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Abstract
Knowledge graph embedding (KGE) models
are often used to predict missing links for
knowledge graphs (KGs). However, multiple
KG embeddings can perform almost equally
well for link prediction yet give conflicting pre-
dictions for unseen queries. This phenomenon
is termed predictive multiplicity in the litera-
ture. It poses substantial risks for KGE-based
applications in high-stake domains but has been
overlooked in KGE research. We define predic-
tive multiplicity in link prediction, introduce
evaluation metrics and measure predictive mul-
tiplicity for representative KGE methods on
commonly used benchmark datasets. Our em-
pirical study reveals significant predictive mul-
tiplicity in link prediction, with 8% to 39%
testing queries exhibiting conflicting predic-
tions. We address this issue by leveraging vot-
ing methods from social choice theory, signif-
icantly mitigating conflicts by 66% to 78% in
our experiments.

1 Introduction

Knowledge graphs (KGs) store factual knowledge
of real-world entities and their relationships in the
form of triples ⟨head entity, predicate, tail entity⟩.
KGs allow for logical reasoning and answering of
queries. Knowledge graph embeddings (KGE) ap-
ply machine-learning methods on KGs to provide
extra-logical reasoning capabilities exploiting simi-
larities and analogies over knowledge structures (Ji
et al., 2021).

KGE maps entities and predicates into low-
dimensional vectors that preserve semantic and
structural information of KGs (Hogan et al.,
2021). The learned embeddings can be applied
to downstream tasks like link prediction. Given
queries in the form of ⟨head entity, predicate, ?⟩
or ⟨?, predicate, tail entity⟩, candidate entities are
ranked based on predictive scores provided by KGE
models. The positive triples are expected to be
ranked higher than the negative triples.
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<CompanyB, hasSupplier, SupplierB >
<CompanyA, hasSupplier, SupplierB>

Model 2 Prediction (50% correct)

Figure 1: An illustration of predictive multiplicity in
link prediction lies within the realm of supplier selection
for Company A, where model 1 and 2 are trained with
the same KGE algorithm (e.g. TransE) but different
random seeds.

The training of the KG embedding introduces
randomness into the resulting model. Sources of
randomness include randomized parameter initial-
ization, randomized sequences of positive samples,
and randomized negative sampling. Given the non-
convexity of the training problem, the same KG
may lead to various KG embeddings because of the
convergence of the training in different local min-
ima. While learned embeddings may exhibit com-
parable performance in link prediction, they may
suggest conflicting predictions for an individual
query. This phenomenon is referred to as predictive
multiplicity in recent literature (Marx et al., 2020;
Watson-Daniels et al., 2023; Black et al., 2022b),
it is also known as "Rashomon effect" and model
multiplicity in earlier studies (Breiman, 2001). As
an example of predictive multiplicity in link predic-
tion, Figure 1 shows the results of two models that
both have an overall accuracy of 50%, but predict
entirely different facts as top 1 recommendation.

Conflicting predictions introduce considerable
risks when applying KGE methods in high-stake
domains such as medicine or finance. For example,
they would affect treatment decisions, affecting
patient health outcomes in the context of medical
recommendation (Gong et al., 2021), or switch
compounds for confirmatory experiments in drug
discovery (Mohamed et al., 2020), potentially al-
tering research direction and efficiency. Moreover,
predictive multiplicity complicates the justification

334



of decisions made from equally accurate models
(Black et al., 2022b). For example, when equally
accurate models provide contradictory decisions
regarding the approval of a loan application (Alam
and Ali, 2022), the random selection of a model
fails to properly justify the ultimate individual deci-
sion. Despite its relevance, predictive multiplicity
has been overlooked in KGE research.

To the best of our knowledge, this is the first
work to study predictive multiplicity for KGE-
based link prediction. Our contribution is two-fold:
First, we formally define predictive multiplicity in
the context of link prediction. Two metrics, ambi-
guity and discrepancy, are introduced to measure
predictive multiplicity, with an upper bound de-
rived for discrepancy. Evaluating the predictive
multiplicity for six representative KGE methods
on commonly used benchmark datasets, we ob-
serve significant predictive multiplicity behavior in
link prediction, with conflicting predictions rang-
ing from 8% to 39% for testing queries.

To address this issue, our second contribution is
to investigate the effectiveness of voting methods
from social choice theory in mitigating predictive
multiplicity in link prediction. Applying voting
methods to aggregate individual rankings yields
a more robust ranking that optimizes the collec-
tive preference. Our empirical findings demon-
strate significant alleviation of predictive multiplic-
ity through voting methods, with the most effective
approach reducing conflicting predictions by 66%
to 78% for testing queries.

2 Related Work

Although prior studies demonstrate the effective-
ness of KGE methods in learning complex patterns
in KGs (Bordes et al., 2013; Sun et al., 2019; Nickel
et al., 2011; Yang et al., 2015; Trouillon et al., 2016;
Dettmers et al., 2018; Xiong et al., 2022b), fewer
works focus on their reliability. Some studies ad-
dress uncertainty quantification in KGE methods
(Safavi et al., 2020; Tabacof and Costabello, 2020;
Zhu et al., 2024a), and Bhardwaj et al. (2021a,b)
explore their adversarial robustness. However, the
phenomenon of predictive multiplicity in KGE
methods has been overlooked.

The term model multiplicity was first discussed
in Breiman (2001) with the term "Rashomon Ef-
fect" referring specifically to the phenomenon
where there are different weights learned for linear
regression with the same error rate. The term pre-

dictive multiplicity was first introduced by Marx
et al. (2020), who explored this behavior in binary
classification. Marx et al. (2020) further investi-
gate predictive multiplicity in probabilistic clas-
sification. Recent studies also provide evidence
of predictive multiplicity for deep models (Black
et al., 2022a; Mehrer et al., 2020). We initiate an
exploration into the predictive multiplicity behavior
within the context of KGE-based link prediction.

While predictive multiplicity offers flexibility in
model selection without sacrificing accuracy, di-
verging predictions can result in unjustifiable final
choices. Black et al. (2022a) propose a method
to provide consistent predictions. Given diverging
predictions, they first filter them through a speci-
fied confidence threshold and select the final predic-
tion using a majority vote. Besides classification
problems, predictive multiplicity is also frequently
studied for counterfactual explanations (Pawelczyk
et al., 2020; Jiang et al., 2024).

Voting methods can also be seen as ensemble
methods. Ensemble strategies are employed in
KGE methods (Joshi and Urbani, 2022; Xu et al.,
2021) during the training phase to increase the
model performance. Joshi and Urbani (2022) fo-
cuses on enhancing the accuracy of the triple classi-
fication task by aggregating predictions from mod-
els trained using different KGE algorithms. Xu
et al. (2021) demonstrate that combining multiple
low-dimensional models can outperform a single
high-dimensional model. However, our approach
aggregates rankings using social choice theory in
testing time, aiming to alleviate predictive multi-
plicity by providing more robust rankings.

3 Notations and Preliminaries

3.1 Knowledge Graph Embedding

We consider a KG G ⊆ E × R × E defined over
a set E of entities and a set R of relations. The
elements in G are called triples and denoted as
< h, r, t >. A KGE model Mθ : E ×R×E → R
allocates each triple with a predictive score that
measures the plausibility that the triple holds (Bor-
des et al., 2013). The parameters θ are learned to
let Mθ assign higher predictive scores to positive
triples (real facts) while assigning lower predictive
scores to negative triples (false facts). This can be
achieved for example by minimizing margin-based
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ranking loss (Bordes et al., 2013):

L =
∑

tr∈T

∑

tr−∈T −
max(0, γ−Mθ(tr)+Mθ(tr

−)),

(1)
or cross-entropy loss (Trouillon et al., 2016):

L =
∑

tr∈T ∪T −
log(1 + exp(−ytr ·Mθ(tr))), (2)

where γ is a margin hyperparameter, tr refers to a
triple ⟨h, r, t⟩, T , T − are the sets of positive and
negative triples, respectively. The label of a triple,
denoted as ytr, takes values from the set {−1, 1}.
Here, ytr = 1 indicates the triple as positive, while
ytr = −1 indicates that the triple is negative. The
negative triples are typically generated by randomly
replacing the head entity or the tail entity in a posi-
tive triple with a random entity sampled from the
entity set.

3.2 Social Choice Theory

Social choice theory studies collective decision-
making processes, where individual preferences
are aggregated to determine a group’s overall pref-
erence (Brandt et al., 2016). In this section, we
recall some basics of social choice theory from
Shoham and Leyton-Brown (2009).

We consider a finite set of candidates C =
{c1, . . . , cm} and a finite set of voters V =
{1, . . . , n}, who have different preferences on can-
didates in C. We represent preferences by a linear
order ⪰ and let

• c1 ≻ c2 iff c1 ⪰ c2 ∧ c2 ̸⪰ c1 (strict prefer-
ence)

• c1 ∼ c2 iff c1 ⪰ c2 ∧ c2 ⪰ c1 (indifference)

We let ⪰i denote the preference ordering of the
i-th voter. A preference profile p : [⪰1, . . . ,⪰n] is
a list of preference orderings. Next, we introduce
some interesting voting methods from social choice
theory (Brandt et al., 2016).

Definition 1 (Scoring Rule). A score vector is a
vector w ∈ Rm such that w1 ≥ w2 ≥ · · · ≥ wm

and w1 > wm. Any score vector induces a scor-
ing rule, in which each voter awards w1 points to
the top-ranked candidate, w2 points to the second-
ranked, and so on. The candidate with the highest
total sum of scores wins.

Definition 2 (Majority Voting). Majority voting is
a scoring rule with the score vector (1, 0, . . . , 0).

Definition 3 (Borda Voting). Given m candidates,
Borda voting is a scoring rule with the score vector
(m− 1,m− 2, . . . , 0).

Definition 4 (Range Voting (Smith, 2000)). Given
m candidates, range voting is a scoring rule with
a score vector w ∈ [−1, 1]m.

Additionally, we introduce several properties de-
sirable for the link prediction task in Appendix A.

4 Predictive Multiplicity in Link
Prediction

4.1 Link Prediction
A query q ∈ Q is of the form ⟨h, r, ?⟩ or ⟨?, r, t⟩.
We let tr(q, e) denote the corresponding triple
⟨h, r, e⟩ or ⟨e, r, t⟩, respectively. A KGE model Mθ

can be used to rank the candidate entities for query
q. We define the ranking ⪰Mθ,q by e1 ⪰Mθ,q

e2
iff Mθ,q(tr(q, e1)) ≥ Mθ,q(tr(q, e2)). We let
R⪰Mθ,q

(e) denote the rank position of a specific
candidate entity e ∈ E, that is

R⪰Mθ,q
(e) = 1 + |{d ∈ E | d ⪰Mθ,q e}| (3)

Then the link prediction task can be formulated as
a binary classification problem: determine whether
a triple is ranked within the top-K predictions:

TK(Mθ, tr(q, e)) = 1[R⪰Mθ,q
(e) ≤ K]. (4)

The performance of link prediction is commonly
evaluated by Hits@K. The test set T contains
testing queries (q, e) consisting of a query q and a
correct answer e. We define the Hits@K function
HK of a KGE model Mθ as

HK(Mθ) =
1

|T |
∑

(q,e)∈T
1[R⪰Mθ,q (e) ≤ K] (5)

4.2 Definition of Predictive Multiplicity
We study KGE models that perform similarly in
link prediction task in terms of Hits@K, i.e. com-
peting models. Following Marx et al. (2020), we
will now define a ϵ-level set for similar performing
models and ϵ as the error tolerance.

We let M denote a hypothesis class of KGE
models. A baseline model M∗

θ ∈ M is the KGE
model that achieves the highest Hits@K on the
validation dataset throughout the hyperparameter
optimization process. D(Mθ,M

∗
θ ) measures the

difference between baseline model and a competing
model with respect to Hits@K.

D(Mθ,M
∗
θ ) = HK(M∗

θ )−HK(Mθ). (6)
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Definition 5 (ϵ-level set). Given a baseline KGE
model M∗

θ and a hypothesis classM, the ϵ-level
set around M∗

θ is the set of all models Mθ ∈ M
with a performance difference at most ϵ in the link
prediction task.

Sϵ(M
∗
θ ) := {Mθ ∈M | D(Mθ,M

∗
θ ) ≤ ϵ}, (7)

Given a testing query set T , predictive multi-
plicity is defined for testing queries τ = (q, e)
that receive conflicting predictions from competing
models.

Definition 6 (Predictive Multiplicity). Given a
baseline KGE model M∗

θ , an error tolerance ϵ
and a testing query set T , link prediction prob-
lem exhibits predictive multiplicity over the ϵ-level
set Sϵ(M

∗
θ ) if there exists a model Mθ ∈ Sϵ(M

∗
θ )

such that TK(Mθ, tr(τi)) ̸= TK(M∗
θ , tr(τi)) for

some τi ∈ T .

4.3 Measuring Predictive Multiplicity
Ambiguity and discrepancy are two measures that
have been used to quantify predictive multiplicity
in classification tasks (Marx et al., 2020; Watson-
Daniels et al., 2023). We next define them for link
prediction.

To make the notation more concise, we use
∆(Mθ, τ) to denote whether a competing model
Mθ provides conflicting predictions compared to
the baseline model M∗

θ for a testing query τ =
(q, e).

∆(Mθ, τ) = 1[TK(Mθ, tr(τ)) ̸= TK(M∗
θ , tr(τ))] (8)

Definition 7 (Ambiguity). Given a testing query
set T , the ambiguity of link prediction over the
ϵ-level set Sϵ(M

∗
θ ) is the proportion of testing

queries that obtain a different prediction by a com-
peting model Mθ ∈ Sϵ(M

∗
θ ):

αϵ(M
∗
θ ) :=

1

|T |
∑

τ∈T
max

Mθ∈Sϵ(M∗
θ )
∆(Mθ, τ) (9)

Definition 8 (Discrepancy). The discrepancy of
link prediction over the ϵ-level set Sϵ(M

∗
θ ) is the

maximum percentual disagreement between the
baseline model and a competing model Mθ ∈
Sϵ(M

∗
θ ):

δϵ(M
∗
θ ) := max

Mθ∈Sϵ(M∗
θ )

1

|T |
∑

τ∈T
∆(Mθ, τ) (10)

Ambiguity measures the proportion of testing
queries that exhibit predictive multiplicity, while

discrepancy captures the largest fraction of test
queries for which the predicted answers vary upon
switching the baseline model with a competing
model.

4.4 Bound on Predictive Multiplicity

In Proposition 1, we bound the number of queries
with conflicting predictions between the baseline
model and a competing model in the ϵ-level set.
We provide a proof in Appendix B.

Proposition 1 (Bound on Discrepancy). The dis-
crepancy between the baseline model M∗

θ and any
competing model Mθ ∈ Sϵ(M

∗
θ ) obeys:

δϵ(M
∗
θ ) ≤ 2 · (1−HK(M∗

θ )) + ϵ (11)

The upper bound illustrates how the extent of
predictive multiplicity depends on Hits@K of the
baseline model. Specifically, a less accurate base-
line model theoretically provides greater potential
for predictive multiplicity.

5 Alleviating Predictive Multiplicity using
Social Choice Theory

The predictive multiplicity can be alleviated by
improving the robustness of the rankings. Here,
robustness means models with similar performance
should also provide similar rankings for testing
queries. Social choice theory provides a theoretical
framework for aggregating individual preferences
to determine a group’s overall preference (Brandt
et al., 2016). Voting methods from social choice
theory can help "smooth out" the randomness in
rankings by aggregating individual models (Potyka
et al., 2024). Intuitively, the candidate entities that
are constantly ranked high for all models should
also be ranked high in final rankings.

We next describe ranking aggregation using vot-
ing methods with a running example and adapt
range voting (Smith, 2000) to aggregate the predic-
tive scores for the final ranking.

5.1 Ranking Aggregation using Voting
Methods

For link prediction, given a query q and a KGE
model Mθ, the ranking of candidate entities for
a query is denoted as ⪰Mθ,q. By training KGE
models with N different random seeds, we obtain a
profile for each query pq = [⪰1

Mθ,q
, . . . ,⪰N

Mθ,q
]. A

ranking aggregation process takes pq as input and
outputs a single ranking.
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We illustrate how to aggregate rankings with
voting methods in link prediction task with the
following running example.

Example 1. Assume there are in total four entities
{A,B,C,D} and one relation r in our KG. Given
a query ⟨A, r, ?⟩, three models [M1

θ ,M
2
θ ,M

3
θ ] sam-

pled from ϵ-level set Sϵ(M
∗
θ ) provide different rank-

ings in Table 1. The predictive scores for candidate
entities is shown in brackets after each entity.

Model ID Rankings

1 C(100) ≻1 B(8) ≻1 D(6) ≻1 A(1)
2 B(8) ≻2 D(7) ≻2 C(6) ≻2 A(5)
3 B(40) ≻3 C(10) ≻3 A(2) ≻3 D(1)

Table 1: Rankings of models with corresponding predic-
tive scores for query ⟨A, r, ?⟩.

We apply all voting methods described in sec-
tion 3.2 for ranking aggregation. Majority voting
and Borda voting aggregate rankings are based
on ordinal positions of candidates, while range
voting assigns more informative scores to candi-
dates. To adapt range voting in link prediction, we
transform the predictive scores into scores within
range [−1, 1]. Concretely, we denote the predic-
tive scores of candidate entities for a query as
Γ = [γ1, . . . , γ|E|] and the score vector of range
voting as w = [w1, . . . , w|E|]. We then obtain the
score vector based on predictive scores as follows:

wi = 2× γi −min(Γ)

max(Γ)−min(Γ)
− 1. (12)

Table 2 shows the scores assigned to candidate
entities by voting methods, which are then used
to re-rank the entities based on the sum of their
voting scores. The resulting aggregated rankings
are presented in Table 3.

Entity Majority Vote Borda Vote Range Vote
≻1 ≻2 ≻3 sum ≻1 ≻2 ≻3 sum ≻1 ≻2 ≻3 sum

A 0 0 0 0 0 0 1 1 -1 -1 -0.95 -2.95
B 0 1 1 2 2 3 3 8 -0.85 1 1 1.15
C 1 0 0 1 3 1 2 6 1 0.33 -0.54 0.79
D 0 0 0 0 1 2 0 3 -0.90 -0.33 -1 -2.23

Table 2: Ranking aggregation process for Example 1.

6 Experiments

In this section, we measure the predictive multi-
plicity in link prediction and apply voting methods

Voting Method Rankings

Majority Vote B(2) ≻ C(1) ≻ D(0) ∼ A(0)
Borda Vote B(8) ≻ C(6) ≻ D(3) ≻ A(1)
Range Vote B(1.15) ≻ C(0.79) ≻ D(−2.23) ≻ A(−2.95)

Table 3: Aggregated rankings of different voting meth-
ods for Example 1.

from social choice theory. Our goals are (i) to mea-
sure the predictive multiplicity for the link predic-
tion task; (ii) to investigate to which extent voting
methods can alleviate predictive multiplicity.
Models and Datasets. The main experiments
are conducted for six representative KGE models
(TransE (Bordes et al., 2013), RotatE (Sun et al.,
2019), RESCAL (Nickel et al., 2011), DistMult
(Yang et al., 2015), ComplEx (Trouillon et al.,
2016), and ConvE (Dettmers et al., 2018)) on four
public benchmark datasets (WN18 (Bordes et al.,
2013), WN18RR (Dettmers et al., 2018), FB15k
(Bordes et al., 2013), and FB15k-237 (Toutanova
and Chen, 2015)). A small dataset Nations (Hoyt
et al., 2022) is additionally used for investigating
the change of predictive multiplicity with respect
to the error tolerance ϵ. The statistics of benchmark
datasets are summarized in Table 4.

#Entity #Relation #Training #Validation #Test

WN18 40,943 18 141,442 5,000 5,000
WN18RR 40,943 11 86,835 3,034 3,134
FB15k 14,951 1,345 483,142 50,000 59,071
FB15k-237 14,541 237 272,115 17,535 20,466
Nations 14 55 1,592 199 201

Table 4: Statistics of benchmark datasets for link pre-
diction task.

Experiment Settings. For training KGE, we use
the implementation of LibKGE (Broscheit et al.,
2020). All experiments were conducted on a Linux
machine with a 40GB NVIDIA A100 SXM4 GPU.

6.1 Evaluating Predictive Multiplicity
The ϵ-level set, as defined in Definition 5, is too
large to be evaluated in practice. As usual, we will
use empirical notions of ambiguity and discrepancy
that are based on a sample of the ϵ-level set that we
denote by Sϵ(M

∗
θ )

′.
Constructing the Subset of ϵ-level Set. To con-
struct Sϵ(M

∗
θ )

′, we first obtain the baseline model
M∗

θ by performing 60 trials of hyperparameter
search using the strategy in Ruffinelli et al. (2019)
(more details in Appendix C) and set ϵ to 0.01 (a
commonly used value in the literature (Marx et al.,
2020; Watson-Daniels et al., 2023)). Subsequently,
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we train a potential competing model using the
training configurations of the baseline model with
a different random seed. If the performance dif-
ference between the potential competing model
and the baseline model is less than ϵ, we add it in
Sϵ(M

∗
θ )

′. Due to computational constraints, we
limit the size of Sϵ(M

∗
θ )

′ to 10 in our experiment.
Refer to Algorithm 1 for a pseudocode outlining
this process.

Algorithm 1 Pseudocode for Sϵ(M
∗
θ )

′ construc-
tion.

1: M∗
θ ← Bayesian Optimization for 60 trials.

2: ϵ← 0.01.
3:

4: Sϵ(M
∗
θ )

′ ← An empty set.
5: while |Sϵ(M

∗
θ )

′| ≤ 10 do
6: Mθ ← Retrain M∗

θ with a different random
seed.

7: if D(Mθ,M
∗
θ ) ≤ ϵ then

8: Sϵ(M
∗
θ )

′ add Mθ.
9: end if

10: end while
11: return Sϵ(M

∗
θ )

′

Evaluation Metrics. We evaluate the accuracy of
link prediction with Hits@K and the predictive
multiplicity with ambiguity and discrepancy. Note
that in our experiment, ambiguity and discrepancy
are measured by their empirical counterpart over
the ϵ-level set approximation Sϵ(M

∗
θ )

′. To distin-
guish these metrics from previous definitions in
section 4.3, we denote them as α̂ϵ and δ̂ϵ and call
them empirical ambiguity and discrepancy, respec-
tively.
Evaluation Procedure. We demonstrate the eval-
uation procedure in Algorithm 2. We denote
Aggregate(A,Sagg) as a procedure to aggregate
rankings predicted by models in Sagg using a vot-
ing method A (detailed in section 5.1). The re-
sult of Aggregate(A,Sagg) can be viewed as a
new KGE model Magg that predicts the aggregated
rankings. train(config(M ), seed) denotes the train-
ing process of a KGE model, which adopts the
same training configurations (including the train-
ing graph, hyperparameters, etc.) of a pre-trained
model M with a specific random seed.

For each KGE method and benchmark dataset,
we first construct a set of competing models,
Sϵ(M

∗
θ )

′. Without employing voting methods, we
assess Hits@K, α̂ϵ, and δ̂ϵ over Sϵ(M

∗
θ )

′. Oth-

Algorithm 2 Pseudocode for evaluation.

Require: Sϵ(M
∗
θ )

′

1: S ← An empty set. ▷ Initialize evaluation set
2: if not apply voting method A then
3: S ← Sϵ(M

∗
θ )

′

4: else
5: for each Mθ in Sϵ(M

∗
θ )

′ do
6: Sagg ← An empty set.
7: for i← 1 to 10 do
8: seedi ← generateRandomSeed()
9: M̂θ ← train(config(Mθ), seedi).

10: Sagg ← Sagg ∪ {M̂θ}
11: end for
12: Magg ← Aggregate(A, Sagg).
13: S ← S ∪ {Magg}.
14: end for
15: end if
16:

17: Evaluate Hits@K for all models in S and re-
port the average value.

18: Evaluate α̂ϵ and δ̂ϵ for S.

erwise, we collect a set of models Sagg for each
model Mθ in Sϵ(M

∗
θ )

′ by training 10 models us-
ing the configurations of Mθ with different random
seeds. Subsequently, we aggregate the models in
Sagg with a voting method A to get an "aggregated"
model Magg for each Mθ, and then measure all
metrics over the set of aggregated models.
Results. We present the results of predictive mul-
tiplicity of link prediction in Table 5. For bench-
mark datasets WN18RR, FB15k237 and six KGE
representative methods, we observe that competing
models with less than 1% error tolerance (ϵ = 0.01)
assign conflicting predictions for 8% to 39% of test-
ing queries (α̂ϵ). Voting methods effectively miti-
gate the issue of predictive multiplicity. Majority
voting generally reduces conflicting predictions but
also decreases Hit@K substantially. Borda vot-
ing yields comparable Hits@K and significantly
alleviate predictive multiplicity. Range voting con-
sistently outperforms other methods in terms of
Hits@K and substantially reduces predictive mul-
tiplicity, resulting in a relative decrease of 66% to
78% in empirical ambiguity (α̂ϵ) and 64% to 76%
in empirical discrepancy (δ̂ϵ).

We focus on link prediction for recommenda-
tion, emphasizing the importance of whether true
facts are ranked within the top-K. In Appendix D.2,
we extend our analysis to link prediction within a
query answering context, where the objective is to
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Models Baselines
WN18RR FB15k237

Hits@10 ↑ α̂ϵ ↓ δ̂ϵ ↓ Hits@10 ↑ α̂ϵ ↓ δ̂ϵ ↓
Tr

an
sE

w/o 0.518 0.076 0.034 0.455 0.385 0.145
major 0.055 0.096 0.045 0.155 0.171 0.081
Borda 0.482 0.032 0.016 0.456 0.110 0.044
range 0.519 0.017 0.009 0.470 0.101 0.041

R
ot

at
E

w/o 0.547 0.195 0.074 0.520 0.163 0.064
major 0.413 0.064 0.029 0.204 0.104 0.053
Borda 0.564 0.062 0.028 0.523 0.039 0.017
range 0.578 0.051 0.022 0.524 0.037 0.016

R
E

SC
A

L w/o 0.517 0.248 0.095 0.482 0.375 0.140
major 0.198 0.108 0.054 0.145 0.165 0.089
Borda 0.561 0.099 0.043 0.485 0.107 0.048
range 0.575 0.084 0.034 0.498 0.098 0.042

D
is

tM
ul

t w/o 0.526 0.169 0.068 0.476 0.320 0.120
major 0.185 0.078 0.037 0.144 0.124 0.059
Borda 0.524 0.055 0.024 0.475 0.088 0.037
range 0.542 0.048 0.021 0.488 0.082 0.034

C
om

pl
E

x w/o 0.541 0.217 0.085 0.482 0.308 0.116
major 0.243 0.243 0.126 0.145 0.121 0.055
Borda 0.559 0.067 0.030 0.480 0.087 0.036
range 0.573 0.058 0.024 0.493 0.082 0.032

C
on

vE

w/o 0.500 0.222 0.088 0.474 0.340 0.130
major 0.185 0.092 0.047 0.150 0.154 0.074
Borda 0.522 0.082 0.035 0.474 0.092 0.039
range 0.534 0.068 0.027 0.486 0.085 0.034

Table 5: This table compares the accuracy and predictive
multiplicity of applying different voting methods on six
representative KGE models and two benchmark datasets,
WN18RR and FB15k237. We underline the best values
for each model-dataset pair and boldface the global
optimal values. (Results for more datasets see Table 7
in Appendix D.1.)

determine whether competing models yield simi-
lar/same answer sets. Comparable conclusions can
be drawn within that context as well.

6.2 Further Analysis

6.2.1 Investigating Predictive Multiplicity wrt.
Error Tolerance

We conduct experiment for ComplEx on Nations
to investigate the influence of ϵ on predictive mul-
tiplicity. The procedure follows Algorithm 2 with
thirty values of ϵ spanning the range from 0 to 0.06.
We represent the results in Figure 2. Our observa-
tions confirm the expectation in section 4.4: both
predictive multiplicity metrics increase with larger
values of ϵ. Employing voting methods consistently
reduces both ambiguity and discrepancy across all
ϵ values, with a more pronounced effect observed
for larger ϵ. Notably, even at ϵ = 0, conflicting
predictions persist, underscoring the necessity to
report predictive multiplicity even for equally ac-
curate models. Additionally, we observe that the
change of ϵ has negligible effects on Hits@K, as
detailed in Appendix D.3.

0.00 0.02 0.04 0.06
0.0

0.1

0.2

0.3

0.4
Ambiguity

0.00 0.02 0.04 0.06

0.05

0.10

Discrepancy
w/o major Borda range

Figure 2: Predictive multiplicity for ComplEx on Na-
tions dataset wrt. ϵ.

6.2.2 Investigating the Number of Models for
Aggregation

In Figure 3, we investigate the predictive multi-
plicity metrics in relation to the number of models
employed for ranking aggregation. Employing a
larger number of models for aggregation yields a
more notable alleviation of predictive multiplicity.
Remarkably, even with a relatively small number
of aggregated models, substantial improvements
in predictive multiplicity can be attained. Further-
more, change of the number of models for aggrega-
tion does not notably affect Hits@K (Figure 11 -
14 in Appendix D.4).

2 4 6 8 10
#aggregation

0.0

0.2

0.4

2 4 6 8 10
#aggregation

0.00

0.05

0.10

0.15

w/o major Borda range

Figure 3: Investigation of the predictive multiplicity
with respect to the number of models used for voting
methods. Due to page limit, we only show the results
of RESCAL on FB15k237 in this figure, we put more
results in appendix D.4.

6.2.3 Investigating the Predictive Multiplicity
wrt. Entity/Relation Frequency

Most entities/relations only have a few facts in
KGs (Xiong et al., 2018). There are more pos-
sible embeddings or more uncertainty for those
relations/entities since they are less constrained
by the existing facts in KG during training. Intu-
itively, there might be more significant predictive
multiplicity behavior for queries containing those
entities/relations.

We conduct hypothesis tests using Spearman’s
coefficient (ρ) to assess the correlation between
entity/relation frequency (i.e., the number of triples
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w/o range vote
Var.1 Var.2 ρ p-value ρ p-value

Rel. Fre α̂ϵ -0.349 <0.001 -0.156 <0.001
Rel. Fre δ̂ϵ -0.400 <0.001 -0.204 <0.001
Ent. Fre α̂ϵ -0.106 <0.001 -0.098 <0.001
Ent. Fre δ̂ϵ -0.114 <0.001 -0.103 <0.001

Table 6: This table presents the correlation between en-
tity/relation frequency and α̂ϵ and δ̂ϵ, with Spearman’s
coefficient (ρ) and its p-value. Columns 3 and 4 show
results without applying voting method, while columns
5 and 6 show results with range voting.

containing the target entity/relation) and predictive
multiplicity metrics (α̂ϵ and δ̂ϵ). ρ ranges from -1
to 1, indicating the strength and direction of the
correlation: close to 1 implies a positive monotonic
relationship, while close to -1 implies a monotonic
negative relationship.

We count entity/relation frequencies (Ent. Fre
and Rel. Fre) as variable 1 and calculate α̂ϵ and
δ̂ϵ for six KGE methods on entity/relation- spe-
cific subsets of all datasets as variable 2. Results
in Table 6 show a significant negative correlation,
confirming our conjecture. Notably, applying range
voting weakens this correlation, potentially due to
its effectiveness in alleviating predictive multiplic-
ity for queries with higher uncertainty.

7 Discussing Other Influential Factors of
Predictive Multiplicity

In this section, we discuss additional factors that
may influence predictive multiplicity, namely ex-
pressiveness and inference patterns. We briefly
introduce these two notions and then discuss some
observations regarding their relationship to predic-
tive multiplicity.
Expressiveness. The expressiveness of KGE mod-
els refers to the ability of modeling an arbitrary KG.
Following (Pavlović and Sallinger, 2023; Wang
et al., 2018), we call a KGE model fully expressive
if we can find a parameter set such that the model
predicts all training triples correctly. Intuitively,
more expressive models can represent more possi-
ble embeddings that fit the training graph, thereby
allowing more "room" for multiplicity.
Inference Patterns. Inference patterns refer to the
logic rules used to derive new triples from the ob-
served facts in KGs. The generalization capabilities
of KGE is usually analysed based on inference pat-
terns that KGE model can capture (Abboud et al.,
2020). For instance, TransE can capture inverse

patterns, wherein r1(X,Y ) implies r2(Y,X), sug-
gesting that the testing triple ⟨e1, r2, e2⟩ can be cor-
rectly predicted with low uncertainty if ⟨e2, r1, e1⟩
is present in the training graph. Theoretically, if the
KGE method effectively captures the inference pat-
terns for the testing triple, we would expect fewer
conflicts from competing models.
Observations. According to Wang et al. (2018, Ta-
ble 1), RESCAL and ComplEx are more expressive
than DistMult when considering similar embedding
dimensions. We observe that RESCAL and Com-
plEx associate with larger values of ambiguity and
discrepancy than DistMult in Table 5, aligning with
our conjecture regarding expressiveness. Further-
more, WN18 and FB15k are known to suffer from
test leakage due to inverse relations (Toutanova and
Chen, 2015), meaning that many test triples can
be easily derived by the inverse pattern. WN18RR
and FB15k-237 delete inverse relations to address
this issue (Toutanova and Chen, 2015; Dettmers
et al., 2018). In Figure 4, we note a consistent
trend where competing models exhibit fewer con-
flicting predictions on WN18 and FB15k compared
to WN18RR and FB15k237. This observation sup-
ports our conjecture regarding inference patterns,
as the absence of even a single inference pattern
notably increase the number of conflicting predic-
tions.

TransE RotatE RESCAL DistMult ComplEx ConvE
models

0.0

0.1

0.2

0.3

0.4
WN18 WN18RR FB15k FB15k237

Figure 4: We demonstrate the ambiguity for 10 compet-
ing models on WN18, WN18RR, FB15k and FB15k237
in this figure.

The result of TransE on FB15k237 appears to be
an outlier, marked by its low expressiveness but the
highest ambiguity and discrepancy among all KGE
methods. However, in FB15k237, numerous train-
ing triples involve symmetric relations, with test-
ing triples inferrable through symmetric patterns
(Rim et al., 2021). Since TransE fails to represent
symmetric triple pair (⟨e1, r, e2⟩ and ⟨e2, r, e1⟩) si-
multaneously and lacks the capability to capture
symmetric patterns, it may therefore exhibit addi-
tional predictive multiplicity.
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8 Conclusion

In this paper, we define and measure the predictive
multiplicity in link prediction. We measure the pre-
dictive multiplicity with empirical ambiguity and
discrepancy for representative KGE methods on
commonly used benchmark datasets. Our empiri-
cal study reveals significant predictive multiplicity
in link prediction, and we demonstrate the effective-
ness of applying voting methods. We also discuss
several potential factors that could influence pre-
dictive multiplicity in link prediction.

Furthermore, according to Proposition 1, predic-
tive multiplicity depends on the accuracy of the
baseline model and error tolerance (ϵ). A less ac-
curate baseline model or larger ϵ allows for more
predictive multiplicity. Given the typically low
accuracy in link prediction and the existence of
conflicting predictions even when ϵ = 0, a consid-
erable number of conflicting predictions may arise
from competing models in practice, posing signif-
icant risks in safety-critical domains. Hence, we
advocate for the measurement, reporting, and miti-
gation of predictive multiplicity in link prediction
within these domains.

9 Limitations

In Section 7, we offer conjectures regarding the
relationship between influential factors and predic-
tive multiplicity. Our findings only show that our
conjectures are potentially reasonable, but no con-
clusions can be drawn based on them. A systematic
analysis necessitates quantifying expressiveness,
inference patterns, which falls outside the scope
of our paper but is a promising avenue for future
research.

To mitigate predictive multiplicity, employing
voting methods derived from social choice theory
emerges as a straightforward yet effective strat-
egy. However, voting-based ranking aggregation
requires training multiple competing models from
scratch, which can be time/computational consum-
ing. Addressing predictive multiplicity during the
training phase is considered as next step. Further-
more, more advanced voting methods such as par-
tial Borda voting (Cullinan et al., 2014) could be ex-
plored in the future, which aggregates only partial
rankings to reduce memory requirements during
the aggregation step.

10 Ethics Statement

In this study, we emphasize the importance of re-
porting and dealing with predictive multiplicity to
ensure fair and transparent decision-making pro-
cesses for KGE-based applications. Failure to ac-
count for predictive multiplicity may lead decision-
makers to select models that align with their per-
sonal preferences, potentially resulting in unfair
outcomes for individuals. By neglecting to report
predictive multiplicity of KGE models, decision-
makers risk undermining the integrity and equity
of the decision-making process.
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A Properties of Voting Methods from
Social Choice Theory

All voting methods were proposed to aggregated
preferences in an intuitive "fair" way. However,
for some cases, they may fail unintendedly. Thus,
precisely defined properties - appealing behaviors
that the voting methods satisfy, are investigated in
social choice theory (Brandt et al., 2016).

We introduce some properties from (Brandt et al.,
2016) that are desirable for link prediction. Recall
that a social choice function is a function f map-
ping from the set of all possible profiles P to a
non-empty subset of possible candidate C. Given
a finite set of voters N = {1, . . . , n} and a profile
p = [⪰1, . . . ,⪰n], f is called:

• anonymous: if f does not depend on the iden-
tity voters, i.e., if for every bijective function
π : V → V , we have f([⪰1, . . . ,⪰n]) =
f([⪰π(1), . . . ,⪰π(n)]) .

• neutral: if f does not depend on the identity
of candidates, i.e., if two candidates are ex-
changed in every preference ordering in p, the
outcome will change accordingly.

• Pareto-optimal: if candidate cA is ranked
higher than candidate cB in all preference or-
derings, then cB ̸∈ f(p).

• reinforcing: If p1, p2 are disjoint profiles and
f(p1) ∩ f(p2) ̸= ∅ then f(p1) ∩ f(p2) =
f(p1 ∪ p2).

• monotonic: if whenever a profile p is changed
to p′ by having one voter lifting the winning
candidate, f(p) = f(p′).

Theorem 1 (Young (1975)). Suppose that V is a
voting method that requires voters to rank the can-
didates. Then, V is anonymous, neutral and rein-
forcing if and only if the method is a scoring rule.

According to Theorem 1, majority vote and
Borda vote as scoring rules are anonymous, neutral
and reinforcing.

Note simply averaging the predictive scores does
not satisfy some relevant properties for providing
such as anonymity. That means KGE models with
higher predictive scores for the top ranked entity
would dominate the final decision. Therefore, we
do not consider averaging as baseline in our paper.

A social welfare function fw is a mapping from
the set of all possible profiles P to a set of all linear
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orders on C. We next introduce some properties of
fw.
fw is:

• weakly Paretian: for c1, c2 ∈ C, if c1 ≺i c2
for all i ∈ N , then c1 ≺ c2.

• independent of irrelevant alternatives (IIA):
if for any c1, c2 ∈ C, the relative ranking of c1
and c2 only depends on the relative rankings
of c1 and c2 provided by the voters - but not
on how the voters rank some third candidate
c3.

• a dictatorship: if there exists a voter i∗ ∈ N
such that, for all c1, c2 ∈ C, c1 ≺i∗ c2 implies
c1 ≺ c2.

Theorem 2 (Arrow (1951)). When there are three
or more alternatives, then every fw that is weakly
Paretian and IIA must be a dictatorship.

Majority vote and Borda vote are both weakly
Paretian and non-dictatorship (Brandt et al., 2016),
therefore according to Theorem 2, they are not IIA.
However, range vote as a cardinal voting method
meet the Arrow’s conditions and additionally pro-
vide "maximum information" (i.e. provide their
opinion of the maximum possible number of candi-
dates) (Vasiljev, 2014; Smith, 2000).

B Proof of Proposition 1

Proof. Given a set of testing queries T =
{(q1, e1), . . . , (qn, en)}, we let ŷ ∈ Rn, yi =
TK(M∗

θ , tr(qi, ei)) be the vector that contains a
1 if the baseline model regards ei as a valid answer.
Similarly, we let y′ ∈ Rn, yi = TK(Mθ, tr(qi, ei))
be the corresponding vector for a competing model
Mθ ∈ Sϵ(M

∗
θ ).

Let 1 ∈ Rn be a vector consisting only of
ones. Then we can express the proportion of test-
ing triples not ranked in top-K as 1

n ||1− ŷ||1 and
1
n ||1− y′||1 for the baseline and competing model,
respectively. We let δ(MA,MB) denote the dis-
crepancy between two models MA,MB ∈M.

δ(MA,MB) :=

1

n

n∑

τ∈T
1[TK(MA, τ) ̸= [TK(MB, τ)]

We can then rewrite

δ(M∗
θ ,Mθ) =

1

n
||y′ − ŷ||1

≤ 1

n
||1− y′||1 +

1

n
||1− ŷ||1

= (1−HK(Mθ)) + (1−HK(M∗
θ ))

≤ 2−HK(M∗
θ ) + ϵ−HK(M∗

θ ),

where we used the triangle inequality and sym-
metry of the L1-norm for the first inequality and
the definition of Sϵ(M

∗
θ ) for the second. Since

δϵ(M
∗
θ ) = maxM ′

θ∈Sϵ(M∗
θ )
δ(M∗

θ ,M
′
θ), we have

δϵ(M
∗
θ ) ≤ 2 · (1−HK(M∗

θ )) + ϵ.

C More Experiment Settings

C.1 Personal Identification Issue in FB15k
and FB15k237

While FB15k and FB15k237 contain information
about individuals, it typically focuses on well-
known public figures such as celebrities, politicians,
and historical figures. Since this information is al-
ready widely available online and in various public
sources, its inclusion in Freebase doesn’t signifi-
cantly compromise individual privacy compared to
datasets containing sensitive personal information.

C.2 Change of Sϵ(Mθ)
′ after Applying Voting

Methods

Theoretically, we need to ensure that the aggre-
gated models within the evaluation set S should
also have exactly the same ϵ with the original set
of competing models Sϵ(M

∗
θ )

′. In order to do that,
the pseudocode of evaluating predictive multiplic-
ity should look like following:

Recall from Algorithm 2, we denote
Aggregate(A,Sagg) as a procedure to ag-
gregate rankings predicted by models in Sagg

using a voting method A (detailed in section
5.1). The result of Aggregate(A,Sagg) can be
viewed as a new KGE model Magg that predicts
the aggregated rankings. train(conf(M ), seed)
denotes the training process of a KGE model,
which adopts the same training configurations
(including the training graph, hyperparameters,
etc.) of a pre-trained model M with a specific
random seed.

The procedure described in Algorithm 2 can not
guarantee to have same ϵ for both S and Sϵ(M

∗
θ )

′,
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Algorithm 3 Pseudocode for evaluation (in theory).

Require: Sϵ(M
∗
θ )

′

1: S ← An empty set. ▷ Initialize evaluation set
2: if not apply voting methods then
3: S ← Sϵ(M

∗
θ )

′

4: else
5: ▷ Aggregation for the baseline model
6: S∗

agg ← An empty set.
7: for i← 1 to 10 do
8: seedi ← RandomSeed()
9: M̂∗

θ ← train(conf(M∗
θ ), seedi).

10: S∗
agg ← S∗

agg ∪ {M̂∗
θ }

11: end for
12: M∗

agg ← Aggregate(A, S∗
agg).

13: S ← S ∪ {M∗
agg}.

14:

15: ▷ Aggregation for the competing models
16: while |S| ≤ 10 do
17: Sagg ← An empty set.
18: do
19: for i← 1 to 10 do
20: seedi ← RandomSeed()
21: M̂θ ← train(conf(M∗

θ ), seedi).
22: Sagg ← Sagg ∪ {̂Mθ}
23: end for
24: Magg ← Aggregate(A, Sagg).
25: while D(M∗

agg,Magg) ≤ ϵ
26: S ← S ∪ {Magg}.
27: end while
28: end if
29:

30: Evaluate Hits@K for all models in S and re-
port the average value.

31: Evaluate α̂ϵ and δ̂ϵ for S.

since Hits@K changes after applying voting meth-
ods. However, obtaining a desirable aggregated
model with the do-while loop (from line 19 to line
27) in Algorithm 3 can be very time/computational
consuming (approximately 10 hours for each loop).
Therefore, we obtain the aggregated model from
each competing model in Sϵ(M

∗
θ )

′ to reduce the
training effort in Algorithm 2. Empirically, we ob-
serve a negligible deviation of ϵ after applying the
evaluation procedure of Algorithm 2, see Figure
5. This level of ϵ deviation should not significantly
change our claims.

2 4 6 8 10
#aggregation

0.000

0.002

0.004

0.006

0.008

0.010
Deviation of  after applying voting methods

w/o
major
borda
range

Figure 5: Deviation of ϵ after voting methods wrt. the
number of models used for aggregation (results for
RESCAL on FB15k237).

C.3 Hyperparameter Search
To get the baseline model M∗

θ , we use PyTorch-
based library LibKGE (Broscheit et al., 2020)
(MIT-license) and basically follow the hyperparam-
eter search strategy in Ruffinelli et al. (2019). We
recall the important details again in this section.

We first conduct quasi-random hyperparameter
search via a Sobol sequence, which aims to dis-
tribute hyperparameter settings evenly to avoid
"clumping" effects (Bergstra and Bengio, 2012).
More specifically, for each dataset and model, we
generated 30 different configurations per valid com-
bination of training type and loss function. we
added a short Bayesian optimization phase (best
configuration so far + 30 new trials) to tune the
hyperparameters further. All above steps are con-
ducted using Ax framework (https://ax.dev/)

We use a large hyperparameter space including
loss functions (pairwise margin ranking with hinge
loss, binary cross entropy, cross entropy), regular-
ization techniques (none/L1/L2/L3, dropout), opti-
mizers (Adam, Adagrad), and initialization meth-
ods used in the KGE community as hyperparam-
eters. We consider 128, 256, 512 as possible em-
bedding sizes. More details see in Ruffinelli et al.
(2019, Table 5).

The hyperparameters of the baseline models are
located within the software folder we submitted.
Concretely, all configuration files (*.yaml) that we
use for training baseline models/competing mod-
els/models for aggregation can be found in folder
"configs".

C.4 GPU Hours
We use a Linux machine with a 40GB NVIDIA
A100 SXM4 GPU. For each KGE methods on one

347

https://ax.dev/


benchmark dataset, we allocate at most 80 hours
to fit the baseline models, 14 hours to construct
competing models and 10 hours to fit the models
used for aggregation.

D More Experiment Results

Due to the page limit, we represent more experi-
ment results in this section.

D.1 Experiments for Link Prediction in
Context of Recommendation

Table 7 presents accuracy and predictive multiplic-
ity metrics for six KGE models across four datasets,
extending the findings from Table 5. Key observa-
tions are discussed in Section 6.1. Notably, datasets
with data leakage, such as WN18 and FB15k, con-
sistently exhibit larger predictive multiplicity met-
rics compared to datasets without this issue, namely
WN18RR and FB15k237. This trend is visualized
in Figure 4 and elaborated upon in Section 7.

D.2 Experiments for Link Prediction in
Context of Query Answering

We define link prediction as binary classification
problem in the main body of the paper, it is suitable
for recommendation systems, where people only
care about the top-K results. But there are cases
where people care more about the answer set of
the query. For example, CQD (Arakelyan et al.,
2021) decomposite logical queries into one-step
atomic queries like ⟨h, r, ?⟩ or ⟨?, r, t⟩ and predict
the answer set for each atomic query with Com-
plEx. In this case, We can define link prediction
as predicting an answer set A for queries. We de-
note tr(q, e) as the corresponding triple ⟨h, r, e⟩ or
⟨e, r, t⟩, respectively.

Definition 9 (Link Prediction for Query Answer-
ing). Given a KGE model Mθ, a query q ∈ Q and
a scoring-based threshold τ , the answer set A of
the query q include all entities that have predictive
scores exceeding the threshold.

Aτ (Mθ, q) = {e ∈ E |Mθ(tr(q, e)) ≥ τ}. (13)

Then we adapt all definition of predictive multi-
plicity and its metrics to this setting. The definition
of the ϵ-level set remains the same. Embedding-
based query answering exhibits predictive multi-
plicity if competing models suggest different an-
swer sets for a given query.

Definition 10 (Predictive Multiplicity). Given a
threshold τ , a baseline model M∗

θ , and an error

tolerance ϵ, the prediction of query q exhibits pre-
dictive multiplicity if there exists a model Mθ ∈
Sϵ(M

∗
θ ) such that Aτ (Mθ, q) ̸= Aτ (M

∗
θ , q).

Definition 11 (Ambiguity). Given a testing query
set Q′ and a threshold τ , the ambiguity of link pre-
diction over the ϵ-level set Sϵ(M

∗
θ ) is the propor-

tion of testing queries that are provided different
answer sets by a competing model Mθ ∈ Sϵ(M

∗
θ ):

α(M∗
θ ) :=

1

|Q′|
∑

q∈Q′
max

Mθ∈M
1[Aτ (Mθ, q) ̸= Aτ (M

∗
θ , q)].

(14)

Definition 12 (Discrepancy). Given a testing query
set Q′ and a threshold τ , the discrepancy of link
prediction over the ϵ-level set Sϵ(M

∗
θ ) is the max-

imum proportion of testing queries that are pro-
vided different answer sets by a competing model
Mθ ∈ Sϵ(M

∗
θ ):

δ(M∗
θ ) := max

Mθ∈M
1

|Q′|
∑

q∈Q′
1[Aτ (Mθ, q) ̸= Aτ (M

∗
θ , q)].

(15)

Additionally, we introduce a new evaluation met-
ric agreement to measure the overlap of the pre-
dicted answer sets from competing models based
on Jaccard similarity (Jaccard, 1901). The Jaccard
similarity (Jaccard, 1901) between two sets, de-
noted as Sim(A,B), is defined as the ratio of the
cardinality of their intersection to the cardinality of
their union.

Sim(A,B) :=
|A ∩B|
|A ∪B| (16)

Agreement is then defined as

Definition 13 (Agreement). Given a testing query
set Q′ and a threshold τ , the agreement of link pre-
diction over the ϵ-level set Sϵ(M

∗
θ ) is average Jac-

card similarity of predicted answer sets provided
by competing models Mθ ∈ Sϵ(M

∗
θ ).

J(M∗
θ ) =∑

q∈Q′
∑

Mθ∈Sϵ(M∗
θ )
Sim(Pτ (Mθ, q), Pτ (M

∗
θ , q))

|Q′| · |Sϵ(M∗
θ )|

We summarize the results of multiplicity in this
setting in Table 8 and 9. We observe more signif-
icant predictive multiplicity behavior, since it is
more challenging to predict the same answer set
from competing models. It requires very robust
rankings from competing models. And it heavily
relies on the scoring-based threshold. Nevertheless,
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Model Dataset Baselines Hits@10 ↑ αϵ ↓ δϵ ↓ Dataset Baselines Hits@10 ↑ αϵ ↓ δϵ ↓
Tr

an
sE

W
N

18

w/o 0.903 0.074 0.029

FB
15

k w/o 0.755 0.140 0.053
major 0.296 0.109 0.051 major 0.202 0.150 0.070
Borda 0.876 0.028 0.011 Borda 0.751 0.036 0.014
range 0.907 0.017 0.009 range 0.760 0.032 0.014

W
N

18
R

R w/o 0.518 0.076 0.034

FB
15

k2
37 w/o 0.455 0.385 0.145

major 0.055 0.096 0.045 major 0.155 0.171 0.081
Borda 0.482 0.032 0.016 Borda 0.456 0.110 0.044
range 0.519 0.017 0.009 range 0.470 0.101 0.041

R
ot

at
E W

N
18

w/o 0.951 0.026 0.009

FB
15

k w/o 0.790 0.086 0.032
major 0.880 0.031 0.016 major 0.464 0.088 0.044
Borda 0.957 0.008 0.004 Borda 0.797 0.018 0.008
range 0.957 0.008 0.004 range 0.798 0.016 0.007

W
N

18
R

R w/o 0.547 0.195 0.074

FB
15

k2
37 w/o 0.520 0.163 0.064

major 0.413 0.064 0.029 major 0.204 0.104 0.053
Borda 0.564 0.062 0.028 Borda 0.523 0.039 0.017
range 0.578 0.051 0.022 range 0.524 0.037 0.016

R
E

SC
A

L W
N

18

w/o 0.940 0.039 0.016

FB
15

k w/o 0.714 0.217 0.081
major 0.462 0.015 0.007 major 0.137 0.050 0.024
Borda 0.935 0.011 0.005 Borda 0.716 0.054 0.022
range 0.944 0.012 0.005 range 0.729 0.048 0.020

W
N

18
R

R w/o 0.517 0.248 0.095

FB
15

k2
37 w/o 0.482 0.375 0.140

major 0.198 0.108 0.054 major 0.145 0.165 0.089
Borda 0.561 0.099 0.043 Borda 0.485 0.107 0.048
range 0.575 0.084 0.034 range 0.498 0.098 0.042

D
is

tM
ul

t W
N

18

w/o 0.938 0.044 0.018

FB
15

k w/o 0.773 0.170 0.064
major 0.459 0.012 0.008 major 0.157 0.049 0.023
Borda 0.927 0.013 0.006 Borda 0.766 0.052 0.021
range 0.941 0.015 0.007 range 0.778 0.048 0.019

W
N

18
R

R w/o 0.526 0.169 0.068

FB
15

k2
37 w/o 0.476 0.320 0.120

major 0.185 0.078 0.037 major 0.144 0.124 0.059
Borda 0.524 0.055 0.024 Borda 0.475 0.088 0.037
range 0.542 0.048 0.021 range 0.488 0.082 0.034

C
om

pl
E

x W
N

18

w/o 0.941 0.042 0.018

FB
15

k w/o 0.765 0.210 0.081
major 0.458 0.009 0.005 major 0.158 0.047 0.023
Borda 0.943 0.021 0.010 Borda 0.765 0.076 0.032
range 0.945 0.020 0.009 range 0.780 0.071 0.029

W
N

18
R

R w/o 0.541 0.217 0.085

FB
15

k2
37 w/o 0.482 0.308 0.116

major 0.243 0.243 0.126 major 0.145 0.121 0.055
Borda 0.559 0.067 0.030 Borda 0.480 0.087 0.036
range 0.573 0.058 0.024 range 0.493 0.082 0.032

C
on

vE

W
N

18

w/o 0.938 0.043 0.019

FB
15

k w/o 0.766 0.177 0.066
major 0.476 0.039 0.021 major 0.175 0.085 0.041
Borda 0.933 0.014 0.005 Borda 0.761 0.052 0.022
range 0.942 0.015 0.006 range 0.771 0.049 0.020

W
N

18
R

R w/o 0.500 0.222 0.088

FB
15

k2
37 w/o 0.474 0.340 0.130
major 0.185 0.092 0.047 major 0.150 0.154 0.074
Borda 0.522 0.082 0.035 Borda 0.474 0.092 0.039
range 0.534 0.068 0.027 range 0.486 0.085 0.034

Table 7: This table presents the metrics for accuracy (i.e. Hits@K and ϵ) and for predictive multiplicity (i.e. αϵ and
δϵ) for different voting methods applied on different KGE models and four datasets.
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model dataset baseline Hits@1↑ α@1↓ δ@1↓ dataset baseline Hits@1↑ α@1↓ δ@1↓

Tr
an

sE

W
N

18

w/o 0.499 0.459 0.315

FB
15

k w/o 0.659 0.376 0.273
major 0.494 0.210 0.145 major 0.654 0.180 0.118
Borda 0.494 0.203 0.135 Borda 0.655 0.159 0.115
range 0.497 0.194 0.129 range 0.661 0.144 0.100

W
N

18
R

R w/o 0.105 0.647 0.472

FB
15

k2
37 w/o 0.544 0.312 0.206

major 0.106 0.318 0.218 major 0.543 0.101 0.069
Borda 0.109 0.308 0.228 Borda 0.544 0.090 0.060
range 0.112 0.283 0.215 range 0.548 0.091 0.061

R
ot

at
E W

N
18

w/o 0.880 0.413 0.343

FB
15

k w/o 0.664 0.473 0.376
major 0.872 0.300 0.219 major 0.674 0.271 0.198
Borda 0.873 0.296 0.229 Borda 0.681 0.263 0.215
range 0.875 0.285 0.218 range 0.682 0.248 0.188

W
N

18
R

R w/o 0.219 0.415 0.297

FB
15

k2
37 w/o 0.539 0.335 0.221

major 0.226 0.172 0.115 major 0.538 0.095 0.063
Borda 0.224 0.187 0.130 Borda 0.540 0.089 0.057
range 0.231 0.145 0.100 range 0.543 0.096 0.066

R
E

SC
A

L W
N

18

w/o 0.785 0.647 0.483

FB
15

k w/o 0.537 0.605 0.496
major 0.862 0.344 0.250 major 0.584 0.402 0.282
Borda 0.867 0.340 0.274 Borda 0.595 0.385 0.309
range 0.868 0.331 0.263 range 0.605 0.374 0.301

W
N

18
R

R w/o 0.194 0.734 0.639

FB
15

k2
37 w/o 0.492 0.635 0.518

major 0.213 0.510 0.372 major 0.534 0.352 0.249
Borda 0.232 0.425 0.332 Borda 0.550 0.326 0.252
range 0.241 0.395 0.318 range 0.556 0.308 0.231

D
is

tM
ul

t W
N

18

w/o 0.861 0.385 0.325

FB
15

k w/o 0.696 0.425 0.349
major 0.860 0.298 0.208 major 0.695 0.306 0.219
Borda 0.862 0.310 0.247 Borda 0.697 0.302 0.247
range 0.862 0.304 0.238 range 0.700 0.298 0.240

W
N

18
R

R w/o 0.133 0.780 0.675

FB
15

k2
37 w/o 0.417 0.817 0.643

major 0.163 0.517 0.366 major 0.511 0.392 0.271
Borda 0.171 0.449 0.342 Borda 0.523 0.399 0.297
range 0.183 0.412 0.293 range 0.543 0.330 0.241

C
om

pl
E

x W
N

18

w/o 0.866 0.379 0.325

FB
15

k w/o 0.685 0.420 0.350
major 0.866 0.310 0.222 major 0.694 0.272 0.206
Borda 0.866 0.305 0.238 Borda 0.698 0.274 0.218
range 0.867 0.308 0.238 range 0.700 0.273 0.217

W
N

18
R

R w/o 0.100 0.957 0.876

FB
15

k2
37 w/o 0.419 0.820 0.650

major 0.158 0.702 0.487 major 0.509 0.393 0.276
Borda 0.194 0.553 0.438 Borda 0.528 0.398 0.297
range 0.203 0.489 0.372 range 0.543 0.332 0.256

C
on

vE

W
N

18

w/o 0.870 0.435 0.354

FB
15

k w/o 0.634 0.568 0.436
major 0.862 0.302 0.214 major 0.672 0.315 0.219
Borda 0.863 0.309 0.251 Borda 0.686 0.307 0.240
range 0.864 0.299 0.239 range 0.688 0.293 0.225

W
N

18
R

R w/o 0.150 0.617 0.469

FB
15

k2
37 w/o 0.520 0.554 0.434

major 0.164 0.332 0.232 major 0.538 0.283 0.194
Borda 0.164 0.324 0.240 Borda 0.548 0.255 0.178
range 0.168 0.288 0.201 range 0.553 0.218 0.145

Table 8: predictive multiplicity evaluation for top-1 an-
swers in query answering setting.

voting method reduce the number of conflicting
prediction also in that settings. In the future work,
it is interesting to find out a way to set the threshold
properly or at least quantify the uncertainty of the
answer set for the threshold.

D.3 Accuracy for ComplEx on Nations
dataset with respect to ϵ

See figure 6.

D.4 Complete Results of Investigating the
Number of Aggregated Models

Figure 7 - 10 show the results of investigating the
predictive multiplicity wrt. the number of aggre-
gated models for all models across all datasets. Fig-
ure 11 - 14 show the results of investigating the
accuracy wrt. the number of aggregated models for
all models across all datasets.

E Further Discussion

Model or predictive multiplicity is not always prob-
lematic in some Knowledge Graph Embedding
(KGE) applications, as it allows flexibility in model
selection. For instance, KGE methods have been
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Figure 6: Accuracy for ComplEx on Nations dataset
with respect to ϵ.

used to approximate statistical reasoning on statisti-
cal EL (SEL) ontologies (Zhu et al., 2023, 2024b;
Xiong et al., 2022a). In these cases, the probability
intervals of axioms are estimated by assessing the
point estimates from multiple KGE models trained
with different random seeds. However, if the KGE
models are insufficiently diverse due to random
sampling from the hypothesis space, these prob-
ability intervals may be too narrow. Introducing
predictive multiplicity metrics, such as ambiguity
and discrepancy, to measure model diversity could
improve the sampling process, potentially leading
to better approximations for statistical reasoning.

Additionally, previous work has explored logical
explanations for KGE predictions. For example,
Qu and Tang (2019); Cheng et al. (2022) provide
logic rules as explanations, while He et al. (2023,
2024) propose a query embedding model that ex-
plains knowledge in the form of SROI− descrip-
tion logic axioms. However, due to model multi-
plicity, these explanations can vary depending on
the random seeds used during training. Address-
ing this variability by finding a set of conflict-free
explanations, potentially through the use of compu-
tational argumentation frameworks (Potyka, 2021,
2018), is another promising direction for future
research. Future work can also be extend to han-
dle knowledge graphs with high-order relational
structure (Xiong et al., 2024, 2023; Ding et al.,
2024b,a).
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model dataset baseline Hits@10↑ α@10↓ δ@10↓ J@10↑ dataset baseline Hits@10↑ α@10↓ δ@10↓ J@10↑

Tr
an

sE

W
N

18

w/o 0.662 0.940 0.825 0.727

FB
15

k w/o 0.468 0.959 0.891 0.597
major 0.088 0.480 0.376 0.916 major 0.133 0.545 0.469 0.878
Borda 0.522 0.673 0.505 0.871 Borda 0.463 0.702 0.570 0.850
range 0.522 0.649 0.497 0.876 range 0.464 0.683 0.549 0.859

W
N

18
R

R w/o 0.517 0.990 0.930 0.650

FB
15

k2
37 w/o 0.239 0.991 0.952 0.564

major 0.106 0.226 0.177 0.961 major 0.072 0.536 0.447 0.906
Borda 0.659 0.560 0.428 0.910 Borda 0.242 0.770 0.633 0.865
range 0.660 0.529 0.401 0.916 range 0.242 0.751 0.611 0.873

R
ot

at
E W

N
18

w/o 0.730 0.986 0.978 0.391

FB
15

k w/o 0.435 0.967 0.934 0.441
major 0.441 0.355 0.298 0.917 major 0.114 0.654 0.590 0.844
Borda 0.717 0.902 0.855 0.719 Borda 0.435 0.802 0.712 0.785
range 0.717 0.868 0.783 0.747 range 0.435 0.790 0.693 0.796

W
N

18
R

R w/o 0.540 0.976 0.935 0.589

FB
15

k2
37 w/o 0.244 0.955 0.870 0.695

major 0.188 0.270 0.209 0.955 major 0.058 0.424 0.331 0.944
Borda 0.541 0.765 0.625 0.856 Borda 0.244 0.610 0.457 0.916
range 0.541 0.723 0.589 0.877 range 0.244 0.586 0.431 0.922

R
E

SC
A

L W
N

18

w/o 0.671 1.000 1.000 0.156

FB
15

k w/o 0.345 0.999 0.989 0.334
major 0.515 0.731 0.623 0.848 major 0.104 0.776 0.714 0.753
Borda 0.713 0.978 0.951 0.604 Borda 0.386 0.913 0.842 0.671
range 0.708 0.964 0.918 0.647 range 0.389 0.905 0.828 0.679

W
N

18
R

R w/o 0.529 0.996 0.995 0.247

FB
15

k2
37 w/o 0.210 1.000 0.999 0.236

major 0.165 0.440 0.400 0.862 major 0.128 0.909 0.873 0.693
Borda 0.549 0.926 0.852 0.689 Borda 0.239 0.955 0.897 0.672
range 0.550 0.898 0.817 0.722 range 0.241 0.947 0.881 0.689

D
is

tM
ul

t W
N

18

w/o 0.701 0.982 0.972 0.343

FB
15

k w/o 0.439 0.970 0.936 0.459
major 0.209 0.271 0.235 0.929 major 0.103 0.697 0.633 0.784
Borda 0.702 0.922 0.872 0.694 Borda 0.427 0.820 0.725 0.717
range 0.702 0.883 0.802 0.739 range 0.428 0.805 0.703 0.727

W
N

18
R

R w/o 0.512 1.000 1.000 0.181

FB
15

k2
37 w/o 0.198 1.000 1.000 0.183

major 0.404 0.534 0.467 0.850 major 0.159 0.974 0.942 0.667
Borda 0.541 0.973 0.934 0.659 Borda 0.243 0.987 0.958 0.593
range 0.543 0.958 0.892 0.699 range 0.248 0.974 0.935 0.634

C
om

pl
E

x W
N

18

w/o 0.716 0.985 0.973 0.409

FB
15

k w/o 0.420 0.957 0.925 0.427
major 0.196 0.248 0.220 0.928 major 0.061 0.635 0.582 0.801
Borda 0.705 0.876 0.784 0.760 Borda 0.423 0.841 0.768 0.711
range 0.705 0.830 0.731 0.785 range 0.425 0.832 0.753 0.724

W
N

18
R

R w/o 0.456 1.000 1.000 0.103

FB
15

k2
37 w/o 0.197 1.000 1.000 0.172

major 0.437 0.911 0.839 0.720 major 0.163 0.972 0.946 0.660
Borda 0.545 0.990 0.966 0.587 Borda 0.246 0.990 0.961 0.588
range 0.549 0.979 0.941 0.628 range 0.250 0.979 0.950 0.626

C
on

vE

W
N

18

w/o 0.713 0.993 0.989 0.277

FB
15

k w/o 0.429 0.998 0.990 0.354
major 0.392 0.379 0.314 0.915 major 0.196 0.800 0.721 0.780
Borda 0.704 0.939 0.877 0.708 Borda 0.439 0.910 0.833 0.709
range 0.705 0.912 0.825 0.745 range 0.440 0.892 0.806 0.732

W
N

18
R

R w/o 0.527 0.995 0.989 0.351

FB
15

k2
37 w/o 0.236 0.999 0.989 0.370

major 0.152 0.393 0.335 0.913 major 0.108 0.815 0.747 0.784
Borda 0.537 0.905 0.813 0.739 Borda 0.249 0.909 0.813 0.761
range 0.535 0.873 0.770 0.775 range 0.251 0.893 0.788 0.781

Table 9: predictive multiplicity evaluation for top-10 answers in query answering setting.

E.1 Relationship between Predictive
Multiplicity and Entity/Relation
Frequency

Figure 15 - 16 demonstrate the relationship be-
tween relation frequency and empirical ambigu-
ity/discrepancy.

F AI Assistants In Writing

We use ChatGPT (OpenAI, 2024) to enhance our
writing skills, abstaining from its use in research
and coding endeavors.
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Figure 7: Investigation on WN18.
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Figure 8: Investigation on WN18RR.
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Figure 9: Investigation on FB15k.
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Figure 10: Investigation on FB15k237.

352



5 10
#aggregation

0.00
0.25
0.50
0.75
1.00

Hi
ts

@
10

TransE

5 10
#aggregation

0.00
0.25
0.50
0.75
1.00

Hi
ts

@
10

RotatE

5 10
#aggregation

0.00
0.25
0.50
0.75
1.00

Hi
ts

@
10

DistMult

5 10
#aggregation

0.00
0.25
0.50
0.75
1.00

Hi
ts

@
10

ComplEx

5 10
#aggregation

0.00
0.25
0.50
0.75
1.00

Hi
ts

@
10

RESCAL

5 10
#aggregation

0.00
0.25
0.50
0.75
1.00

Hi
ts

@
10

ConvE

w/o major Borda range

Figure 11: Accuracy investigation on WN18. Note the
blue lines (w/o) might be covered by other lines and not
visible in diagram.
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Figure 12: Accuracy investigation on WN18RR. Note
the blue lines (w/o) might be covered by other lines and
not visible in diagram.
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Figure 13: Accuracy investigation on FB15k. Note the
blue lines (w/o) might be covered by other lines and not
visible in diagram.
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Figure 14: Accuracy investigation on FB15k237. Note
the blue lines (w/o) might be covered by other lines and
not visible in diagram.
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Figure 15: This figure demonstrates the weak negative
correlation between relation frequency and empirical
ambiguity.
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Figure 16: This figure demonstrates the weak negative
correlation between relation frequency and empirical
discrepancy.
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