry tools. Preprint, arXiv:2304.05376.

Carol Brayne and Terrie E Moffitt. 2022. The limi-
tations of large-scale volunteer databases to address
inequalities and global challenges in health and aging.
Nature Aging, 2(9):775–783.

Markus J. Buehler. 2024a. Generative retrieval-
augmented ontologic graph and multiagent strategies
for interpretive large language model-based materials
design. ACS Engineering Au, 4(2):241–277.

Markus J Buehler. 2024b. Mechgpt, a language-
based strategy for mechanics and materials mod-
eling that connects knowledge across scales, disci-
plines, and modalities. Applied Mechanics Reviews,
76(2):021001.

Yuheng Cheng, Ceyao Zhang, Zhengwen Zhang, Xi-
angrui Meng, Sirui Hong, Wenhao Li, Zihao Wang,
Zekai Wang, Feng Yin, Junhua Zhao, and Xiuqiang
He. 2024. Exploring large language model based in-
telligent agents: Definitions, methods, and prospects.
Preprint, arXiv:2401.03428.

I-Chun Chern, Steffi Chern, Shiqi Chen, Weizhe Yuan,
Kehua Feng, Chunting Zhou, Junxian He, Graham
Neubig, Pengfei Liu, et al. 2023. Factool: Factu-
ality detection in generative ai–a tool augmented
framework for multi-task and multi-domain scenar-
ios. arXiv preprint arXiv:2307.13528.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Anastasios Giannaros, Aristeidis Karras, Leonidas
Theodorakopoulos, Christos Karras, Panagiotis Kra-
nias, Nikolaos Schizas, Gerasimos Kalogeratos, and
Dimitrios Tsolis. 2023. Autonomous vehicles: So-
phisticated attacks, safety issues, challenges, open
topics, blockchain, and future directions. Journal of
Cybersecurity and Privacy, 3(3):493–543.

Maarten Grootendorst. 2022. Bertopic: Neural
topic modeling with a class-based tf-idf procedure.
Preprint, arXiv:2203.05794.

Tanishq Gupta, Mohd Zaki, NM Krishnan, et al. 2022.
Matscibert: A materials domain language model for
text mining and information extraction. npj Compu-
tational Materials, 8(1):1–11.

Indian Institute of Technology Kanpur. 2023. Gate
2023: Graduate aptitude test in engineering. Ac-
cessed: 2024-06-14.

Gautier Izacard, Mathilde Caron, Lucas Hosseini, Sebas-
tian Riedel, Piotr Bojanowski, Armand Joulin, and
Edouard Grave. 2022. Unsupervised dense informa-
tion retrieval with contrastive learning. Transactions
on Machine Learning Research.

Kevin Maik Jablonka, Qianxiang Ai, Alexander Al-
Feghali, Shruti Badhwar, Joshua D Bocarsly, An-
dres M Bran, Stefan Bringuier, L Catherine Brinson,
Kamal Choudhary, Defne Circi, et al. 2023. 14 exam-
ples of how llms can transform materials science and
chemistry: a reflection on a large language model
hackathon. Digital Discovery, 2(5):1233–1250.

Matt Gardner Johannes Welbl, Nelson F. Liu. 2017.
Crowdsourcing multiple choice science questions.

Olga Kononova, Tanjin He, Haoyan Huo, Amalie Tre-
wartha, Elsa A Olivetti, and Gerbrand Ceder. 2021.
Opportunities and challenges of text mining in mate-
rials research. Iscience, 24(3).

LangChain contributors. 2023. Langchain: Open-
source library for building language-based agents.
Online; accessed 17-June-2023.

Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paran-
jape, Michele Bevilacqua, Fabio Petroni, and Percy
Liang. 2024a. Lost in the Middle: How Language
Models Use Long Contexts. Transactions of the Asso-
ciation for Computational Linguistics, 12:157–173.

3377

https://arxiv.org/abs/2311.07361
https://arxiv.org/abs/2311.07361
https://arxiv.org/abs/2311.07361
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://www.anthropic.com/news/claude-3-family
https://arxiv.org/abs/2304.05376
https://arxiv.org/abs/2304.05376
https://doi.org/10.1021/acsengineeringau.3c00058
https://doi.org/10.1021/acsengineeringau.3c00058
https://doi.org/10.1021/acsengineeringau.3c00058
https://doi.org/10.1021/acsengineeringau.3c00058
https://arxiv.org/abs/2401.03428
https://arxiv.org/abs/2401.03428
https://arxiv.org/abs/2203.05794
https://arxiv.org/abs/2203.05794
https://gate.iitk.ac.in/GATE2023/index.html
https://gate.iitk.ac.in/GATE2023/index.html
https://openreview.net/forum?id=jKN1pXi7b0
https://openreview.net/forum?id=jKN1pXi7b0
https://github.com/langchain-ai/langchain
https://github.com/langchain-ai/langchain
https://doi.org/10.1162/tacl_a_00638
https://doi.org/10.1162/tacl_a_00638

Yue Liu, Sin Kit Lo, Qinghua Lu, Liming Zhu, De-
hai Zhao, Xiwei Xu, Stefan Harrer, and Jon Whittle.
2024b. Agent design pattern catalogue: A collection
of architectural patterns for foundation model based
agents. Preprint, arXiv:2405.10467.

Ali Madani, Ben Krause, Eric R. Greene, Subu Subrama-
nian, Benjamin P. Mohr, James M. Holton, Jose Luis
Olmos, Caiming Xiong, Zachary Z. Sun, Richard
Socher, James S. Fraser, and Nikhil Naik. 2023.
Large language models generate functional protein
sequences across diverse families. Nat. Biotechnol.,
41(8):1099–1106.

Santiago Miret and NM Krishnan. 2024. Are llms ready
for real-world materials discovery? arXiv preprint
arXiv:2402.05200.

Santiago Miret, NM Anoop Krishnan, Benjamin
Sanchez-Lengeling, Marta Skreta, Vineeth Venu-
gopal, and Jennifer N Wei. 2024. Perspective on
ai for accelerated materials design at the ai4mat-2023
workshop at neurips 2023. Digital Discovery.

Adrian Mirza, Nawaf Alampara, Sreekanth Kunchapu,
Benedict Emoekabu, Aswanth Krishnan, Mara Wil-
helmi, Macjonathan Okereke, Juliane Eberhardt,
Amir Mohammad Elahi, Maximilian Greiner, et al.
2024. Are large language models superhuman
chemists? arXiv preprint arXiv:2404.01475.

OpenAI. 2024. Openai. Accessed: 2024-06-14.

Yujia Qin, Shengding Hu, Yankai Lin, Weize Chen,
Ning Ding, Ganqu Cui, Zheni Zeng, Yufei Huang,
Chaojun Xiao, Chi Han, Yi Ren Fung, Yusheng Su,
Huadong Wang, Cheng Qian, Runchu Tian, Kunlun
Zhu, Shihao Liang, Xingyu Shen, Bokai Xu, Zhen
Zhang, Yining Ye, Bowen Li, Ziwei Tang, Jing Yi,
Yuzhang Zhu, Zhenning Dai, Lan Yan, Xin Cong,
Yaxi Lu, Weilin Zhao, Yuxiang Huang, Junxi Yan,
Xu Han, Xian Sun, Dahai Li, Jason Phang, Cheng
Yang, Tongshuang Wu, Heng Ji, Zhiyuan Liu, and
Maosong Sun. 2023a. Tool learning with foundation
models. Preprint, arXiv:2304.08354.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan
Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang,
Bill Qian, et al. 2023b. Toolllm: Facilitating large
language models to master 16000+ real-world apis.
arXiv preprint arXiv:2307.16789.

Yu Song, Santiago Miret, and Bang Liu. 2023a. MatSci-
NLP: Evaluating scientific language models on ma-
terials science language tasks using text-to-schema
modeling. In Proceedings of the 61st Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 3621–3639, Toronto,
Canada. Association for Computational Linguistics.

Yu Song, Santiago Miret, Huan Zhang, and Bang Liu.
2023b. Honeybee: Progressive instruction finetuning
of large language models for materials science. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2023, pages 5724–5739.

Liangtai Sun, Yang Han, Zihan Zhao, Da Ma, Zhennan
Shen, Baocai Chen, Lu Chen, and Kai Yu. 2024. Sci-
eval: A multi-level large language model evaluation
benchmark for scientific research. In Proceedings
of the AAAI Conference on Artificial Intelligence,
volume 38, pages 19053–19061.

Matthew C Swain and Jacqueline M Cole. 2016. Chem-
dataextractor: a toolkit for automated extraction
of chemical information from the scientific litera-
ture. Journal of chemical information and modeling,
56(10):1894–1904.

Oguzhan Topsakal and Tahir Cetin Akinci. 2023. Cre-
ating large language model applications utilizing
langchain: A primer on developing llm apps fast.
In International Conference on Applied Engineering
and Natural Sciences, volume 1, pages 1050–1056.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023a. Llama: Open
and efficient foundation language models. Preprint,
arXiv:2302.13971.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurelien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023b. Llama 2: Open foundation and
fine-tuned chat models. Preprint, arXiv:2307.09288.

Andrew Trotman, Antti Puurula, and Blake Burgess.
2014. Improvements to bm25 and language models
examined. In Proceedings of the 19th Australasian
Document Computing Symposium, pages 58–65.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2023. Attention is all
you need. Preprint, arXiv:1706.03762.

Nicholas Walker, Amalie Trewartha, Haoyan Huo,
Sanghoon Lee, Kevin Cruse, John Dagdelen, Alexan-
der Dunn, Kristin Persson, Gerbrand Ceder, and
Anubhav Jain. 2021. The impact of domain-specific

3378

https://arxiv.org/abs/2405.10467
https://arxiv.org/abs/2405.10467
https://arxiv.org/abs/2405.10467
https://doi.org/10.1038/s41587-022-01618-2
https://doi.org/10.1038/s41587-022-01618-2
https://openai.com/
https://arxiv.org/abs/2304.08354
https://arxiv.org/abs/2304.08354
https://doi.org/10.18653/v1/2023.acl-long.201
https://doi.org/10.18653/v1/2023.acl-long.201
https://doi.org/10.18653/v1/2023.acl-long.201
https://doi.org/10.18653/v1/2023.acl-long.201
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762

pre-training on named entity recognition tasks in ma-
terials science. Available at SSRN 3950755.

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao
Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai Tang,
Xu Chen, Yankai Lin, et al. 2024. A survey on large
language model based autonomous agents. Frontiers
of Computer Science, 18(6):186345.

Xiaoxuan Wang, Ziniu Hu, Pan Lu, Yanqiao Zhu,
Jieyu Zhang, Satyen Subramaniam, Arjun R Loomba,
Shichang Zhang, Yizhou Sun, and Wei Wang.
2023. Scibench: Evaluating college-level scientific
problem-solving abilities of large language models.
arXiv preprint arXiv:2307.10635.

Tong Xie, Yuwei Wan, Wei Huang, Zhenyu Yin, Yixuan
Liu, Shaozhou Wang, Qingyuan Linghu, Chunyu Kit,
Clara Grazian, Wenjie Zhang, et al. 2023. Darwin
series: Domain specific large language models for
natural science. arXiv preprint arXiv:2308.13565.

Tong Xie, Yuwei Wan, Yufei Zhou, Wei Huang, Yixuan
Liu, Qingyuan Linghu, Shaozhou Wang, Chunyu Kit,
Clara Grazian, Wenjie Zhang, and Bram Hoex. 2024.
Creation of a structured solar cell material dataset and
performance prediction using large language models.
Patterns, 5(5).

Naruki Yoshikawa, Marta Skreta, Kourosh Darvish, Se-
bastian Arellano-Rubach, Zhi Ji, Lasse Bjørn Kris-
tensen, Andrew Zou Li, Yuchi Zhao, Haoping Xu,
Artur Kuramshin, et al. 2023. Large language mod-
els for chemistry robotics. Autonomous Robots,
47(8):1057–1086.

Mohd Zaki, Jayadeva, Mausam, and N. M. Anoop Krish-
nan. 2023. Mascqa: A question answering dataset for
investigating materials science knowledge of large
language models. Preprint, arXiv:2308.09115.

Huaixiu Steven Zheng, Swaroop Mishra, Xinyun Chen,
Heng-Tze Cheng, Ed H. Chi, Quoc V Le, and Denny
Zhou. 2024. Take a step back: Evoking reasoning
via abstraction in large language models. Preprint,
arXiv:2310.06117.

Appendix

A MatSciKB Knowledge Source

• ArXiv Papers

– Included all papers indexed under the
“materials science” keyword on ArXiv.

– Data entries were structured into key-
value pairs: the key is the paper title, and
the value is the abstract.

– Data Entries Count: 20,384

• Wikipedia Materials Science Concepts

– Scraped all 438 pages categorized under
"Materials Science" on Wikipedia.

– Each section within a page was separated
as a distinct data entry.

– Content was formulated into key-value
pairs, with keys as section titles and val-
ues as content.

– Data Entries Count: 3,620

• Materials Science Textbooks

– Sourced 6 publicly available textbooks.
– Converted each textbook PDF file into

text documents.
– Divided each textbook into data entries

by each section within a chapter.
– Formulated data entries into key-value

pairs, with keys as section titles and val-
ues as content.

– Data Entries Count: 1,930

• Materials Science Dataset

– Utilized the multiple-choice dataset
SciQA.

– Extracted the "support" column from
the dataset, which provides background
knowledge for each question.

– Each extracted "support" is treated as a
data entry, with keys as the knowledge
piece and values as empty strings, em-
phasizing their concise and standalone
nature.

– Data Entries Count: 10,473

• Materials Science Formulas

– Formulas were collected from
Wikipedia’s dedicated pages for
materials science formulas.

– Each formula is stored as a key-value
pair in the database, where the key rep-
resents the name of the formula and the
value contains the formula equation it-
self.

– Data Entries Count: 57

• GPT-Generated Examples

– Used a specific prompt to generate 50
materials science questions at a time, out-
put in CSV format along with a confi-
dence score. Please refer to Appendix B
for the detailed prompt.

3379

https://doi.org/10.1016/j.patter.2024.100955
https://doi.org/10.1016/j.patter.2024.100955
https://arxiv.org/abs/2308.09115
https://arxiv.org/abs/2308.09115
https://arxiv.org/abs/2308.09115
https://arxiv.org/abs/2310.06117
https://arxiv.org/abs/2310.06117

– Human reviewers then selected questions
with higher confidence scores for inclu-
sion in the dataset.

– Inspiration for question types was drawn
from an external resource offering a wide
range of materials science questions and
answers.

– The key-value pairs were structured with
questions as the keys and answers as the
values.

– Data Entries Count: 2,005

B Prompt for GPT-Generated Examples

Please generate 50 instances of materials science
questions, specifically on atomic structure and
interatomic bonding, in CSV format in the fol-
lowing order: question, answer, accuracy, confi-
dence_score. - accuracy: For factual questions,
please evaluate the answer by comparing it with
known facts. This field should be a number be-
tween 0 and 1. - confidence_score: How confi-
dent are you in the answer? This field should be
a number between 0 and 1. - Here are sample
instances without accuracy and confidence_score:
“In terms of which of the following properties,
metals are better than ceramics?”,“ductility”; "In
the wave-mechanical model of an atom, what do
degenerate energy levels have?","equal energy";
"Which of the following molecules is diamag-
netic?","CO". - Examples of generated instances: -
"What is the valence electron configuration of car-
bon?","2s²2p²",0.95,0.85 - "What type of crystal de-
fect occurs when there is a line of irregularity in the
lattice structure?","dislocation defect",0.96,0.91

C Tree-Structure MatSciKB

MatSciKB is organized as a hierarchical tree with
the parent node "Material Science" branching into
16 child nodes, each representing a specific domain
within materials science. Below is a simplified
representation of this structure:
{

"Material Science": {
"Children": {
"Thermodynamics": {"Children": {"KB_1":
{}, "KB_2": {}, "KB_3": {}}},
"Atomic Structure": {"Children": {"KB_4":
{}, "KB_5": {}, "KB_6": {}}},
...
"Miscellaneous": {"Children": {"KB_7":

{}, "KB_n": {}, "KB_n+1": {}}}
} } }

Each child node encompasses knowledge base
(KB) data entries relevant to its category. In the
construction of MatSciKB, we predefined 16 top-
ics that align with core areas in materials sci-
ence. They are ’Miscellaneous’, ’Material Test-
ing’, ’Fluid’, ’Material Characterization’, ’Mag-
netism’, ’Transport Phenomena’, ’Material Pro-
cessing’, ’Electrical’, ’Phase Transition’, ’Material
Applications’, ’Material Manufacturing’, ’Mechan-
ical’, ’Atomic Structure’, ’Thermodynamics’, ’For-
mula’, and ’Fundamental_Science_Knowledge’.

To categorize the data entries within these nodes,
we utilized BertTopic, a state-of-the-art topic mod-
eling tool based on transformers and c-TF-IDF,
which automatically identifies and clusters docu-
ments with high granularity and contextual rele-
vance (Vaswani et al., 2023; Grootendorst, 2022).
The integration of BertTopic allowed for the dy-
namic clustering of MatSciKB entries into 16 pre-
determined categories.

The process involved the following steps:

1. Initial Clustering: BertTopic was applied to
cluster all data entries into a number of cate-
gories greater than the target number, based
on the textual content of each entry.

2. Cluster Analysis and Selection: Human re-
viewers analyzed each cluster, identifying
those whose common keywords and themes
closely aligned with one of the predefined 16
topics.

3. Category Assignment: Entries from clusters
that aligned well with a predefined topic were
assigned to that category and then removed
from the dataset.

4. Iterative Refinement: The remaining entries
underwent subsequent rounds of clustering
and analysis. This process was repeated until
no entries were left unclassified.

D Tools Unified Interface Using
LangChain

LangChain is an advanced framework designed
to enhance applications that utilize LLM by of-
fering standardized interfaces for various modules
(LangChain contributors, 2023). This framework
facilities the seamless integration and efficient man-
agement of LLM with external tools and systems.

3380

Utilizing LangChain, HoneyComb has developed
a unified interface that standardizes the integration
of a wide array of tools.

In HoneyComb, the unified interface provided
by LangChain ensures that all tools, regardless
of their specific function, are treated as standard-
ized LangChain objects. This standardization is
achieved by defining each tool with a consistent set
of attributes:

1. Function Signature: Each tool is defined
with a clear function signature that specifies
input and output types,

2. Metadata Description: Each tool is accom-
panied by metadata that describes its purpose,
suitable use cases, parameters description.

Examples of function signatures and metadata
descriptions in HoneyComb are:

• Google Search

– Function Signature:
Google_Search(query: str, timeout:
Optional[int] = 30) -> str

– Metadata Description: General web
search for up-to-date information across
various topics.

• Wikipedia Search

– Function Signature:
Wikipedia_Search(topic: str, summarize:
bool = True) -> str

– Metadata Description: Retrieves and
optionally summarizes detailed
Wikipedia articles, particularly useful
for quick reference checks.

• A Sample Mass Flow Rate Tool

– Function Signature:
calculate_initial_mass_flow_rate(args:
str) -> float

– Metadata Description: See figure 3.

E Examples of Inductive Tool
Construction

See figure 4 for a detailed example illustrating how
inductive tool construction work.

Figure 3: Metadata Description of a Sample Mass Flow
Rate Tool

3381

GPT-4 ResponsePrompt to GPT-4

 Verifies the function, f, -> Prompt to GPT-4 -> Generate Atom Functions, a1, a2,
a3,

def convert_diameter_to_meters(diameter_mm):

 """

 Convert nozzle diameter from millimeters to meters.

 Parameters:

 - diameter_mm (float): Diameter of the nozzle in mm.

 Returns:

 - float: Diameter of the nozzle in meters.

 """

 return diameter_mm / 1000

def calculate_cross_sectional_area(diameter_m):

 """

 Calculate the cross-sectional area of the nozzle.

 Parameters:

 - diameter_m (float): Diameter of the nozzle in
meters.

 Returns:

 - float: Cross-sectional area of the nozzle in square
meters.

 """

 return math.pi * (diameter_m / 2) ** 2

def calculate_velocity(height):

 """

 Calculate the velocity of the liquid metal using
Torricelli's law.

 Parameters:

 - height (float): Height of the liquid metal column in
the vessel in meters.

 Returns:

 - float: Velocity of the liquid metal in meters per
second.

 """

 return math.sqrt(2 * g * height)

def apply_discharge_coefficient(velocity, coefficient):

 """

 Calculate the actual velocity considering the
discharge coefficient.

 Parameters:

 - velocity (float): Theoretical velocity of the liquid
metal in meters per second.

 - coefficient (float): Discharge coefficient accounting
for losses in the flow, dimensionless.

 Returns:

 - float: Actual velocity of the liquid metal in meters per
second.

 """

 return coefficient * velocity

def calculate_mass_flow_rate(density, area,
actual_velocity):

 """

 Calculate the mass flow rate of the liquid metal.

 Parameters:

 - density (float): Density of the liquid metal in kg/m^3.

 - area (float): Cross-sectional area of the nozzle in
square meters.

 - actual_velocity (float): Actual velocity of the liquid
metal in meters per second.

 Returns:

 - float: Mass flow rate of the liquid metal in kg/s.

 """

 return density * area * actual_velocity

a3

a4

a5

I have a set of tools designed to solve a specific question in the field of
material science. These tools or functions are currently implemented in
Python and aim to answer a particular question. However, the methodology
employed in these tools could be generalized and applied to a broader
range of questions. The functions are composed of multiple steps, each of
which could potentially serve as an independent function.

For example, if a function consists of three steps:

	1.	Obtaining a certain constant.

	2.	Plugging this constant into a specific formula.

	3.	Using the output in another formula.

Each of these steps can be broken down into individual functions that can
be utilized for various questions. The goal is to transform these monolithic
functions into modular components.

Please note:

	•	These functions are currently written in Python.

	•	They have docstrings that describe their purpose and usage.

	•	Each function takes only one argument, which is a concatenation of
multiple parameter values separated by a bar.

Task:

	1.	Break down each function into smaller, modular functions.

	2.	Ensure each new function has a clear purpose and can be used
independently.

	3.	Maintain the original functionality by composing the new functions
appropriately.

	4.	Update the docstrings to reflect the new modular design and clarify the
usage of each function.

	5.	Ensure that the new functions can handle the parameters individually,
rather than through a concatenated string.

By achieving this, we aim to create a more versatile set of tools that can
address a variety of questions within the thermodynamics and material
science fields.

The following are the tools we'd like to break down today

```

{paste the function here}

```

Please follow the following rules for any function you wrote

1. use python code to solve the problem, for any scientific constants, you
must use python libraries.

 For instance, gravitational constant, g, can be obtained by `from
scipy.constants import g` and pi can be obtained by `math.pi`

2. write the code into a function with a single argument, this single argument
should consists of all required arguments separated by "|"

	 - the docstring description, the order of the separate parameter appearing
in the single argument input should be specified

	 - there must be a description of each parameter in the doc string
comments as well

3. This function needs to be as generic as possible.

	 For example, if a question is to ask "Num of elements in a tensor of rank 4,
the function should be able to calculate the number of elements in a tensor
of rank n, n is any positive integer"

4. The function name should be as specific and descriptive as possible

Below is an example function’s description

```

def calculate_mole_fraction(input_params):

    """

    Calculate the mole fraction of vinyl chloride in a copolymer based on the 
copolymer's molecular weight, 

    degree of polymerization, and the molar masses of the monomers.



    Parameters:

    - input_params (str): A single string containing all necessary parameters 
separated by "|" in the following order

        molecular_weight_copolymer|degree_of_polymerization

        - molecular_weight_copolymer (float): Total molecular weight of the 
copolymer in g/mol.

        - degree_of_polymerization (int): Degree of polymerization of the 
copolymer.



    Returns:

    - float: Mole fraction of vinyl chloride in the copolymer.

    """

```

a2

a1

Prompt to GPT-4

q

 Given a randomly selected question, q, -> Prompt to GPT-4, M, -> Obtain a specific function, f = M(q), that
solves q

f

import math

from scipy.constants import g

def calculate_initial_mass_flow_rate(input_params):

 """

 Calculate the initial mass flow rate of a liquid metal draining from a cylindrical vessel through a nozzle at the
base,

 using the Torricelli's law and accounting for the discharge coefficient.

 Parameters:

 - input_params (str): A single string containing all necessary parameters separated by "|" in the following
order:

 density_of_liquid_metal|nozzle_diameter|discharge_coefficient|column_height

 - density_of_liquid_metal (float): Density of the liquid metal in kg/m^3.

 - nozzle_diameter (float): Diameter of the nozzle in mm.

 - discharge_coefficient (float): Coefficient accounting for losses in the flow, dimensionless.

 - column_height (float): Height of the liquid metal column in the vessel in m.

 Returns:

 - float: Initial mass flow rate of the liquid metal in kg/s.

 """

 # Unpacking the parameters from the input string

 params = input_params.split('|')

 density = float(params[0])

 diameter_mm = float(params[1])

 coefficient = float(params[2])

 height = float(params[3])

 # Convert nozzle diameter from mm to meters

 diameter_m = diameter_mm / 1000

 # Calculate the cross-sectional area of the nozzle

 area = math.pi * (diameter_m / 2)**2

 # Calculate the velocity using Torricelli's law

 velocity = math.sqrt(2 * g * height)

 # Calculate the actual velocity considering the discharge coefficient

 actual_velocity = coefficient * velocity

 # Calculate the mass flow rate

 mass_flow_rate = density * area * actual_velocity

 return mass_flow_rate

M(q)

GPT-4 Response

{paste the question here}

“Given data Density of liquid metal = 7000 kg.$m^(-3)$, Nozzle diameter = 30 mm, Nozzle discharge coefficient
= 0.80 .The height of a liquid metal column in a cylindrical vessel is 3.2 m. At time t=0, liquid metal is drained out
from the vessel through a small nozzle located at the base of the vessel. Neglecting frictional losses, the initial
mass flow rate (in $kg.s^(-1)$) through the nozzle is”

1. use python code to solve the problem, for any scientific constants, you must use python libraries.

 For instance, gravitational constant, g, can be obtained by `from scipy.constants import g` and pi can be
obtained by `math.pi`

2. write the code into a function with a single argument, this single argument should consists of all required
arguments separated by "|"

	 - the docstring description, the order of the separate parameter appearing in the single argument input should
be specified

	 - there must be a description of each parameter in the doc string comments as well

3. This function needs to be as generic as possible.

	 For example, if a question is to ask "Num of elements in a tensor of rank 4, the function should be able to
calculate the number of elements in a tensor of rank n, n is any positive integer"

4. The function name should be as specific and descriptive as possible

Below is an example function’s description

```

def calculate_mole_fraction(input_params):

    """

    Calculate the mole fraction of vinyl chloride in a copolymer based on the copolymer's molecular weight, 

    degree of polymerization, and the molar masses of the monomers.



    Parameters:

    - input_params (str): A single string containing all necessary parameters separated by "|" in the following order

        molecular_weight_copolymer|degree_of_polymerization

        - molecular_weight_copolymer (float): Total molecular weight of the copolymer in g/mol.

        - degree_of_polymerization (int): Degree of polymerization of the copolymer.



    Returns:

    - float: Mole fraction of vinyl chloride in the copolymer.

    """

```

Given a randomly selected computational question from MaScQA:

{Question} = “Given data Density of liquid metal = 7000 kg.$m^(-3)$, Nozzle diameter = 30 mm, Nozzle
discharge coefficient = 0.80 .The height of a liquid metal column in a cylindrical vessel is 3.2 m. At time t=0,
liquid metal is drained out from the vessel through a small nozzle located at the base of the vessel. Neglecting
frictional losses, the initial mass flow rate (in $kg.s^(-1)$) through the nozzle is

Figure 4: An example of inductive tool construction

3382

